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Natural killer T (NKT) cells are CD1d restricted T cells that mostly recognize lipid antigens.

These cells share characteristics with both adaptive and innate immune cells and have

multiple immunoregulatory roles. In a manner similar to innate immune cells, they respond

quickly to stimuli and secrete large amounts of cytokines, amplifying and modulating the

immune response. As T cells, they express T cell receptors (TCRs) and respond in an

antigen-specific manner like conventional T cells. There are at least two subtypes of NKT

cells, type I and type II, that differ in the nature of their TCR, either semi-invariant (type I) or

diverse (type II). The two sub-types generally have opposing functions in tumor immunity,

with type I promoting and type II suppressing tumor immunity, and they cross-regulate

each other, forming an immunoregulatory axis. The tumor has multiple mechanisms by

which it can evade immune-surveillance. One such mechanism involves alteration in

tumor lipid repertoire and accumulation of lipids and fatty acids that favor tumor growth

and evade anti-tumor immunity. Since NKT cells mostly recognize lipid antigens, an

altered tumor lipid metabolic profile will also alter the repertoire of lipid antigens that

can potentially affect their immune-modulatory function. In this review, we will explore the

effects of alterations in the lipid metabolites on tumor growth, antigen cross-presentation,

and overall effect on anti-tumor immunity, especially in the context of NKT cells.
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INTRODUCTION

Natural killer T cells (NKT cells) are a specialized subset of T-lymphocytes that share characteristics
of both the innate and adaptive immune system. By definition, NKT cells are cells that recognize
mostly lipid antigens presented by a non-classical class I MHC molecule, CD1d (1). CD1d
is a member of the CD1 family, which are involved in presentation of a variety of both
endogenous and exogenous lipid antigens to T-lymphocytes (2). NKT cells respond quickly
and produce copious amounts of cytokines, further amplifying the immune response, while
at the same time acting in an antigen specific manner. They are further categorized into two
broad subsets based on their TCR repertoire. Type I NKT cells express a TCRα chain with
limited diversity and therefore are referred to as semi-invariant NKT cells or invariant NKT
cells (iNKT). The TCRα chain expressed by type I NKT consists of Vα14Jα18 in mice and
Vα24Jα18 in humans, which preferentially pairs with Vβ8, Vβ7, Vβ2 in the former, and Vβ11
in the later (3–5). A marine sponge-derived lipid, α-GalCer (α-galactosylceramide) bound to
CD1d, is a prototype ligand that binds to and activates virtually all type I NKT cells. In mice,
type I NKTs are mostly CD4 single positive and CD4/CD8 double negative cells, whereas in
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humans these are CD4 or CD8 single positive as well as double
negative cells (6). Type II NKT cells are a distinct CD1d restricted
NKT population that does not react to α-GalCer. These cells
express a more diverse TCR repertoire. A subset of type II NKT
cells that reacts to sulfatide, a self-glycolipid, was the very first
subtype to be identified by a specific ligand (7). Although type
II NKTs can recognize a variety of lipids presented by CD1d,
to date, sulfatide reactive type II NKT cells remain one of the
best-described subsets (8). Type II NKT cells appear to be the
predominant population in humans (9), but due to the lack of
a specific ligand and isolation techniques, they have been difficult
to study (10). Although NKT cells recognize lipid antigens, they
can recognize hydrophobic peptides in addition to lipids as
well, which is beyond the scope of this review and is reviewed
elsewhere (11–14). Both Type I and II NKT cells modulate the
immune response during tumor development and progression.
Although highly contextual, in general, type I NKT cells are
shown to have enhanced anti-tumor immune response whereas
type II NKT cells generally act in an opposing manner (5, 15–18).
However, in some mouse tumor models, type I NKT cells also
have been shown to be suppressive of tumor immunity (18–22).

