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Bullous pemphigoid (BP) is the most prevalent autoimmune skin blistering disease

and is characterized by the generation of autoantibodies against the hemidesmosomal

proteins BP180 (type XVII collagen) and BP230. Most intriguingly, BP is distinct

from other autoimmune diseases because it predominantly affects elderly individuals

above the age of 75 years, raising the question why autoantibodies and the

clinical lesions of BP emerges mostly in this later stage of life, even in individuals

harboring known putative BP-associated germline gene variants. The mitochondrial

genome (mtDNA) is a potential candidate to provide additional insights into the BP

etiology; however, the mtDNA has not been extensively explored to date. Therefore,

we sequenced the whole mtDNA of German BP patients (n = 180) and age-

and sex-matched healthy controls (n = 188) using next generation sequencing

(NGS) technology, followed by the replication study using Sanger sequencing of

an additional independent BP (n = 89) and control cohort (n = 104). While the

BP and control groups showed comparable mitochondrial haplogroup distributions,

the haplogroup T exhibited a tendency of higher frequency in BP patients suffering

from neurodegenerative diseases (ND) compared to BP patients without ND (50%;

3 in 6 BP with haplogroup T). A total of four single nucleotide polymorphisms

(SNPs) in the mtDNA, namely, m.16263T>C, m.16051A>G, and m.16162A>G in

the D-loop region of the mtDNA, and m.11914G>A in the mitochondrially encoded
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NADH:ubiquinone oxidoreductase core subunit 4 gene (MT-ND4), were found to be

significantly associated with BP based on the meta-analysis of our NGS data and the

Sanger sequencing data (p = 0.0017, p = 0.0129, p = 0.0076, and p = 0.0132,

respectively, Peto’s test). More specifically, the three SNPs in the D-loop region were

negatively, and the SNP in theMT-ND4 gene was positively associated with BP. Our study

is the first to interrogate the whole mtDNA in BP patients and controls and to implicate

multiple novel mtDNA variants in disease susceptibility. Studies using larger cohorts and

more diverse populations are warranted to explore the functional consequences of the

mtDNA variants identified in this study on immune and skin cells to understand their

contributions to BP pathology.

Keywords: mitochondrial DNA, mitochondrial haplogroup, polymorphisms, autoimmune skin diseases, bullous

pemphigoid, mitochondrial function, next generation sequencing

INTRODUCTION

A number of studies to identify candidate genes in autoimmune

blistering skin diseases, particularly bullous pemphigoid (BP)

have been conducted to date. These studies predominantly

identified associated gene polymorphisms in immune system-
related genes, e.g., HLA region (1–6), Fc gamma receptor genes

(7), and cytokine genes (8). In addition to these nuclear-encoded

genes, our group has recently shown that polymorphisms in

a gene encoded in the mitochondrial genome, MT-ATP8, are

associated with BP (9). Considering the nature of autoimmune

diseases, the causal factors of BP are not only limited to genetics,
but also involve environmental factors. For example, our recent

findings showed that the composition of skin microbiota was
altered in BP patients compared to healthy controls (10).

The mitochondrial genome (mtDNA) is a circular DNA
molecule with a length of ∼16 kilobase pairs. The mtDNA
encodes 13 protein-coding genes, 22 transfer RNA genes,
and 2 ribosomal RNA genes (11, 12). Multiple copies of
the mtDNA exist in a single mitochondrion. All of the 13
mtDNA-encoded proteins consist of subunits of the oxidative
phosphorylation (OXPHOS) complexes, which are responsible
for cellular energy production in the form of ATP, as well as
for the production of reactive oxygen species (ROS) as a by-
product of the OXPHOS reaction. The mtDNA is polymorphic,
and variations in the mtDNA are known to be associated

