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Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by

autoantibodies targeting cellular adhesion molecules. While IgE autoantibodies are

occasionally reported in other autoimmune blistering diseases, BP is unique in that most

BP patients develop an IgE autoantibody response. It is not known why BP patients

develop self-reactive IgE and the precise role of IgE in BP pathogenesis is not fully

understood. However, clinical evidence suggests an association between elevated IgE

antibodies and eosinophilia in BP patients. Since eosinophils are multipotent effector

cells, capable cytotoxicity and immune modulation, the putative interaction between IgE

and eosinophils is a primary focus in current studies aimed at understanding the key

components of disease pathogenesis. In this review, we provide an overview of BP

pathogenesis, highlighting clinical and experimental evidence supporting central roles

for IgE and eosinophils as independent mediators of disease and via their interaction.

Additionally, therapeutics targeting IgE, the Th2 axis, or eosinophils are also discussed.
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OVERVIEW OF BULLOUS PEMPHIGOID

Clinical Presentation
BP is the most common member of a family of autoimmune blistering diseases. BP primarily
affects the elderly (age ≥ 60 years) and disease prevalence increases with age; worldwide estimates
range from 12 to 66 new cases per million per year in the general population with rates increasing
>12-fold in individuals over the age of 80 years (1–6). When adjusted for age, women exhibit a
slightly higher risk of developing BP prior to 80 years of age, but the highest overall risk is observed
in men aged≥ 90 years (6). Disease prevalence is not impacted by race or ethnicity (1, 3, 6).

The onset of classical BP is often preceded by a period of pruritis, followed by development
of urticarial or eczematous lesions and the formation of tense, fluid-filled blisters on areas of
erythema and normal skin (Figure 1A). Blisters correspond histologically with a subepidermal
separation (Figure 1B) through the lamina lucida of the basement membrane zone (BMZ) (7).
An inflammatory infiltrate comprised primarily of eosinophils, accompanied by lymphocytes, mast
cells and neutrophils is observed (Figures 1B,C) (4, 7, 8). Immunologic criteria for BP include
linear deposition of antibodies and/or complement (C3) at the epidermal BMZ and confirmation
of circulating cutaneous autoantibodies via indirect immunofluorescence (IF) or ELISA (7, 9, 10).
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FIGURE 1 | Clinical and histologic characteristics of Bullous pemphigoid. (A)

Clinical presentation of BP with tense, fluid filled blisters occurring on areas of

erythema and normal skin, frequently associated with urticarial plaques. (B)

Blisters correspond histologically to a subepidermal separation at the

basement membrane zone (BMZ) with eosinophils observed in the superficial

dermis and the blister cavity. H and E, 100x. (C) Eosinophils in the deep

perivascular infiltrate in a lesional biopsy from a BP patient. H and E, 400x

(Images in B, C are courtesy of Dr. Brian L. Swick, University of Iowa).

The initial presentation of BP is heterogeneous; lesions can
be localized to discrete areas or distributed widely over the
body. There is no generally accepted classification of disease
severity, although % affected body surface area is considered
representative of mild (<10%), moderate (10–30%) and severe
(>30%) disease, and can be used to inform initial treatment
regimen (4). In an effort to standardize measurements of disease
extent and facilitate comparison of therapeutic outcomes in
multi-center studies, an international panel of experts developed
the BP disease Area Index (BPDAI) score (11) which considers
the number, size and anatomic location of lesions observed by
the physician, as well as the duration and severity of itching
as described by the patient. BPDAI scores range from 0 to 360
for BPDAI total activity (maximum 240 for total skin activity
and 120 for mucosal activity), and a separate subjective measure
known as BPDAI-pruritus. Standard treatments for BP include
topical and systemic steroids, often in combination with adjuvant
immunosuppressive or immunomodulatory therapy [reviewed in
(4)]. BP often follows a chronic course, with complete remission
(off therapy) achieved in months to years (4, 11).

BP Autoantibody Subclass and Specificity
The cellular targets of BP autoantibodies are two
hemidesmosomal proteins, BP180 (Type XVII Collagen)
and BP230, involved in stable attachment of basal keratinocytes
to the underlying matrix (12, 13). BP180 is a transmembrane
protein that interacts with dermal matrix components, including
integrin α6 and laminin-332, and BP230 acts as an intracellular
linker of the hemidesmosomal plaque to keratin intermediate
filaments (14). Expression of BP180 is restricted to stratified,
pseudostratified and transitional epithelia (15), whereas tissue-
specific isoforms of BP230 (also called Dystonin) are expressed
throughout the body, including skeletal muscle and brain (16).

The pathogenicity of BP180-specific IgG (BP180 IgG)
antibodies has been established experimentally, while the role of
the BP230-specific IgG remains controversial (17). Accordingly,
clinical disease activity often correlates with serum levels of
antibodies targeting BP180, but not BP230 (18–20). It has been
proposed that the development of BP230-specific antibodies may
be secondary to the tissue destruction mediated by BP180 IgG
(21). Historically, studies exploring disease pathogenesis have
focused on IgG, although IgE- and IgA-class autoantibodies have
also been described in BP (22).