NKT cells recognize a diverse repertoire of both endogenous
and exogenous lipids (2, 23). Most information on NKT lipid
antigenic repertoire has come from mouse studies. Unlike
humans, mice express only CD1d among the CD1 gene family
(24). The generic structure of a lipid antigen-loaded to the CD1d
molecule consists of a polar headgroup (e.g., a galactose sugar)
linked to hydrophobic side chains. The CD1d molecule has
two hydrophobic pockets, the A′ and F′ pockets, into which
the hydrophobic side chains fit, whereas the polar headgroup
sits outside and interacts with the TCR on the NKT cell (13).
The length of the hydrophobic side chain as well as structural
modifications in both the side chain and the polar headgroup can
affect the binding of the lipid antigen presented by CD1d to the
TCR on NKT cells. This, in turn, can have a differential effect on
their activation status and eventual immune responses (25, 26).

Studies have reported several lipids that bind to CD1d and can
potentially be presented to NKT cells. Glycerophospholipids and
sphingolipids are the two major lipid groups that bind to CD1d
(27). Phosphatidylcholine (PC), phosphatidylethanolamine (PE),
Phosphatidylserine (PS), phosphoinositoI, phosphatidylglycerol,
and phosphatic acid are the various glycerophospholids that have
been shown to bind to CD1d with variable affinities. Several self-
lipid antigens stimulate both murine and human NKT cells (28)
such as lysophosphatidylethanolamine, and lysophosphatidic
acids. Some lipids stimulate type I over type II NKT cells and vice
versa. In particular, lysosphingomyelin stimulate only human
type I NKT cells. Lysophospahtidylcholine stimulate both type
I and type II NKT cells in humans, however, its reactivity with
type I NKT is weaker. Additionally, lysophosphatidylcholine also
reacts with murine type II NKT cells (29).

There are thousands of lipids within a mammalian cell serving
functions ranging from energy storage to structural integrity to
signal transduction (30). Any change in the lipid repertoire can
disrupt tissue homeostasis leading to cellular transformation,
cell proliferation, and migration (31–33). In this review, we will
discuss the effect of altered lipid composition on tumor growth,

anti-tumor immunity both NKT cell dependent and NKT cell
independent. Some of the mechanisms by which lipid changes
can modulate NKT cell dependent immune functions, directly
or indirectly, that will be discussed here are (1) alteration in
the quality of lipid antigen repertoire that can be presented
to NKT cells, (2) impaired antigen cross presentation by DCs
either by affecting the antigen processing machinery or MHC
and CD1d surface expression, (3) modified quality and quantity
of lipid reactive NKT cells, and (4) homing of NKT cells to the
tumor sites.

ALTERED LIPID METABOLIC STATUS AND
EFFECT ON TUMOR GROWTH

Lipids are integral components of the cellular membrane
where they participate in lipid raft formation and impact
signal transduction (34). Thus, lipids have both structural and
functional roles in maintaining cellular homeostasis. Fatty acids
(FA) and cholesterol are the building blocks of all lipids in the
body and are synthesized de novo in specialized tissues from
Acetyl CoA. Other than synthesis, FAs are also taken up by the
cells from the surroundings such as circulation, nearby tissues,
and diet. Short chain saturated FAs are further elongated and
desaturated by a specific set of enzymes to generate mono and
polyunsaturated fatty acids (31). The human body is unable to
synthesize long-chain polyunsaturated fatty acids (PUFAs) called
omega 3 (DHA, docosahexaenoic, and EPA, eicosapentaenoic
acid) fatty acids and omega 6 (arachidonic acid) at a reasonable
rate and therefore, supplementation is required through dietary
sources (35, 36). Alteration in lipid repertoire, such as saturated
vs. unsaturated lipids, can influence multiple cellular functions.
To illustrate, an altered lipid repertoire can impact membrane
fluidity, cell-cell interaction, as well as the membrane protein
landscape, which in turn can affect the downstream signaling
cascade (37, 38). There are several studies that have reported a
metabolic reprograming favoring de novo synthesis of lipids in
cancer (39, 40). Additionally, an association between increased
uptake of saturated fatty acids and cancer development has
been reported in multiple cancer types (41–44). Also, a diet
high in polyunsaturated fatty acids, especially omega 3s, have
been shown to be negatively associated with cancer development
(45–47). Consistent with that, one recent study reported a
significant loss of PUFA especially omega 3 in breast cancer
brainmetastasis, by downregulation of its specific receptor,Major
Facilitator Superfamily Domain Containing 2a (MFSD2a) on
tumor endothelium (48).

