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Dendritic cells (DCs) are highly specialized, bone marrow (BM)-derived

antigen-processing and -presenting cells crucial to the induction, integration and

regulation of innate, and adaptive immunity. They are stimulated by damage-associated

molecular patterns (DAMPS) via pattern recognition receptors to promote inflammation

and initiate immune responses. In addition to residing within the parenchyma of all organs

as part of the heterogeneous mononuclear phagocyte system, DCs are an abundant

component of the inflammatory cell infiltrate that appears in response to ischemia

reperfusion injury (IRI). They can play disparate roles in the pathogenesis of IRI since

their selective depletion has been found to be protective, deleterious, or of no benefit

in mouse models of IRI. In addition, administration of DC generated and manipulated

ex vivo can protect organs from IRI by suppressing inflammatory cytokine production,

limiting the capacity of DCs to activate NKT cells, or enhancing regulatory T cell function.

Few studies however have investigated specific signal transduction mechanisms

underlying DC function and how these affect IRI. Here, we address current knowledge

of the role of DCs in regulation of IRI, current gaps in understanding and prospects for

innovative therapeutic intervention at the biological and pharmacological levels.
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AN INTRODUCTION TO DENDRITIC CELLS (DCS)

DCs comprise a heterogeneous population of uniquely well-equipped, bone marrow-derived
innate immune cells. They are distributed ubiquitously throughout the body and play an
important homeostatic and anti-infectious sentinel role. DCs are highly efficient, antigen
(Ag)-acquiring, -processing, and presenting cells, that perform crucial roles in the instigation and
regulation of acute and chronic inflammatory responses. While they promote self-tolerance in the
healthy steady-state and can be targeted by microbes and tumors to evade immunity, DCs integrate
innate and adaptive immunity effectively to combat infection and can also be exploited as anti-
cancer vaccines. During autoimmunity and transplant rejection, DCs instigate deleterious immune
responses that cause disease; on the other hand, they can be harnessed to silence these conditions
using novel targeting and adoptive cell therapy approaches. In the context of ischemic tissue injury
that adversely affects short- and long-term transplant outcome, DCs appear to play diverse roles in
regulation of the inflammatory response.
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DC SUBSETS—PHENOTYPE AND
FUNCTION

Distinct subsets of DCs, including myeloid/conventional DCs
(cDCs) and type-I IFN-producing plasmacytoid DCs (pDCs)
have been described extensively elsewhere (1–3) and are
summarized in Table 1. Classical DCs, but not monocyte-
derived antigen (Ag)-presenting cells (APCs), are critical for
central and peripheral regulatory T cell (Treg) induction and
the development of tolerance (4) as well as shaping effector T
cell responses to Ag. Beyond the classical characterization of
DCs, new phenotypic and functional subsets of DCs continue to
emerge (5, 6). Moreover, the discovery of new lineage markers
and introduction of innovative imaging technologies (including
use of reporter mice) have helped to distinguish classical DC
subsets from other myeloid cells, particularly macrophages, in
tissues such as the kidney (7).

According to their maturation and functional status,
DCs can be divided into immature, mature, and regulatory

TABLE 1 | DC subsets in mouse and human: phenotype, localization,

and function.

Human DC subsets Phenotype Location Function

Plasmacytoid DC CD123

CD303/BDCA-2

CD304/BDCA-4

Blood, tonsil,

non-lymphoid

tissues

Production of type

I and III IFN

Myeloid cDC1 CD141/BDCA-3 Blood, tissues,

and lymphoid

organs

Present Ag to

CD8+T cells and

produce type III

IFN

Myeloid cDC2 CD1c/BDCA-1

CD2

CD11c

CD11b

Blood, tissues and

lymphoid organs

Activate

Th1/Th2/Th17 and

CD8+T cells

Langerhans cells CD207

CD1a

E-Cadherin

Skin (epidermis) Transfer Ag to

afferent

lymphatics,

stimulate CD8+T

cells

Mo-DC CD11c

CD1c/BDCA-1

CD1a

Ex vivo-generated

Murine DC subsets

Plasmacytoid DC CD11cint CD11b−

CD8−B220+Gr-1+
Lymphatic and

non-lymphoid

tissue

IFN-α production

CD8+ cDC CD11c+

CD11b−CD8+

CD24+ MR+

Lymphatic and

non-lymphoid

tissue

Activate CD4+

and CD8+ T cells,

Ag presentation

CD8− cDC CD11c+

CD11b+CD8−

CD24−

All tissues Activate CD4+ T

cells, transport Ag

to LN

Langerhans cell CD11c+ CD11b+

CD8−Langerin+

CD1a+

Skin (epidermis) Transport Ag from

skin to LN

CD, cluster of differentiation; cDC, conventional DC; DC, dendritic cell; Mo-DC,monocyte-

derived DC; pDC, plasmacytoid DC; LN, lymph nodes; MR, mannose receptor;

IFN, interferon.

populations. Regulatory DCs (DCregs) have been extensively
investigated in transplantation (8–11) and autoimmune disease
(12, 13), ranging from pre-clinical models to pilot human
clinical trials. Infusion of donor-derived DCregs prior to
transplantation has been shown to prolong kidney allograft
survival and inhibit donor-reactive CD8+ memory T cell
responses in non-human primates (14, 15). First-in-human
phase I/II clinical trials of adoptive DCreg therapy in living
donor renal and liver transplantation have recently been
instigated (8, 16).