The pathogenicity of the BP180 IgG can be attributed to
two basic mechanisms: mechanical disruption of keratinocyte
adhesion and immune-mediated events. Treatment of cultured
keratinocytes or skin organ cultures with BP180 IgG results in
internalization of BP180 from the cell surface and decreased
keratinocyte adhesion (23–26). A corresponding decrease in both
BP180 expression and hemidesmosomal localization to the cell
surface is also observed. At the same time, IgG autoantibody
deposition triggers complement activation and recruitment and
activation of immune cells, resulting in release of destructive
proteases and ongoing inflammation (27–29). While IgG-
based models were critical for understanding the fundamental
pathomechanisms of BP, they failed to recapitulate the itching,
erythema and eosinophilia observed in human disease (30–32).
Thus, the pathogenic contribution of IgE in BP was considered
based on the early urticarial phase of BP and the established role
of IgE in Type I hypersensitivity responses.

IGE AUTOANTIBODIES IN BP

Incidence and Specificity
Elevated levels of circulating IgE and linear deposition of IgE
at the BMZ of biopsied skin were first reported nearly 50 years
ago (32, 33); however, the role of IgE in disease pathogenesis
remained largely unexplored for several decades. It wasn’t until
2007 that detailed epitope mapping studies revealed that the IgE
autoantibodies primarily target the same non-collagenous 16A
(NC16A) region of BP180 that is recognized by BP IgG (30, 31).
Subsequently, the number of published manuscripts examining
IgE in BP has increased steadily (34). Together, these reports have
established that elevated circulating IgE is observed in most (70–
85%) BP patients while the reported incidence of BP180 specific
IgE (BP IgE) varies widely (22–100%) (34–38). This variation
results from differences in autoantibody detection methods, lack
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of optimization for detection of IgE and heterogeneity of the
patient population (34, 35, 39).

In most studies, total circulating IgE is measured by clinical
reference labs using standardized procedures and reagents;
however, commercial reagents have not been developed to
measure BP180 IgE. To address this, individual labs have
developed immunoblot or ELISA protocols utilizing their own
recombinant protein antigens (30, 40–44) or employ the antigen-
coated plates from a commercial BP180 IgG ELISA paired with
an IgE-specific secondary antibody (37, 45–47). Additionally,
Pomponi et al. (48) developed a microarray system that
has potential for simultaneous assessment of both IgE and
IgG specific for the NC16A domain of BP180. Despite the
heterogeneity of the assays employed, studies show that most
(61–77%) BP patients have both IgG and IgE specific for BP180 in
their sera (48–50). Additionally, there is increasing evidence that
BP230-specific IgE antibodies are prevalent in BP (44, 46, 50–52)
and IgE antibodies specific for epitopes within the intracellular
domain of BP180 have also been reported (30), although their
clinical significance is not known.

Clinical Findings Associated With IgE
Autoantibodies
Disease Severity or Phenotype
In an effort to better understand the clinical relevance of IgE in
BP, studies have examined whether elevated IgE antibody levels
are associated with a particular disease phenotype (Table 1).
Most studies report that circulating total IgE levels are directly
correlated with disease severity in all or a subset of patients
with high IgE and that IgE levels decline as disease resolves
(33, 45, 47, 49, 53). Not surprisingly, IgE deposition at the BMZ is
observedmore often in patients with high circulating IgE (59, 63),
which likely reflects the interference of excess amounts of IgG and
difficulty of detecting ng/ml IgE concentrations. Furthermore,
detection of bound IgE is complicated by the cross-binding of
anti-IgE antibodies to IgG (43, 50). Given the abundance of
specific IgG at the BMZ, it is difficult to know what proportion of
IgE reactivity is specific without stringent validation of antibody
specificity. This can be achieved by testing the reactivity of
secondary reagents to patient serum antibodies after removal

of IgG via immunoadsorption and/or 2-step affinity purification
(removal of IgG followed by enrichment of IgE) (43, 50, 64).
Unfortunately, this type of secondary antibody validation is often
not done or not reported. Inconsistencies in the sensitivity and
specificity of these assays likely contribute to the variability in
the reported rates (18–65%) of IgE antibody deposition in vivo
(24, 33, 53, 54, 59, 63, 65). This variability precludes a reliable
association of in vivo IgE deposition at the BMZ with a single
disease phenotype.

Figure 2A is an example of indirect immunofluorescent
staining for the detection of IgE and IgG at the BMZ of a lesional
biopsy of a BP patient. As previously described, bright linear
staining is observed with anti-IgG (inset), while the anti-IgE
staining at the BMZ is less robust and IgE-coated cells are seen
in the superficial dermis (Figures 2A,B) (24, 42, 59, 66). In this
experiment, the specificity of the secondary antibodies was tested
against serial dilutions of human IgG or IgE by immunoblot.