Tumor cells have high metabolic flux. To sustain growth,
they need a rapid and constant supply of FAs and lipids
to generate bio-membrane, which is achieved by uptake of
FAs from the surrounding tissues as well as upregulation of
endogenous lipogenic pathways (49). Figure 1 outlines the effects
of altered lipid metabolism on tumor growth as well as anti-
tumor immunity. One pioneering study showed that tumor cells,
in addition to uptake from the surrounding tissues, can also
synthesize fatty acids de novo (39). Additionally, tumors can
upregulate metabolic pathways leading to the accumulation of
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FIGURE 1 | Alteration in lipid metabolism in tumor and potential effects on NKT independent and dependent immune function. Upregulation of de novo pathway and

loss of tumor suppressive lipids such as DHA leads to differential accumulation of lipids in tumors, which favors tumor growth and provides energy sources and

building blocks for bio-membranes. Alteration in lipid pool can affect immune response in an NKT independent or NKT dependent manner as outlined in the figure. It

can lead to impaired macrophage function during inflammation and defective antigen presentation. Additionally, altered lipids can also serve directly as antigens for

NKT cells and modulate their role in anti-tumor immunity. Homing of NKT cells can also be affected by altered lipids. Therefore, identifying the lipids as well as the

pathways that lead to their upregulation and blocking it, can have potential therapeutic benefit in cancer.

specific fatty acids and lipids that promote tumor growth and
exclude those that suppress it. Consistent with that, various
studies identified upregulation of several key lipid metabolic
enzymes (such as ACC, Acetyl Co-A carboxylase, FASN, Fatty
acid synthase, and ACLY, ATP-citrate lyase) under tumor
conditions, and suppression of these enzymes involved in fatty
acid synthesis has been shown to be preventive against tumor
growth and metastasis (50–52). Additionally, sterol regulatory
element-binding protein (SREBP), a master regulator of lipid
biogenesis (53), is aberrantly upregulated inmultiple cancer types
and leads to upregulation of its target genes, promoting cancer
growth (54). Furthermore, genetic or pharmacological inhibition
of SREBP in pre-clinical studies, shows anti-tumorigenic effect by
altering tumor specific lipid metabolism (55, 56).

EFFECTS OF ALTERED CELLULAR LIPIDS
ON NKT CELL INDEPENDENT IMMUNE
RESPONSES

Lipidmediators are at the crux of both initiating an inflammatory
response as well as resolving it (57–59). Therefore, metabolic
deficiencies, pathogenic conditions, tumors, and dietary habits

can cause an imbalance in the lipid metabolism that can skew
the balance toward the accumulation of certain lipids over others,
leading to aberrant immune activation.

Effect of Altered Lipid Metabolism on
Antigen Presentation
A high-fat diet that predominantly contains saturated fatty
acids (SFAs) positively correlates with cancer development and
progression (60–62). Although, both SFAs and PUFAs can
have immunomodulatory effects under various pathological
conditions (63), their effect on the immune system in the context
of cancer development and progression is not well-understood.
Many cancers accumulate SFAs by upregulating the de novo
fatty acid synthesis pathway. These SFAs are preferentially taken
up from the surrounding milieu. Additionally, tumors exclude
PUFAs from their lipid pool. Alterations in the fatty acid pool of
a cell can lead to gene expression changes as well as structural
changes in the bio-membrane. Not much is known about the
effect of altered lipid metabolism on lipid antigen presentation,
recognition, and consequent activation of cytotoxic T cells
(CTLs) and NKT cells, especially in cancer.