with alterations in mitochondrial functions (13). The mtDNA
variations in humans are categorized into the following three
groups: (1) recent maternally inherited deleterious mutations;
(2) ancient adaptive polymorphisms; and (3) somatic mutations
that accumulate during development and in tissues with age (14).
Recent maternally inherited deleterious mtDNA mutations have
been well-described in rare mitochondrial disorders, including
familial mitochondrial encephalomyopathy (15) and Leber’s
hereditary optic neuritis (16). Ancient adaptive polymorphisms
are commonly used to establish haplogroup ancestry, as these
variations are believed to have occurred during the migration of
human ancestors in order to adapt different environments (e.g.,
nutritional availability and climates) (17). Furthermore, several
ancient polymorphisms in the mtDNA have been reported

to be associated with common diseases, including chronic
inflammation and autoimmune diseases (18, 19). These are not
surprising because the fate and the function of immune cells are
largely determined by cellularmetabolism (immunometabolism),
which is to a large extent controlled by mitochondrial functions
(20–22). One example of such immune cell types is regulatory T
cells, which have been reported to be involved in the pathology
of BP (23–25), and their differentiation is determined by the
levels of fatty acid synthesis, one of the mitochondrial functions
(26). Longevity and aging have also been associated with certain
mtDNA polymorphisms (27–29). Another unique characteristic
of the mtDNA is the higher frequency of somatic mutations
in aging compared to the nuclear genome (30), indicating the
presence of variations identified only in elderly people. In fact,
BP is the most prevalent autoimmune blistering skin disease
and predominantly affects the elderly population, i.e., usually in
late 70s (31, 32). As mentioned above, our group has recently
demonstrated changes in the skinmicrobiota composition having
been observed in BP patients compared to healthy controls (10).
Recently, certain mtDNA haplogroups have been reported to
be associated with the abundance of certain bacterial taxa (33).
Consistent with these findings, our group recently identified that
variations in the mtDNA are associated with the composition of
microbiota in the gut (34) and the skin of mice (unpublished),
suggesting that the variations in the mtDNA observed in BP
patients contribute to a shift of the skin microbiota composition,
which in turn enhances susceptibility to the disease. All of
the abovementioned characteristics of the mtDNA support its
potential involvement in BP.

Therefore, we have explored here the whole mitochondrial
genome by next generation sequencing technology in German BP
patients and their age- and sex-matched controls.

MATERIALS AND METHODS

Study Cohorts
DNA samples for the NGS discovery study and the Sanger
sequencing replication study were obtained from the German
AIBD Genetics Study Group and PopGen Biobank. BP patients
were diagnosed by clinicians at the participating centers. All
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included patients satisfied all of the following criteria; (i) a
compatible clinical presentation, (ii) the detection of linear
deposits of IgG and/or C3 at the dermal-epidermal junction
by direct immunofluorescence (IF) microscopy of a perilesional
skin biopsy, and (iii) the detection of serum autoantibodies
against BP180 NC16A and/or BP230 by ELISA, according to
the guideline of the German Dermatological Society for the
diagnosis of BP (35). DNA samples from a total of 270 BP patients
(180 for the NGS and 90 for a replication study using Sanger
sequencing) and 294 controls (188 for the NGS and 106 for
Sanger sequencing) were used in this study. The description of
the cohort is summarized in Supplementary Table 1.

Of the samples tested by the NGS, 180 BP patients and
144 controls were evaluated for their genetic ancestry using
their genome-wide SNP data, which were previously obtained
using Affymetrix Biobank Axiom ArrayTM (Thermo Fisher
Scientific, MA, USA). Principal components analysis (PCA)
(Supplementary Figure 1) plots of the 180 BP and 144 control
samples almost overlapped, suggesting that the BP patients and
controls in this study belonged to the same population.

Of the 180 BP patients whose mtDNA was sequenced, clinical
history of neurodegenerative disease (dementia and Parkinson’s
disease) was available in 58 patients. Of the 58 BP patients,
data on their anti-BP180 NC16A IgG titer were available in
49 patients.

The study was approved by the ethical committees of the
University of Lübeck (10-026 and 15-051) and the individual
study centers.