Similar to total IgE, most studies examining BP180-specific
IgE levels in BP find a positive association with disease severity,
clinical course or disease outcome [reviewed in (34)]. In some
cases (Table 1), circulating concentrations of BP180-specific IgE
correlated with the number or area of skin lesions or BPDAI
scores (37, 41, 47, 49, 55, 56), while others find no association (46,
58–60). The link between specific IgE and disease phenotype is
inconsistent; some studies correlate specific IgE with prominent
urticaria (57, 61), others find an association with a nodular BP
phenotype (45, 50), and some show no association (37). Finally,
others suggest that high IgE autoantibody levels serve as a marker
of patients who require a longer and more aggressive treatment
for remission (55, 56).

A handful of studies have measured BP230-specific IgE in

patient serum using a commercially available ELISA plate paired

with an anti-IgE detection antibody (Table 1). These reports

suggest that BP230 IgE serves as an index of either overall

disease activity (62), or lesional eosinophilia (46), while others

find no association (50, 56, 59). One report (46) found that
BP230 IgE levels were inversely related to overall disease severity.
Somewhat surprisingly, one study found that serum levels of
BP230 IgE associated with the nodular, not erythematous, disease
phenotype (50). Although the impact of IgE autoantibodies,

TABLE 1 | Association of serum IgE antibody levels with severity or phenotype of Bullous pemphigoid and eosinophilia as reported in primary literature1,2.

Disease severity Disease phenotype Eosinophilia

Positive

association

No

association

Urticarial Nodular None Peripheral

or lesional

None

Total IgE (33, 47, 49) (45, 53) (37) (45) (49) (54)

BP180 IgE

ELISA

(37, 41, 47,

49, 55–57)

(46, 58–60) (57, 61) (45, 50) (37) (49) (50, 57, 60)

BP230 IgE

ELISA

(50, 62) (46, 50, 56,

59) (negative

association)

(50) (46) (50)

1 Including case series, case control, cohort, and retrospective studies.
2Total IgE was measured using a commercially available ELISA or by chemiluminescence at institutional reference labs. BP180- and BP230-IgE was measured using lab-specific

protocols using either recombinant protein antigens made in-house or antigen-coated plates from a commercial BP180 IgG ELISA paired with an IgE-specific secondary antibody.
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FIGURE 2 | IgE antibodies localize to the BMZ and eosinophils in BP lesions.

(A) Indirect immunofluorescent staining of autoantibody deposition in BP

lesions reveals IgE deposition at the BMZ and on infiltrating cells in the

superficial dermis (white arrows = IgE). Inset image shows robust IgG

deposition (filled arrows) in an adjacent section from the same patient. Scale

bar = 50µM. (B) Immunofluorescent staining of lesional skin from a BP patient

reveals eosinophils (major basic protein, red) and IgE (green) in the deep

cellular infiltrate. IgE coated eosinophils are indicated by the yellow filled

arrows. DAPI nuclear stain (blue). The specificity of the secondary antibodies

(anti-human IgE, A80-109A; anti-human IgG, A80-148P) was tested by dot

blotting which confirmed little cross-reactivity to mg concentrations of each

antibody isotype and no cross reactivity to <0.5mg to the differing isotype,

while their specific reactivity to all concentrations (0.1–1mg) was robust.

targeting either BP180 or BP230, on disease phenotype remains
unclear, implementation of the BPDAI scoring system will
provide increased clarity as will standardization of sensitive
and specific assays optimized for measuring antigen-specific IgE
due to competition with much higher concentrations of specific
IgG (37, 43, 50, 64).

IgE Receptors
IgE production and its downstream effects are regulated by
a complex network of cell-bound and soluble receptors. The
cell-bound receptors, FcεRI and CD23/FcεRII are involved in
regulation of IgE production and activation of innate immune
cells, including APCs, macrophages and granulocytes (67, 68).
The high affinity receptor, FcεRI, is primarily responsible of
antigen-specific degranulation of mast cells and basophils,
whereas CD23 is widely expressed on B cells, where it plays
a key role in antigen focusing and stimulation of a Th2
response. Both receptors are positively regulated by circulating
IgE thereby amplifying its systemic effects (67). Thus, it is not
surprising that increased cellular expression of IgE receptors
is observed in BP. One study noted increased expression of
both CD23 and FcεRI on circulating eosinophils and basophils

from BP patients, but levels were variable and did not correlate
with circulating IgE (49). The implications of this finding
will be discussed in the Evidence for interaction of IgE and
eosinophils in BP section below. Inaoki et al. (69) found
that peripheral B cells from BP patients exhibited increased
expression of CD23, which correlated with both circulating
IgE levels and disease severity. These observations suggest
that modulation of FcεRI and CD23 plays a role in the
generation and/or maintenance of the IgE autoantibody response
in BP.

In addition to the cellular receptors, soluble (s) IgE receptors,
sCD23, sFcεRI, and Galectin-3, are key components of the
IgE network [reviewed in (68)]. The best studied soluble
receptor, sCD23, is thought to be a positive regulator of IgE
production, whereas the biologic roles of sFcεRI or Galectin-
3 are not well-defined. Circulating levels of sCD23 have
been explored as a potential biomarker of disease activity
in number of IgE mediated diseases (68). Similarly, sCD23
levels are elevated in the serum and blister fluid from BP
patients and are associated with circulating IgE levels and
increased disease severity (69–73). The modulation of sCD23
levels in BP suggests that specific targeting of this receptor
may prove effective in reducing IgE antibody levels (74).
To date, no studies have examined sFcεRI or Galectin-3
in BP.