Dendritic cells (DCs) are the professional antigen presenting
cells in the body. Efficient antigen presentation by DCs results
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in enhanced activation and the cytotoxic response of CD8+ T
cells. Several studies have shown that a high-fat diet, enriched
in SFAs, can significantly impair the ability of DC’s to activate
naïve T cells. In addition to SFAs, PUFAs can also diminish
the immunogenic function of DCs (64). APCs, when treated
with high levels of palmitic acid (PA), express significantly
reduced levels of class I MHC on their cell surface (Figure 2A).
Additionally, this also leads to an impaired conjugation rate of
APCs and lymphocytes (65) (Figure 2C). This effect is primarily
due to altered membrane dynamics, and defects in membranes
generated by high PA. Furthermore, co-treatment of oleic acid
(a monosaturated fatty acid) with PA, sequesters PA into lipid
droplets and negates its effect on cytoskeletal organization. This
has important effects on antigen presentation and can thereby
rescue the antigen presentation ability of APCs even when PA
is present.

Other than treatment with exogenous fatty acids, endogenous
fatty acids also affect DCs, both qualitatively and quantitatively.
One study reported a significant reduction in the number
of DCs as a result of blocking cell intrinsic fatty acid
synthesis (66). However, their antigen presentation ability was
not compromised. The study further reported a diminished
maturation, yet an upregulated expression of TLRs on DCs
upon inhibition of FA synthesis. Additionally, blocking FA
synthesis led to increased production of inflammatory cytokines
as well as enhanced antigen capture by the DCs. Taken together,
these data suggest that an immune response elicited by DC-
mediated antigen presentation, irrespective of peptide or lipid
antigen, is highly contextual under physiological conditions and
is dependent on the nature and levels of fatty acids.

Tumor cells can alter the DCs causing them to become
dysfunctional and inefficient in antigen presentation (67). DCs
can take up lipids from the tumor microenvironment, which can
significantly affect their antigen presentation ability and hence
immunogenicity (68). During growth tumors accumulate high
levels of triglycerides (TAGs). DCs from a tumor-bearing mouse
become significantly enriched for TAGs when compared to DCs
from a naïve mouse. Further, this accumulation of lipids in the
DCs from tumor-bearing mice is mainly by upregulation of
scavenger receptor A in DCs. Additionally, high lipid content
in DCs from tumor-bearing mice negatively affects the antigen
processing machinery (69, 70). Also, the DCs in peripheral blood
in persons with cancer show a lipid excess, and their numbers
as well as their antigen presentation ability is significantly
compromised (71). One hypothesis why DC vaccines or DC-
based cancer therapies may not work is due to the accumulation
of lipids when these cells are either in circulation or in the
tumor microenvironment and a subsequent loss of antigenicity.
If that turns out to be the case, then use of autologous monocytes
to produce autologous DCs ex vivo, pulsing or transducing
them with antigen, and maturing the DCs in vitro could
produce tumor-targeted DC vaccines that evade this suppressive
mechanism in the tumor microenvironment. Such a strategy
is already being applied to avoid other immunosuppressive
effects of tumors on DC maturation (72, 73). Interestingly, the
defects of DC function induced by high lipid content seems
to be reversed by reducing the lipid levels, thereby restoring

their antigen presentation function and enhanced efficacy of
DC-based cancer vaccines (69). Recently, one study reported
defective antigen cross-presentation by tumor-associated DCs
due to the accumulation of lipid bodies in the DCs containing
oxidatively truncated lipids. The defect in the cross-presentation
was due to impaired trafficking of MHC class I molecules to
the cell surface (74). Another recent study reported an impaired
antigen presentation of peripheral blood DCs in late-stage lung
cancer patients due to high levels of TAGs (71). Together, these
data suggest that an altered lipid environment in the tumor
environment can directly affect DC function, both at the tumor
site and peripherally.