Next Generation Sequencing of the Whole
Mitochondrial Genome
Genomic DNA samples were processed for library preparation,
as previously described in the Human mtDNA Genome
protocol for Illumina Sequencing Platform (36). In brief, two
primer sets [MTL-F1 (AAAGCACATACCAAGGCCAC)
and MTL-R1 (TTGGCTCTCCTTGCAAAGTT); MTL-
F2 (TATCCGCCATCCCATACATT) and MTL-R2
(AATGTTGAGCCGTAGATGCC)] were used to amplify
the mtDNA by long-range PCR. Library preparation was
performed using a Nextera XT DNA Library Preparation Kit
(Illumina Inc., CA, USA), and the 10-pM library was sequenced
on the Illumina MiSeq sequencing platform (2 × 150 bp
paired-end reads) (Illumina Inc.).

NGS Data Analysis
Our previously described data analysis method (37) was modified
and adapted for human mtDNA analysis. After quality control,
the reads were mapped to the revised Cambridge Reference
Sequence (rCRS; NC_012920.1) using Burrows-Wheeler Aligner
bwa version 0.705 (38), and bam files were generated. Duplicated
reads generated during PCR were removed using Markduplicates
(Picard tools version 1.119) (39), and indels were realigned using
IndelRealigner (Genome analysis tool kit version 3.3) (40). The
processed bam files were assessed for frequency and base quality
(≥30) for each reference and alternate base in the mtDNA using
pysamstats (version 0.24.3) (41). When the frequency of the
alternate allele compared with the reference allele was >90%, it

was considered as homoplasmic mutation, whereas the 10–90%
range was considered as heteroplasmy. Additionally, bam files
were manually inspected for the presence of mutations and indels
using IGV software (42). mtDNA variants were annotated using
MSeqDR mvTool (43), a DNA Web resource for comprehensive
variant annotation.

Mitochondrial Haplogroup Analysis
Mitochondrial haplogroup assignment was conducted
using HaploGrep 2 (44). In brief, HaploGrep weighs each
polymorphism present in PhyloTree17 (45) based on its
informativeness to define haplogroups. The set of SNPs in
the input file were classified as informative or remaining (not
informative). A score is given based on the weights of the
informative SNPs, and the offset was determined based on the
number of remaining SNPs.

Replication Study (Sanger Sequencing)
DNA samples for the replication study were prepared using
standard DNA extraction kits (Qiagen, Hilden, Germany). SNP
regions were amplified by standard PCR. The primers used
for the PCR reaction are listed in Supplementary Table 2. The
PCR products were sent to Genewiz (Essex, UK) for Sanger
sequencing, and the obtained data were analyzed using the freely
available software Unipro UGENE (46).

Statistical Analysis
Data from the mtSNP association study and the mitochondrial
haplogroup association study were analyzed using R package
“exact2×2,” which provides a non-central confidence interval
matching the two-sided Fisher’s exact test based on the principle
of likelihood estimation (47).

The meta-analysis was conducted using Peto’s method (48)
from the R package “metaphor” (49). This method provides a
weighted estimate of the log odds ratio under a fixed-effects
model. We used Hommel’s method (50) to give strong control of
the family-wise error rate, i.e., the probability of at least one type
I error, by adjusting each p-value obtained from Peto’s method.

Statistical analyses for other studies were performed using
GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA).
Statistical tests used for the analysis are indicated in the
figure legends.

RESULTS

BP Patients in the Mitochondrial
Haplogroup T May Exhibit a Higher
Co-incidence With Neurodegenerative
Conditions
Mitochondrial haplogroup analysis in this German population
revealed that 47.28% of the sequenced individuals belonged to
the haplogroup H, which is the major haplogroup in Europeans,
followed by haplogroup U (18.21%), haplogroup J (10.05%), and
haplogroup T (8.42%). When the data were analyzed for disease
association, there was no association between BP status and the
mtDNA haplogroups (p = 0.7963, Fisher’s exact test, Figure 1A,
Supplementary Table 3).
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FIGURE 1 | Mitochondrial haplogroup distribution in BP patients and controls.