Cytokine Profiles
While IgE autoantibodies are occasionally reported in other
autoimmune blistering diseases, BP is unique in that most
BP patients develop an IgE autoantibody response. Although
it is not known what triggers an IgE response in BP, it is
known that IgE antibody production is driven by Th2 cytokines.
Specifically, B-cell class switching to IgE is dependent on IL-4, IL-
13, and CD40 ligation, while IL-5 enhances antibody production
(75, 76). In diseases associated with IgE, circulating antibody
concentrations often correlate with levels of Th2 cytokines (77,
78). Accordingly, systemic expansion of the Th2 population
and increased levels of Th2 cytokines and chemokines are
detected in serum and blister fluid from BP patients, along
with several other drivers of autoimmunity and inflammation
(79–84). Of particular relevance, elevated levels of IL-4 and
IL-5 undoubtedly facilitate the IgE autoantibody response and
upregulate cellular and soluble CD23 expression (68, 75, 76).
Notably, no studies to date have defined clear relationships
between expression of specific cytokines and IgE antibody levels
in BP patients.

Demonstration of IgE’s Pathogenicity in BP
Experimental Evidence
The pathogenic mechanisms of BP IgE have been explored in
vitro using cultured keratinocytes or skin organ cultures treated
with BP IgE or monoclonal IgE specific for NC16A (24, 85). In
both systems, in vitro treatment with IgE autoantibodies resulted
in internalization of BP180 from surface of basal keratinocytes
and increased secretion of IL-6 and IL-8, cytokines shown to
play a key role in IgG-based models of murine BP. A decline
in keratinocyte adhesion and hemidesmosomal density was also
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observed in IgE treated cultures (24, 85). These observations are
comparable to studies utilizing BP180-specific IgG, suggesting
that the antibody mediated disruption of mechanical adhesion is
not isotype specific.

The in vivo pathogenicity of BP IgE was initially explored
in two mouse models utilizing passive antibody transfer. In the
first, IgE purified from patient serum was injected into human
skin that had been grafted onto nude mice (86). Injection of
physiologic levels (6–47 ng/graft) of IgE recapitulated clinical
disease in the grafted skin with linear IgE deposition at the BMZ,
development of erythematous plaques, eosinophilic infiltration,
and a histologic subepidermal split. Similar observations were
made in the second model, which utilized intradermal injection
of an IgE hybridoma specific for the BP180 ectodomain into
SCID mice (87). These studies were unique because they were
the first passive transfer experiments to fully replicate clinical
disease, with eosinophil infiltration and frank blistering, and
they were the first to demonstrate the pathogenicity of IgE
autoantibodies in vivo.

Clinical Evidence
Based on the elevated IgE and early urticarial phase of disease
and the experimental evidence demonstrating the pathogenicity
of IgE autoantibodies in mice, anti-IgE therapy was evaluated
for clinical BP. Omalizumab (OMZ) is a humanized monoclonal
antibody that binds free IgE, thereby blocking subsequent
interaction with its receptors, and is approved for treatment of
severe asthma and chronic urticaria in both the US and Europe
(88, 89). In 2009, the successful treatment of a recalcitrant BP
patient with OMZ as a monotherapy provided the first definitive
evidence of a pathologic role for IgE autoantibodies in human
autoimmunity (90). This patient was selected due to failure
of traditional therapies, elevated circulating total IgE (222 IU,
normal < 100) and peripheral eosinophilia. One week after the
first dose, the intact blister count decreased by 44% and after
16 weeks, blistering resolved and eosinophil counts declined to
near normal [3,427 to 460/mm3 (normal < 400)], while IgG
autoantibody levels remained high. Based on its initial success,
OMZ has been used as a monotherapy or steroid sparing agent
in 22 patients [reviewed in (91)]. A more detailed discussion of
OMZ treatment of BP is found in the Therapies targeting IgE and
Eosinophilia in BP section below.

EOSINOPHILS

Introduction
Eosinophils are best known as end-stage effector cells associated
with allergy and parasitic infection. However, eosinophils are
increasingly recognized for their roles in immunomodulation,
tissue remodeling and repair, and autoimmunity (92, 93).
Under homeostatic conditions, eosinophils represent 1–5% of
circulating leukocytes and are observed infrequently in the skin,
but their numbers are often elevated in allergic, neoplastic and
immunologic skin disorders (94).

Eosinophil expansion, trafficking and survival are dependent
on IL-3, IL-5, and GM-CSF (95–98). Specifically, IL-5 stimulation
of bone marrow precursors leads to increased numbers of

circulating eosinophils that then enter tissues in response to Th2-
dependent (IL-4 and IL-13) expression of chemokines, including
eotaxins (CCL11, CCL24, CCL26), CCL5 (RANTES), endothelial
cell vascular cell adhesion molecule 1 (VCAM-1), PAF, and
complement (C5a) (41, 99). Once in the tissues, most eosinophils
do not recirculate and have a short life span of 2–5 days that
can be prolonged by several cytokines, including IL-3, IL-5,
IL-33, GM-CSF, and IFN-È (99). Mature eosinophils express a
variety of receptors, including those for immunoglobulins (IgG,
IgA, IgE) and complement (CR1, CR3, CD88), in addition to a
number of cytokines and chemokines, including thosementioned
above (99). Under certain conditions, tissue eosinophils play
an additional role in antigen presentation, which is facilitated
by upregulation of MHC II and co-stimulatory molecules
CD80/CD86 (97, 100, 101).