Effects of Altered Lipids on Macrophages
Macrophages are diverse cell population found in every
tissue (75). Tissue-specific environmental cues define their
characteristics (76, 77). During inflammatory conditions,
macrophages play distinct roles in an orchestrated manner,
where initiation state is marked by the M1 phase, whereas,
the M2 phase defines the beginning of the resolution, re-
epithelialization and return to the homeostatic stage (78).
Both M1 and M2 phenotypes of macrophages are dependent
on specialized lipid mediators. A lipid class switch from pro-
inflammatory AA (arachidonic acid) derived lipid mediators to
an anti-inflammatory, DHA (docosahexaenoic acid) and EPA
derived lipid mediators is important to push the macrophages
to the resolution state, thereby inhibiting inflammation and
re-establish homeostasis (58). Figure 3 outlines the effect of
different lipids on macrophage function in inflammation.
Tumor-associated macrophages (TAMs) play roles in promoting
tumor growth. One study recently reported that debris generated
by chemotherapy in tumors can stimulate TAMs to secrete pro-
inflammatory cytokines thereby facilitating tumor growth. This
effect was reversed by resolvins, which are a class of pro-resolving
lipid mediators generated by DHA, thereby stimulating debris
clearance by macrophages and suppression of tumor promoting
inflammation (79).

EFFECTS OF ALTERED LIPIDS ON NKT
CELL FUNCTIONS

Alteration in cellular lipids can directly influence NKT cell
function via affecting antigen cross presentation by DCs, altered
lipid antigen repertoire leading to different CD1d:lipid complexes
that are presented to NKT cells, and modulating expression of
CD1d. Here, we will outline the effect of altered lipid repertoire
in metabolic defects and cancer on NKT cell function as well
as CD1d expression on DCs. Since antigen cross presentation
can also influence NKT independent immune responses, we will
cover that in a separate section.

Effects of Metabolic Disorders on NKT Cell
Development
Lipids are essential for development of NKT cells (80). Mice
deficient in a lysosomal enzyme β-galactosidase (β-Gal) or
lysosomal lipid transfer enzyme Niemann Pick C (NPC) 2 have
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FIGURE 2 | Effect of altered lipids on antigen presentation. (A) Accumulation of lipid bodies, mostly saturated lipids, negatively affects the localization of both class I

MHC as well as CD1d. (B) Also, polyunsaturated fatty acids (PUFAs), especially DHA, can induce PPARγ levels in dendritic cells which in turn induce the expression of

CD1d. (C) Lipid excess can also affect membrane dynamics, which in turn can interfere with CD1d:lipid antigen conjugation rate with TCRs on NKT cells, leading to

sub-optimal NKT function.

FIGURE 3 | Effect of altered lipids on macrophages. Macrophages play important roles during inflammation in a highly orchestrated manner. During initiation of

inflammation, arachidonic acid (AA)-derived lipid mediators, such as prostaglandins and leukotrienes, are required. M1 to M2 transition is mediated by lipoxins, which

are also derived from AA. The resolution state of inflammation requires docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) derived lipid mediators such as

resolvins, neuroprotectins, and maresins.

reduced numbers of lipid-reactive type I NKT cells (81). This is
largely due to defective CD1d antigen presentation and impaired
thymic selection of type I NKT cells. Even though the number
of NKT cells is reduced, there are still residual NKT cells with
differential TCR Vβ usage and CD4 expression in both β-Gal−/−

and NPC2−/− mice. This effect is due to the accumulation of
different lipids leading to altered CD1d: lipid antigen complex
formation. This in turn gives rise to NKT cells with different
functional subsets where a significant decrease in Vβ8.2/Vβ7
ratio in β-Gal−/− but not in NPC2−/− was observed, in contrast
to an increased ratio of CD4−/CD4+ in NPC2−/− but not in β-
Gal−/− mice was observed. This suggests a direct effect of the
type of lipid antigen presented on both quality and quantity of
NKT cells. Several other mouse models of the lysosomal storage
disease (Tay-Sachs, GM1 gangliosidosis, Fabry, NCP1) also show
a reduced number of type I NKT cells, not due to defective
CD1d presentation or lack of APCs, but due to impaired loading
of lipid antigen on to the CD1d molecule (82). In addition
to the decreased number, some lysosomal mouse models also
show a defective function of type I NKT cells (82). Interestingly,
in human patients with lysosomal storage disease, harboring