(A) BP patients and controls showed similar mitochondrial haplogroup

distributions. (B) Mitochondrial haplogroup distribution when BP patients were

stratified for clinical history of neurodegenerative diseases (ND). BP patients

with the haplogroup T background tended to have higher incidence of ND.

Among the 180 BP patients sequenced for the whole mtDNA,
58 cases had clinical history of neurodegenerative diseases (ND;
e.g., Parkinson’s disease and dementia), consistent with recent
studies that reported an association between neurodegenerative
diseases and BP in different populations (51). We analyzed the
mitochondrial haplogroup associations in these 58 BP patients
and found that BP patients in the mitochondrial haplogroup
T tend to have higher risk of ND (Figure 1B, p = 0.1448,
Fisher’s exact test). We additionally evaluated 49 BP patients
with available records of autoantibody (anti-BP180 NC16A IgG)
levels. While no associations between the autoantibody titers
and mitochondrial haplogroups were observed (Figure 2A),
BP patients with concurrent ND showed significantly higher
variation in autoantibody titers compared to BP patients without
ND (Figure 2B, p= 0.027, Mann–Whitney test).

Novel Candidate SNPs in the
mtDNA-Associated With BP in Germans
A total of 1,010 SNPs in the mtDNA (mtSNPs) were identified
in this study. The mtSNPs associated with BP (exploratory p
< 0.1) are listed in Table 1. Of the five listed variants, the

FIGURE 2 | (A) The levels of anti-BP180 antibodies in individuals with each

haplogroup. The mean values of anti-BP180 IgG were 223.8 U/L in

haplogroup H, 101 U/L in haplogroup U, 326.7 U/L in haplogroup T, 106.4 U/L

in haplogroup J, 144 U/L in haplogroup I, 113 U/L in haplogroup V, 27 U/L in

haplogroup L, 114 U/L in haplogroup W. (B) The levels of the autoantibodies

BP180 NC16A were highly varied in BP patients who also suffer from

neurodegenerative diseases. P = 0.0272, Mann–Whitney test.

three mtSNPs; m.16263T>C, m.11914G>A, and m.15904C>T;
were selected for the replication study using Sanger sequencing
in the replication cohort of an additional independent 90
BP and 106 control samples. In this replication study, two
relevant mtDNA sequences covering all three mtSNPs were PCR-
amplified (Supplementary Table 2) and processed for Sanger
sequencing. The Sanger sequencing data confirmed the validity
of the NGS results obtained from the individuals carrying a
variant from each of the three mtSNPs. In addition to the
analysis of the three targeted SNPs, the design of the primers
used for the Sanger sequencing replication study enabled us to
evaluate the sequencing data of the locus ranging from m.15800
to m.16290 (covering a part of the displacement-loop region;
D-loop region), as well as the locus ranging from m.11870
to m.12137 (covering a part of the mitochondrially encoded
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TABLE 1 | Five candidate BP-associated SNPs in the mtDNA identified by the next-generation sequencing were selected for the replication study.

mtSNP Gene/region Consequence Homoplasmy Heteroplasmy Variant carrier in

180 BP

Variant carrier in

188 controls

p-value* OR (95% confidence

interval)

m.9150A>G MT-ATP6 Synonymous + 0 9 0.0036 0.000 (0.000–0.491)

m.16263T>C D-Loop Non-coding + + 1 9 0.0201 0.112 (0.005–0.747)

m.13966A>G MT-ND5 Non-

synonymous

+ 4 0 0.0563 ∞ (0.945–∞)

m.11914G>A MT-ND4 Synonymous + 6 1 0.0626 6.422 (0.868–146.876)

m.15904C>T MT-TT Non-coding + 9 3 0.0813 3.236 (0.876–14.143)

*Two-sided p-value from Fisher’s exact test: SNPs with explorative p-values <0.1 were selected for the replication study using Sanger sequencing.

mtSNP, single nucleotide polymorphism in the mitochondrial genome; BP, bullous pemphigoid; OR, odds ratio; CI, confidence interval.