Eosinophils exert their anti-pathogen and immunoregulatory
functions through the regulated release of pre-formed granules
and newly synthesized proteins that include over 35 cytokines,
chemokines and growth factors (95, 99, 102–105). Through
selective release of these mediators, eosinophils influence
immunity and tissue homeostasis (93). Eosinophil specific
granules contain four unique proteins: major basic protein
(MBP), eosinophil cationic protein (ECP), eosinophil peroxidase
(EPO), and eosinophil-derived neurotoxin (EDN) (106). Upon
activation, these toxic proteins aid in the elimination of microbes,
parasites and tumor cells. IL-5 and GM-CSF are considered
the most effective and specific signals for inducing eosinophil
activation, enabling release of specific proteins in response to
environmental signals (93, 107). In addition, exposure to GM-
CSF, IL-5, IFN-È, eotaxin, and TSLP can facilitate the extrusion
of mitochondrial DNA traps, known as eosinophil extracellular
traps (EETs), which provide additional microbicidal functions
by ensnaring pathogens and facilitating contact with granules or
toxic granule proteins (108–110).

Eosinophils in BP
Eosinophilia
Although peripheral and lesional eosinophilia is a prominent
feature of BP (54, 111, 112), the association of a disease
phenotype with the degree of eosinophilia has only recently
been evaluated. Most of these studies show that both circulating
and lesional eosinophil numbers are closely associated with the
extent and severity of disease in untreated patients and also
those undergoing standard immunosuppressive therapy (45, 49,
113, 114). A recent study of 65 well-defined BP patients found
a correlation between circulating eosinophil numbers and the
extent of disease activity (number of blisters and erosions), but
not the extent of urticaria or erythema (36). This observation is
somewhat surprising based on the established role of eosinophils
in allergic urticaria; however, it is possible that an enumeration
of lesional eosinophil numbers would be more relevant for
this analysis.

In BP, eosinophilia has been associated with increased levels
of factors associated with eosinophil expansion, survival and
chemotaxis. Produced in the skin, many of these factors
play a dual role, fostering both chemotaxis and survival of
migrating cells (115). In particular, eotaxin levels are correlated
with lesional eosinophilia in BP (81, 82, 112, 116–118). To a
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lesser extent, IL-5 levels in the serum and blister fluid have
also been associated with degree of eosinophilia in BP (119).
Eosinophil accumulation in lesional skin is further facilitated
by their upregulation of corresponding cytokine and chemokine
receptors (118).

Eosinophil Activation
In many diseases featuring eosinophilia, release of cytolytic
granule proteins is used as an index of eosinophil activation
(106, 120). In BP, increased activation of eosinophils is
demonstrated by elevated levels of ECP, MBP, and EPO, in
the skin, blister fluid, and to a lesser extent, the circulation
(119, 121–123). Serum levels of ECP and EDN have been
correlated with disease activity and, accordingly, these levels
are decreased in patients receiving immunosuppressive therapy
(119, 121). One study found that an initial reduction in
serum ECP concentration was associated with an increased
likelihood of remission in the first year of treatment (124).
Additionally, the fragility of the BMZ is further enhanced via
upregulated eosinophil expression of matrix metalloproteinase 9
(MMP-9), and the localized release of EETs that enhance tissue
destruction (125–128).

Within BP lesions, eosinophils exhibit increased expression
of activation markers, and the presence of degranulated cells
alongside extracellular granules confirms in situ degranulation
(111, 121, 129–133). Eosinophil degranulation is most prominent
in early erythematous and urticarial lesions, precedes blister
formation, and is not observed in uninvolved skin (111). Studies
using a human cryosection model of BP suggest that eosinophil
localization to the BMZ is dependent on complement fixation,
but BP autoantibodies and complement are not sufficient to
induce subepidermal separation (123, 128). Instead, priming of
eosinophils with IL-5 was essential for their release of destructive
mediators that were essential for separation at the BMZ (128).
The clinical association between the number of BP lesions
and IL-5 levels in the blister fluid increases the likelihood
that eosinophils play an integral role in loss of epidermal
adhesion (119).

Evidence for Interaction of IgE and
Eosinophils in BP
Histologic studies suggest an indirect route of IgE-mediated
eosinophil activation, via tissue mast cells, since mast cell
degranulation precedes eosinophil infiltration into new
lesions (112, 131, 132, 134). Indeed, mast cells constitutively
express high levels of IgE receptors and are known to release
mediators of eosinophil migration, such as IL-5 (135). The
likelihood of a direct contribution of mast cells to lesion
development is supported by the detection of dermal mast
cells coated with both IgE and BP180 peptides (42, 66),
and in vitro experiments demonstrating that peripheral
basophils from BP patients degranulate upon exposure
to BP180 peptides (42). Within the skin, naturally shed
fragments of BP180 would facilitate autoantibody-specific
degranulation. In response to these signals provided by mast
cells, eosinophil accumulation and degranulation in the
skin will then trigger production of additional chemotactic

and inflammatory factors by keratinocytes, resulting in
a positive feedback loop of eosinophil recruitment and
activation (136).