NPC1 mutations, there does not appear to be any change in
the number of type I NKT cells. Additionally, APCs from the
patients can present lipid antigens to type I NKT cells efficiently
(83). Although the quantity remains unchanged, the effect on
the quality of type I NKT cells in response to altered lipids in
lysosomal storage disease (84) is not known in humans.

Effect of Altered Lipids on CD1d Antigen
Presentation
DCs are professional APC that carry antigens from local
tissues to the draining lymph nodes and are necessary to prime
T cells including NKT cells. For the NKT cell priming, the
expression level of CD1d is critical. One study reported increased
expression of CD1d on human keratinocytes undergoing
terminal differentiation upon increased cellular ceramide
synthesis as well as exogenous ceramide application (85). Under
physiological conditions, one study showed that peroxisome
proliferator-activated receptor γ (PPARγ) upregulates CD1d
in monocyte-derived DCs at the transcriptional level (86)
(Figure 2B). Moreover, PPARγ mediated upregulation of CD1d
is via activation of the retinoic acid pathway. PPARγ also
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enhances internalization activity and effective lipid antigen
presentation to iNKT cells, leading to their activation and
expansion, when α-GalCer is present (87). Interestingly, DHA-
derived lipid mediators act as potential PPARγ agonists (88).
Also, DHA has been reported to generate a tumor suppressive
effect via PPARγ (89, 90). Consistent with that DHA can
specifically upregulate PPARγ expression and levels of its target
genes in DCs, and this upregulation is reversed by blocking
PPARγ activity (91). However, DHA and lipid mediators
derived from it are missing from the tumor environment (48).
Several studies report an anti-tumor effect of DHA. DHA dietary
supplementation, as well as its use as an adjuvant, has been shown
to improve disease outcome in cancer patients (92). Additionally,
PPARγ functions as a tumor suppressor and its expression is lost
in many cancers (93). We can hypothesize that accumulation
of tumor specific lipids in the tumor microenvironment can
affect the expression of CD1d on both tumor cells and DCs,
thereby suppressing their immunogenicity and facilitating
eventual immune evasion. Immunogenic cell death as a result of
intratumoral treatment of tumors with anti-cancer agents can
lead to release of tumor-specific antigens, which then can activate
T-cell mediated immunity and confer long term immunologic
memory against tumor (94). The use of EPA/DHA alone or in
combination with various chemotherapeutic agents has shown
anti-tumor effects, mostly via apoptosis (92). We propose
that co-treatment of tumors with EPA/DHA and intratumoral
anti-cancer agents may provide a novel effective immunotherapy
by mediating presentation of tumor antigens to T-cells and
induction of long term anti-cancer immunity.

Effects of Altered Lipids on NKT Cell
Function in Inflammation and Cancer
Non-alcoholic fatty liver (NAFLD) is considered as a pre-
malignant stage in the liver. One study in an obese mouse model
for NAFLD reported a reduction in the number of hepatic NKT
cells, as a result of activation-induced death of NKT cells by
activated Kupffer cells due to lipid excess (95). Additionally, lipid
excess in high fat diet (HFD)-induced obese mice activates type
I NKT cells and skews the balance toward a pro-inflammatory
cytokine environment. Further, lipid excess also causes obesity-
induced insulin resistance and hepatic steatosis in an NKT
dependent manner and can be reversed by deficiency of either
type I NKT cells or CD1d (96) Another study reported a role of
type II NKT cells in HFD induced obesity in mice (97). The study
reported minimal weight gain, reduced inflammation, hepatic
steatosis and insulin resistance in CD1d−/− mice compared
to Ja18−/− mice. In addition to that, a direct role of CD1d
mediated presentation of endogenous lipid antigens to activate
NKT cells in mice fed with HFD was shown (98). Moreover,
deletion of CD1d in adipocytes led to decreased weight gain
and higher insulin sensitivity in mice. In a contrasting study,
type I NKT cells were reported to suppress diet induced obesity
and development of type II diabetes. The study further showed
an increased infiltration of pro-inflammatory macrophages and
decreased type I NKT in adipocytes during development of
obesity. Moreover, an adoptive transfer of iNKT into Jα18−/−