NADH:ubiquinone oxidoreductase core subunit 4 gene; MT-
ND4) in the replication cohorts.

The meta-analysis of the NGS and the Sanger sequencing data
revealed that m.16263T>C, m.11914G>A, m.16051A>G, and
m.16162A>G were significantly associated with BP in Germans.
Variants in the three mtSNPs in the D-loop region were more
frequent in controls, while the variant in the m.11914G>A in the
MT-ND4 gene was more frequent in BP (Table 2). Meta-analysis
revealed no significant association between m.15904C>T and BP
(p= 0.2629, Peto’s test).

DISCUSSION

In this study, we performed NGS of the whole mitochondrial
genomes of 180 BP patients and 188 controls, followed by
a replication study using Sanger sequencing of independent
samples of up to 90 BP patients and 104 controls from Germany.
With cohorts tested in this study, we estimated the power of
our study to detect mitochondrial variants. For the NGS study
to detect SNPs to forward to replication, we used threshold of
alpha = 0.1. Based on this, we estimated that for variants with
frequencies of about 5% in controls, odds ratios of about 2.6 and
higher would be detectable at a power of 80%; if the variants are
more frequent with about 10% in controls, odds ratios of about
2.2 and higher are detectable reliability. For the replication study,
Sanger sequencing on 90 independent cases and 104 independent
controls was performed; applying a replication significance level
of 0.05, this study was well-powered with a power of at least
80% to detect odds ratios of at least 4.2. This might explain why
we were not able to replicate the variant m.15904C>T because
the power for this SNP might have been too low. The study
cohort is the largest for this disease worldwide, however, it is
still relatively small in size compared to those used in genetic
studies of other chronic inflammatory skin diseases, e.g., psoriasis
or atopic dermatitis. This is primarily due to the rarity of the
disease. Nevertheless, this study is highly valuable to the field as
it is the first to interrogate the whole mitochondrial genome by
sequencing in autoimmune blistering skin diseases.

The whole mtDNA sequencing data were analyzed for
mitochondrial haplogroup associations with BP. As mentioned
above, mitochondrial haplogroups are defined by specific
combinations of ancient adaptive polymorphisms in the
mtDNA and often reflect on mitochondrial functionality
to adapt to the specific environments according to the

geographical locations where our ancestors migrated. Therefore,
mitochondrial haplogroups have been used to define ethnic
origins on mostly prehistoric time scales. In fact, as previously
shown (52), combinations of the adaptive polymorphisms in the
mtDNA altered the mitochondrial functions, which are causal for
common complex diseases in certain populations.

Our findings showed that the haplogroup distribution
between BP and controls in this study was comparable. However,
interestingly, when we correlated the mitochondrial haplogroup
and the presence of neurodegenerative diseases (ND; i.e.,
dementia and Parkinson’s disease) in BP patients, the analysis
revealed that the haplogroup T appeared more frequent in
BP patients suffering from ND comorbidity. Haplogroup T
is known to be associated with ND (53, 54). In parallel, the
levels of anti-BP180 antibodies in individuals with haplogroup
T exhibited a tendency of higher levels though the result is
exploratory (average values of 326.7 U/L in individuals with
haplogroup T, while the average values in all BP patients were
175.6 U/L). Together with the positive association between the
levels of anti-BP180 antibodies and the presence of ND, the link
between mitochondrial haplogroup, neurodegenerative disease
and the levels of anti-BP180 autoantibodies among BP patients
may be plausible. The haplogroup J, in contrast, did not share
the same tendency, even though haplogroup J and T belong
to the same sub-cradle of the haplogroup JT. These results
are in agreement with those of previous studies demonstrating
that the haplogroup J is protective against Parkinson’s disease
(18, 55), which suggested that the mtDNA variants defining
the haplogroup J may be protective from concurrent ND in
BP patients. Furthermore, the average levels of autoantibodies
in individuals with haplogroup J were 106.4 U/L, which were
lower than the average values of all BP patients in this analysis.
Nevertheless, to confirm this exploratory observation, further
studies should analyze a larger patient cohort with available
clinical histories.