While mast cells are undoubtedly a main mechanism of IgE-
mediated eosinophil activation in BP, the co-localization of IgE
antibodies and BP180 fragments in BP lesions indicates that
direct interaction of IgE and eosinophils also occurs (42, 49,
66). However, studies aimed at defining the exact nature of
their interaction have been hampered by numerous technical
difficulties, including the relative rarity of eosinophils, lack of a
specific cell lineage marker to facilitate their identification and
purification, and their propensity for non-specific degranulation.
Additionally, in vivo studies are complicated by differences
in cellular distribution of IgE receptors across species and
the inability of human IgE to bind murine IgE receptors.
Despite these challenges, a handful of studies provide additional
support for direct modulation of lesional eosinophils by
BP IgE.

Initially, a route of direct interaction between IgE and
eosinophils in BP was not well-received since eosinophils from
healthy donors do not express FcεRI. However, eosinophil
expression of FcεRI has been reported in diseases characterized
by high IgE and eosinophilia (137–139). Similarly, mRNA and/or
cell surface-bound FcεRI are observed in circulating and lesional
eosinophils from BP patients, although these studies did not
prove receptor functionality (49, 55, 140). However, antibody
binding experiments conducted on perilesional skin sections
suggest that IgE binding is dependent on FcεRI, but not CD23
(66). Finally, comparison of FcεRI receptor chains expressed
by circulating and lesional eosinophils suggests that while both
populations express the trimeric (αγ2) form, lesional eosinophils
may also express tetrameric (αβγ2) form that is known tomediate
degranulation (49, 67).

The first in vivo evidence suggesting a link between IgE
and eosinophils was provided by the previously discussed IgE-
based passive transfer mouse models of BP (86, 87). Notably,
administration of IgE autoantibodies resulted in eosinophilia,
erythema, and pruritus. These symptoms are often observed
clinically but were absent in IgG-based mouse models. In
further parallel to clinical disease, IgE-coated mast cells and
degranulated mast cells were also observed in IgE treated
mice. Thus, these initial studies did not determine whether
the interaction of IgE and eosinophils was direct or indirect
(through mast cells). However, convincing evidence of a direct
interaction between IgE and eosinophils in BP was provided
via treatment of double humanized mice, expressing human
NC16A and human FcεRI, with NC16A-specific IgE (141).
In this model, disease severity was IgE dose dependent and
was directly related to the degree of cutaneous eosinophilia.
Additionally, eosinophils were required for IgE-mediated blister
formation. These observations are mirrored in OMZ-treated
BP patients, where disease activity is closely paralleled by
peripheral eosinophil numbers, rather than IgG autoantibody
levels (90). Unfortunately, determination of serum levels of
active vs. inactive IgE (OMZ bound) is not routine, so it is not
known how functional IgE levels correlate with eosinophilia in
these patients.
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THERAPIES TARGETING IGE AND
EOSINOPHILIA IN BP

There are currently no approved drugs for treatment of
BP, so current therapy relies on non-specific suppression of
antibody production and inflammation with topical or systemic
steroids and immunosuppressants. This results in significant
morbidity and mortality in elderly BP patients (142). Thus,
therapies targeting key aspects of disease pathogenesis are an
area of intense interest for BP. Treatments that modulate IgE
autoantibody levels or inhibit the downstream effects of IgE, as
well as those targeting the Th2 axis or eosinophils are discussed
below. Typically, these treatments are initially utilized on
refractory patients who have failed standard immunosuppressive
therapies, although recently some have been evaluated for their
efficacy as a first-line treatment in clinical trials. Successful
treatment is minimally defined as an absence of new lesions and
a resolution of∼80% of existing lesions. In most of these studies,
total and BP antigen-specific IgE are not reported, possibly
due to the lack of standardized, commercially available assays.
Development of standardized methods for the detection of IgE
autoantibodies is necessary to fully understand the mechanisms
responsible for therapeutic efficacy or failure in BP.

Therapies Aimed at Reducing IgE Antibody
Levels
Immunoadsorbtion
Immunoadsorption is used to non-specifically remove antibodies
from the plasma of patients with severe disease and high
autoantibody levels (143). It is thought that the sharp decline
in circulating antibody levels leads to re-diffusion of tissue-
bound antibodies, thereby and alleviating their local effects in the
skin (144). Treatment of BP with adjuvant immunoadsorption
results in a durable decrease in disease severity and BP IgG
(145, 146). Although IgE is usually not measured in BP patients
treated with immunoadsorption, it is likely that both IgG
and IgE are decreased, based on a report showing that pan-
immunoadsorption effectively reduced serum IgE by >90% in
patients with severe atopic dermatitis (147). Although not yet
tested in BP, IgE-specific immunoadsorption has recently become
available for clinical use (147–149). Due to the associated risks
of infection immunoadsorption is typically used as a stop-
gap measure to provide acute relief while immunosuppressive
therapies are optimized (150).