obese mice or α-GalCer treatment of WT mice abrogated
obesity induced disorders (99). Yet another study, reported no
difference in weight gain, insulin sensitivity, inflammation and
liver steatosis between CD1d−/− vs. WT mice when fed with
HFD (100). In context of hepatocellular carcinoma (HCC) as
a result of NAFLD, one study reported no significant change
in the NKT cell number as a consequence of increased lipid
content in the liver in a transgenic mouse model (101). Another
study identified a subset of NKT cells reactive to lysoPC lipid
species in myeloma patients (102). In Gaucher disease (GD),
another pathology caused by a lipid metabolic defect, it was
shown that accumulation of β-glucocyceramide (β-GL1-22) and
glucosylsphingosine (LGL1) led to induction of a different subset
of type II NKT cell in both mice and humans (103). This specific
subset of type II NKT cells leads to aberrant activation of humoral
immunity and increased risk of B-cell malignancy.

Ceramides are released when cancer cells are exposed to
chemotherapeutics or ionizing radiation leading to apoptotic
death of tumor cells (104, 105). As ceramide is a major species
of lipid that can be presented by CD1d to be recognized by
NKT cells, the activation of NKT cells by ceramides released
from treated tumors likely modulates the anti-tumor immune
response. Interestingly, in the 4T1 pre-clinical tumor model,
radiotherapy in mice deficient in type I NKT cells significantly
enhanced tumor regression compared to WT mice with intact
type I NKT cells (106). Additionally, administration of α-GalCer,
NKT cell agonist that induces strong anti-tumor immunity, did
not enhance the response to radiotherapy inWTmice, suggesting
a potential immunosuppressive role of type I NKT cells that were
exposed to tumor-derived lipids.

Gangliosides are yet another sialic acid-containing diverse
group of glycosphingolipids that bind to and activate a subset
of NKT cells (107, 108). Any alteration in lipid repertoire
can also lead to altered ganglioside milieu. In regard to that,
gangliosides disialoganglioside 2 (GD2) and disialoganglioside
3(GD3) have been reported to be overexpressed in cancer and
shown to regulate tumor growth and metastasis (109). Mice
immunized with melanoma cells expressing GD3 were found
to have GD3 reactive NKT cells that were shown to be CD1d
restricted (110). Additionally, coimmunization of GD3 loaded
APCs along with GM3 loaded APCs suppressed the type I NKT
cell function (108). GM3 also suppressed IL-4 production but
not IFN-γ by type I NKT cells in response to α-GalCer. Also,
GM3 is expressed in several malignancies and targeting it by
specific antibody has anti-tumorigenic activity (111–113). In
an ovarian cancer model, GD3 was shown to be enriched in
tumor microenvironment and inhibit NKT cell activation. Also,
GD3 abrogated a α-GalCer mediated NKT cell activation in
vivo and in vitro by competing for the binding to CD1d (114).
Furthermore, increased VEGF levels in tumor enhances GD3
levels in ovarian cancer (115). CD1d expressing APCs treated
with GD3 significantly suppress NKT cell activation, suggesting
a direct role of GD3 as a lipid antigen enriched in tumor in
suppressing anti-tumor immunity in an ovarian cancer model
through presentation by CD1d to NKT cells. Additionally, both
GD3 and GM3 were recently reported to be present in TLR9
stimulated DCs (116) and synthetic versions of β-linked GM3
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and GD3 were able to activate type I NKT in mice, both in
vivo and in vitro in a CD1d dependent manner. Taken together,
an altered lipid environment in the inflammatory conditions
and tumor microenvironment can potentially affect NKT cell
function and fine tune the immune response. Understanding the
biology behind this can open up several therapeutic avenues such
as therapeutically targeting synthesis of tumor promoting (e.g.,
GD3) lipids and/or using tumor inhibitory lipids (e.g., DHA) as
adjuvants to enhance anti-tumor immunity.