Next, whole mtDNA sequencing data were analyzed for
associations between the single nucleotide polymorphisms in
the mtDNA (mtSNPs) and BP. The analysis identified five top
candidate mtSNPs. The meta-analysis of the discovery study
(whole mtDNA NGS data) and the replication study (Sanger
sequencing data of partial mtDNA region) revealed four mtSNPs
that were significantly associated with BP. The three mtSNPs
located in the non-coding D-loop region, namely, m.16051A>G,
m.16162A>G, and m.16263T>C, were all enriched in the
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TABLE 2 | Meta-analysis of NGS data and Sanger sequencing data of BP patients and controls.

mtSNP Gene/region Sequencing

method

Group Sequenced

(n)

Variant

carrier (n)

Frequency

(%)

Odds ratio (95%

CI)

P-value* Q (p adjust,

Hommel)

m.16263

T>C

D-loop NGS BP 180 1 0.56 0.1116

(0.0051–0.7471)

0.0201

Control 188 9 4.79

Sanger BP 82 0 0.00 0 (0–1.2049) 0.1222

Control 90 4 4.44

Meta-

analysis

BP 262 1 0.38 0.1833

(0.0635–0.5293)

0.0017 0.0085

Control 278 13 4.68

m.11914G>A MT-ND4 NGS BP 180 6 3.33 6.4216 (0.8682–

146.8755)

0.0626

Control 188 1 0.53

Sanger BP 89 4 4.49 4.7190 (0.6014-

−116.3248)

0.1860

Control 102 1 0.98

Meta-

analysis

BP 269 10 3.72 4.2418

(1.3521–13.3077)

0.0132 0.0264

Control 290 2 0.69

m.15904C>T MT-TT NGS BP 180 9 5.00 3.2360

(0.876–14.143)

0.0813

Control 188 3 1.60

Sanger BP 88 4 4.55 0.7867

(0.2019–3.0665)

0.7574

Control 104 6 5.77

Meta-

analysis

BP 268 13 4.85 1.6283

(0.6935–3.8232)

0.2629 0.2629

Control 292 9 3.08

m.16051A>G D-loop NGS BP 180 2 1.11 0.6936

(0.0852–4.5071)

1

Control 188 3 1.60

Sanger BP 88 0 0.00 0 (0–0.5505) 0.0041

Control 104 9 8.65

Meta-

analysis

BP 268 2 0.75 0.2583

(0.0889–0.7505)

0.0129 0.0258

Control 292 12 4.11

m.16162

A>G

D-loop NGS BP 180 2 1.11 0.4121

(0.0574–2.0169)

0.4494

Control 188 5 2.66

Sanger BP 88 0 0.00 0 (0–0.6679) 0.0081

Control 104 8 7.69

Meta-

analysis

BP 268 2 0.75 0.2464

(0.0881–0.6889)

0.0076 0.0198

Control 292 13 4.45

For the Sanger sequencing, 106 controls (for the genotyping of m.15904C>T, m.16051A>G, m.16162A>G, and m.16263T>C) or 104 controls (for the genotyping of m.11914G>A)

and 90 BP samples were tested. The number of samples with no genotyping data due to the low quality-sequence was subtracted from the tested sample number.

controls, while the mtSNP m11914 in the MT-ND4 gene was
more frequent in BP patients. The D-loop is a non-coding
region of the mtDNA, including the replication origin of the
H (heavy) strand (OriH), the promoters for transcription of
the H and L (light) strand (HSP and LSP) and two hyper
variable segments (HVS1: m.16,024-m.16,383, and HVS2: m.57-
m.372), constituting the most variable regions in the mtDNA
(56). All three mtSNPs in the D-loop region are located in HVS1.
Functional consequences of the variants in this non-coding