B-Cell Depletion
Selective B cell depletion via targeting of CD20, a B cell
lineage marker, has been utilized in BP to reduce circulating
autoantibody levels and alleviate disease activity. Rituximab (or
Rituxan) is a CD20-specific monoclonal antibody that eliminates
circulating memory B cells and short-lived plasma blasts but
leaves bone marrow plasma cells intact due to their lack of CD20
expression. To date, reports of rituximab therapy for BP consist
of largely of retrospective analysis of refractory patients treated
with a variety of dosing regimens. Overall, patients showed
dramatic improvement (facilitating tapering of prednisone) but
IgE antibody levels were not reported (151–153). Thus, it is
impossible to know whether patients with high IgE autoantibody

levels respond similarly to rituximab or if recurrence is associated
with persistence of IgE autoantibodies. A single report found that
rituximab treatment leads to a sharp decrease in IgG, while IgE
autoantibody levels are slower to respond (154). This observation
suggests CD20- plasma cells contribute to IgE autoantibody
levels, whereas IgG antibodies are produced by CD20+ short
lived plasma blasts (1).

A recent systematic review found 85% of BP patients treated
with rituximab exhibit a complete response (no new lesions or
pruritic symptoms and healing of at least 80% of lesions) with
or without other therapies (11). Recurrence rates and reported
adverse events were each observed at a rate of 25% (11). Another
retrospective analysis examined efficacy of rituximab treatment
patients with pemphigoid diseases found that 5/8 BP patients
achieved initial disease control with rituximab, and 5/8 achieved
partial remission; however, 5 patients suffered a relapse and there
was one death, possibly related to treatment (153). The results
of an open-label, prospective, phase 3 clinical trial evaluating the
efficacy and safety of a single cycle of rituximab (two infusions of
1,000mg, 15 days apart) for the treatment of BP (NCT00525616)
are not yet available.

IgE Blockade
The downstream effects of IgE antibody interaction with immune
cells have been targeted using omalizumab (Xolair), a humanized
monoclonal antibody that binds the Fc portion IgE thereby
inhibiting high affinity receptor interaction (155, 156). Dosing
is determined as in asthma, based on total serum IgE levels
and patient body weight, or as used in chronic urticaria, 150
or 300mg every 2 weeks (89, 155). OMZ treatment leads to
a reduction in B cell production of IgE, decreased activation
and degranulation of mast cells and eosinophils, and a dramatic
decline in peripheral eosinophil numbers (155–158). To date,
OMZ has been used as a monotherapy or steroid sparing agent in
22 patients described in several case reports and series [reviewed
in (91)]. Most of these patients had high IgE levels (73%) and
eosinophilia (77%) and nearly all (93%) had been unsuccessfully
treated with systemic corticosteroids. Although initial dosage
and duration of treatment varied considerably among patients,
85% of patients undergoing OMZ therapy exhibited a complete
response [no new lesions or pruritic symptoms and healing of at
least 80% of lesions (11)] on or off other therapies. In addition,
most patients exhibited a dramatic decrease in eosinophil counts
and decreased use of immunosuppressants. Importantly, several
OMZ-treated patients exhibit dramatic clinical improvement
despite persistently elevated IgG autoantibody levels (90, 159,
160). The drawbacks of OMZ therapy are that recurrence rates
are high (84% within 3.4 ± 1.9 months), necessitating repeated
cycles of OMZ, and corticosteroids or immune suppressants are
often needed to control disease. Furthermore, 20% of treated
patients experienced adverse effects, such as thrombocytopenia,
elevated liver enzymes, and myocardial infarction (two patients,
resulting in one death) (91).

QGE031 (ligelizumab) is an anti-IgE antibody that binds IgE
with higher affinity than OMZ. After promising results as a
treatment for persistent hives (161), the efficacy and safety of
QGE031 was examined in the only randomized, double blind,
placebo-controlled study to date that evaluates the effects of
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directly targeting IgE in BP (NCT01688882). Unfortunately, the
trial was halted after the first part did not achieve the predefined
criteria of efficacy (>50% better than placebo). Based on the
relative success of OMZ therapy for BP (discussed above), it is
surprising that QGE031 wasn’t found to be beneficial. There are
some differences in study design and treatment approach that
could contribute to this result. First, the criteria for enrollment
in the QGE031trial were BP patients, aged 20–80, with disease
refractory to oral steroid treatment and total IgE levels up to 5,000
IU/ml; however, patients were not selected based on elevated IgE
levels (or eosinophilia). Since OMZ-treated patients are typically
selected based on elevated IgE and eosinophilia, its efficacy
has not been examined in patients who do not have high IgE.
Secondly, the efficacy of QGE03 (240mg), given subcutaneously
every 2 weeks aimed to reduce disease activity by >50% after 12
weeks of treatment. In contrast, off-label OMZ therapy for BP
is typically administered every 2 weeks for 16 weeks (1 cycle),
patients often require multiple cycles (at the discretion of an
unblinded provider), and there is no standardized benchmark
of success. Thus, OMZ treatment regimen is often tailored to
each patient, depending on the initial response (91). It is possible
that the shorter duration of treatment and stringent requirement
for >50% improvement influenced the outcome of the QGE031
trial. Although a detailed description of the QGE031 trial has not
been published, these findings would be of high importance to
the field, despite a negative result. Finally, the therapeutic success
of OMZ has not been tested in a randomized, double blind,
placebo-controlled trial, which is essential for the elimination
of bias.