EFFECT OF LIPIDS ON HOMING OF NKT
CELLS

Localization of an immune cell to the site of injury is critical
for resolution of inflammation and tissue homeostasis. In cancer,
there are very limited studies that report localizing of NKT cells
to the tumor site. CCR2 (expressed by NKT cells) and CCL2
(expressed by a subset of MYCN non-amplified neuroblastoma
cells) mediated homing of NKT cells to neuroblastoma was
shown in subset of neuroblastoma patients. Also, the survival
of patients with NKT cell infiltration was significantly longer
than that of patients without infiltration (117). In a follow-
up study, it was demonstrated that MYCN repressed the
expression of CCL2, thereby preventing homing of NKT cells
to the tumor site in both mouse models and human patients
(118). Interestingly, MYCN inhibition resulted in reduced tumor
growth and improved survival in a transgenic mouse model. At
the same time, there was an accumulation of lipid droplets in
neuroblastoma cells which were treated with MYCN-inhibitors,
suggesting a potential role for lipid metabolites involved in
tumor regression (119). Not much is known about the nature
of the lipids and mechanisms by which they may affect
the recruitment of NKT cells to tumor site, which remain
open questions.

One of the early studies reported a role of leukocyte function
associated antigen-1 (LFA-1) on accumulation of NKT cells
in the liver and LFA-1 deficient mice were shown to have
significantly fewer NKT cells. (120). Also, LFA-1-intercellular
adhesion molecule 1 (ICAM1) interaction was shown to be
critical for tissue resident NKT cells in mice, such that blocking
of either LFA-1 or ICAM1 led to a rapid release of NKT cells in
circulation, in a parabiotic mouse study. Furthermore, this LFA-
1-ICAM1 mediated tissue homing of NKT cells was shown to
be dependent on the transcription factor promyelocytic leukemia
zinc finger (PLZF) (121). Yet another study revealed the role of
a chemokine receptor CXCR6 expressed on the NKT cell surface,

and its specific receptor, CXCL16 (a transmembrane chemokine
which is expressed on liver, lung and spleen cells), in homing of
CXCR6 expressing NKT cells to the liver (122). This pathway is
also lipid-dependent because the gut microbiome’s metabolism of
lipid bile acids affects the induction of CXCL16 and thus NKT cell
homing to the liver and ability to control liver cancer (123).

CONCLUSIONS

To date, most immune therapy treatment regimens in cancer
focus on peptide-antigen-recognizing conventional T cells.
However, lipid-reactive NKT cells have emerged as one of the
major immune-modulators in tumor immunity, in pre-clinical
mouse models. Although contextual, it is generally acceptable
that type I NKT cells exert anti-tumorigenic effect whereas type II
NKT cells have an opposite effect. Notwithstanding that both type
I and II NKT cells constitute a small percentage of lymphocytes
as compared to the conventional T cells, both NKT cell types
mediate substantial immunomodulatory effects. Therefore, a
deeper understanding of their differential regulation under
normal and tumor conditions could unravel novel therapeutic
nodes that can prove beneficial for anti-tumor immune therapy.
Deregulated lipid metabolism is reported in several cancers.
Unlike functional studies of DNA and proteins, knowledge of
both the structural and functional roles of lipids in the process
of cellular transformation and tumor growth has lagged behind.
Changes in lipids can have a global effect on immune response
and can influence anti-tumor immunity in both NKT-dependent
and NKT-independent manners. Functional studies focused on
understanding these aspects of tumor immunity can provide
some unique and clinically useful therapeutic interventions.
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