D-loop region, particularly the HVS, remain unknown to date.
Interestingly, most carriers of a variant from any of these three
mtSNPs in the D-loop region belong to haplogroup H; two
of the 81 BP patients belonged to haplogroup H, and 14 of
93 controls belonged to haplogroup H. Given that the three
mtSNPs serve as defining SNPs for haplogroup H-subgroups,
i.e., m.16051A>G for H1a3 and H2a2a1c (45), the functional
relevance of these mtSNPs may be linked with other haplogroup
H-subgroups-defining SNPs. Considering the limited sample size
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of patients with a rare disease, a more finely-branched subgroup
haplogroup analysis cannot be conducted in this study. This also
applies to the mtSNP m.11914G>A. The A variant enriched in
the BP group is a synonymous mutation in the MT-ND4 gene,
suggesting that its functional relevance is unlikely. The variant
in m.11914G>A is also a defining SNP for several haplogroups-
subgroups U, K, T, and H (45). Three of 12 BP patients and one
of 15 controls belonging to haplogroup K carried the A variant
in m.11914G>A.

Previously, our group has reported an association between
a rare variant in the MT-ATP8 gene and BP in Germans (9).
The current study is an extension of the previous study to
explore the whole mtDNA in a German cohort, including
other individuals than those enrolled in the previous study.
The BP-associated mtSNP, m.8519G>A, which was identified
in our previous study, was found in one BP patient among
newly sequenced 137 BP patients and 20 controls in the current
study (p = 1.000, Fisher’s exact test). The meta-analysis of the
NGS data and the previously published Sanger sequencing data
still showed a positive association between m.8519G>A and
BP (p = 0.0151, Peto’s test, odds ratio 7.3454, 95% confidence
interval 1.4718–36.6594).

We utilized peripheral blood DNA samples in this study.
Somatic mutations accumulate over time in tissues with age
(17), and the levels of the mutant mtDNA, i.e., levels of
heteroplasmy, can be different between various tissues and
organs (30, 57). Therefore, an evaluation of the whole mtDNA
sequence in other tissues of importance, i.e., skin samples
obtained from BP patients and controls, is warranted. Within
BP skin samples, site different samples, i.e., peri-lesional and
unaffected, are also of great interest to evaluate differential
levels of the mtDNA mutations within the same individual.
Such age-dependent and tissue-specific changes in the mtDNA
may elucidate the pathways in late-onset diseases such as BP.
Thus, the interpretation of the results in this study needs
to be cautious as the results obtained from this study using
peripheral blood DNA might not be the same as those using
tissue DNA. As aforementioned, BP is a multifactorial disease,
and the involvement of immune cells and skin microbiota in the
disease has been proposed (10, 58). Both the immune system
and the composition of microbiota are altered in aging (59–
62), interact with each other (63), and are associated with
mitochondrial functions (21, 64). Complex interactions between
these age-related alterations and age- and tissue-specific mtDNA
variants could provide key insights to the pathways in diseases
with complex traits. To date, only a few studies using mice
proposed an association between mtDNA variants, microbiota
and clinical phenotypes have been reported (34, 65), but none
in humans.

In summary, we investigated genetic variants in the whole
mtDNA genome in German BP patients and their age-
and sex-matched controls, which is currently the largest
available study cohort for BP worldwide. Our findings
showed that the maternally inherited natural variants in
the mtDNA are associated with BP, which predominantly
affects the elderly population. Therefore, more complex
interactions between nuclear genome variants and mtDNA

variants, as well as aging, are likely to be involved in the
pathogenesis of BP. To identify the functionally relevant
mtDNA variants in BP, studies with the larger sample sizes
and analysis of the mtDNA genome in the skin should
be conducted.
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