Intravenous Immunoglobulin
Intravenous immunoglobulin (IvIg) is a highly effective therapy
for BP that is typically used as an adjuvant in combination
with an immunosuppressive agent (144). The clinical efficacy
of IvIg has been demonstrated; however, their mechanism of
action is not well-understood (162–164). In mouse models of
BP, IvIg treatment ameliorated skin fragility, decreased serum
levels of inflammatory cytokines and chemokines and reduced
circulating IgG autoantibody levels. In vitro studies suggest that
anti-idiotypic antibodies present in IvIg might be responsible
for its therapeutic effects in BP (165). In these studies, the
addition of IvIg to keratinocyte cultures restored Collagen XVII
expression and increased adhesion that had been reduced by BP
treatment with BP IgG. Depletion of the anti-idiotypic antibodies
ameliorated the beneficial effects of IvIg. The effects of IvIg on
IgE autoantibodies in BP has not been explored, although it is
established that IvIg also suppresses IgE production in vitro (166,
167) and in vivo (168) and anti-idiotypic antibodies targeting IgE
have been described in allergy (169, 170).

A recent randomized, placebo controlled, double blind trial
was conducted to investigate the therapeutic effects of IvIg on BP
patients who showed no symptomatic improvement with ≥0.4
mg/kg/day prednisolone (NCT01408550). Adjuvant IvIg resulted
in a significant decline in disease activity and a reduction in
BP180-specific IgG, but IgE levels were not reported (164). While
this study demonstrated a clear benefit of IvIg for treatment of BP,
both IgE autoantibody levels and anti-idiotypic antibodies should

be evaluated in future studies to better understand its mechanism
of action.

Targeting the Th2 Axis
Pharmacologics targeting the Th2 axis have been developed for
use in asthma and allergy to block cytokines or chemokines
critical for disease pathogenesis. These drugs are predominantly
human monoclonal antibodies that specifically block receptor-
ligand interaction but are also effective at reducing the overall
Th2 response due to interruption of positive feedback loops
(160). Due to the predominance of Th2-phenotype, including IgE
autoantibodies and eosinophilia, many of these samemedications
have been used off-label to treat refractory BP.

Bertilimumab (anti-eotaxin-1) treatment of BP was examined
in an open-label Phase II study (NCT02226146) in 9 patients
with moderate to severe BP. Although IgE antibody levels have
not been reported, preliminary analysis found an 81% decrease
in BPDAI scores and a significant steroid sparing effect with
bertilimumab therapy. Based on these effects, bertilimumab has
been granted fast track designation as an orphan drug for the
treatment of BP (171).

Used in moderate to severe atopic dermatitis, dupilumab
(anti-IL4 receptor α) inhibits both IL-4 and IL-13 through their
shared usage of the IL-4 receptor α chain. There is a single
case report describing successful dupilumab therapy for a case
of treatment-refractory BP (172). After 3 months of dupilumab,
the patient reported decreased itching, IgG autoantibodies were
not detectable, and lesions had resolved. The effect of dupilumab
therapy on circulating IgE antibody levels or eosinophils was not
reported. There are currently no clinical trials examining efficacy
of dupilumab in BP.

Lastly, the effect of mepolizumab, an IL-5 inhibitor,
was evaluated as an add on therapy (vs. placebo) to oral
corticosteroids in patients an acute flare of BP [NCT01705795
(173)]. Patients treated with mepolizumab did exhibit any
therapeutic benefits, such as decreased time to relapse or
increased disease control, over the placebo group; however,
significantly lower peripheral blood eosinophil levels were noted,
and skin infiltrating eosinophils were also reduced. IgE antibody
levels were not reported. Although a reduction in disease activity
was not observed, the authors argue for continued exploration
of therapeutic strategies targeting eosinophils in BP, such as
antibodies targeting IL-5 receptor alpha subunit, since they will
mediate antibody-dependent cell-mediated cytotoxicity of both
eosinophils and basophils (174).

CONCLUSIONS

While IgE autoantibodies and eosinophilia are established
features of BP, their precise contribution to disease pathogenesis
remains unclear. Experiments aimed at understanding the
interaction between IgE and eosinophils are complicated by
a web of shared mediators and feedback loops that cross
regulate multiple components of Th2 immunity. However,
use of transgenic and knockout mouse models of BP will
improve experimental clarity. Additionally, the development
of standardized assays for sensitive and specific measurement
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of BP180 IgE is needed to improve consistency of clinical
studies. Going forward, consistent identification of patient
characteristics, including total and specific IgE levels or degree
of eosinophilia, will facilitate selection of targeted therapies to
optimize patient outcomes.
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