ISCHEMIA-REPERFUSION INJURY (IRI)

IRI is a common clinical condition triggered by various
physiological derangements (sepsis, cardiogenic shock,
vascular surgery, organ retrieval for transplantation).
Its pathogenesis has been comprehensively described
elsewhere (17–21) but is essentially characterized by
endothelial dysfunction, reactive oxygen species (ROS)
production, secretion of pro-inflammatory mediators, and
recruitment of inflammatory cells which exacerbate/perpetuate
tissue injury.

INFLAMMATORY CELLS CHARACTERIZE
IRI

Inflammatory cell infiltration after IRI is rapid, peaking 24 h
following reperfusion (22). Gr-1+ neutrophils, which release
ROS and proteolytic enzymes, and NK1.1+CD161+ NKT
cells (CD56+ in humans) which elaborate pro-inflammatory
cytokines, are the predominant early inflammatory cells that
impair organ function within hours of IRI (23–26). However,
neutrophil-depleted animals are not protected following
ischemic insult to the kidney (27, 28). Neutrophils, NKT cells
and DCs intercommunicate to enhance tissue injury through
chemokine/cytokine secretion, as well as cell-cell contact (29, 30).
These interactions are depicted in Figure 1 in the context of
the early period following renal IRI. While DCs are thought
to be crucial to the pathogenesis of IRI, their role in kidney
IRI remains unclear, since depletion may be protective (22),
deleterious (31), or of no benefit (32). In situ targeting of DCs
with the vitamin D analog paricalcitol can induce intrahepatic
tolerogenic DCs and alleviate CD4+ T cell responses to
attenuate hepatocellular damage (33). In contrast, pDC-
released type I IFN promotes tissue injury through induction
of hepatocyte IFN regulatory factor-1 (IRF-1) to induce
apoptosis (34).

Macrophages, NK cells and adaptive immune cells, including
T and B cells, infiltrate injured tissues hours after reperfusion
(22). Macrophages have been considered to polarize into M1
(classical) and M2 (alternatively-activated) subsets with pro-
or anti-inflammatory function, respectively, although recent
reassessment suggests a broader functional repertoire for these
cells (35). Heme oxygenase 1 (HO-1) negatively regulates
M1 polarization and hepatocellular damage in both mouse
liver IRI and human liver transplant biopsies (36). Further
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FIGURE 1 | The DC interactome following renal ischemia reperfusion injury (IRI). IRI is a common clinical condition triggered by various physiological derangements

including sepsis, cardiogenic shock, vascular surgery, and organ retrieval for transplantation. Following injury, resident, and influxing DCs become activated within the

kidney parenchyma and are the dominant TNFα-producing cells. The effect of TNF-α is dependent on the transcription factor IRF-4, promoting renal tubular epithelial

cell apoptosis, glomerular endothelial damage, and fibrin deposition. Post-IRI, intra-renal DCs upregulate markers that designate them as mature APCs, including

MHC, CD80, CD86, CD40, and CD1d. Activation of NKT cells via CD40 initiates IFN-g to amplify the innate immune response. Renal DCs are capable of presenting

self-Ag to a variety of T cells in the context of IRI: CD11c+ DCs cross-present Ag to CD8+ T cells and glycolipids are presented to NKT cells via CD1d. Exposure of

DCs to hypoxia/reperfusion augments production of IL-12 and IL-6, and an inflammatory T cell phenotype through HIF-1α transcriptional regulation. Absence of

DC-specific HIF-1α limits expression of IL-10 and TGF-β, which are potent inducers of Tregs. DCs intercommunicate with neutrophils and NKT cells to enhance tissue

injury through chemokine/cytokine secretion, as well as cell-based contact. Neutrophils release ROS and proteolytic enzymes, and NK1.1+CD161+ NKT cells

elaborate pro-inflammatory cytokines and are the predominant early inflammatory cells that impair organ function within hours of IRI. Ag, antigen; DAMPs,

damage-associated molecular patterns; HIF-1, hypoxia-inducible factor-1; IRF-4, interferon regulatory factor-4; ROS, reactive oxygen species.

evidence shows that HO-1 regulates macrophage activation
through the Sirtuin/p53 signaling pathway to drive hepatic
death during liver IRI (37). Deletion or inhibition of Dectin-
1 can suppress M1 macrophage polarization and alleviate
myocardial IRI (38). T cells can continue to localize in
injured kidneys for 2 weeks and display an effector-memory
and activation phenotype characterized by CD44hiCD62L−

and CD69+ expression, respectively (39). Treg function is
decreased in aged mice, which contributes to exacerbated liver
IRI (40).

HYPOXIC STIMULI

In transplantation, immune-mediated injury is a composite of
the innate response to IRI and alloimmune reactivity to foreign
Ag. Many clinical studies confirm a link between delayed graft
function and a higher rate of acute rejection (41–44). We and
others have shown that hypoxia activates DCs (45), as evidenced
by their phenotypic maturation, pro-inflammatory cytokine
production, and enhanced T cell stimulatory and migratory
capacity (46–50).
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Altered DCs function under hypoxia has been ascribed to
changes in hypoxia-inducible factor (HIF)-1α activity. Longer-
term hypoxia (>1 h) followed by reperfusion downregulates the
G-protein coupled purinergic receptor P2Y11R through HIF-
1α transcriptional regulation, resulting in augmented production
of IL-12 and IL-6 and an inflammatory T cell phenotype in
response to extracellular ATP (51). Hypoxia, and therefore HIF-
1α-dependent upregulation of adenosine receptor A2B (52), or
triggering receptor expressed on myeloid cells- (TREM)-1 (53,
54) can induce Th2 polarization and pro-inflammatory cytokine
release, respectively. BMDCs lacking functional HIF-1α show
deficiencies in type I IFN secretion and fail to activate CD8+ T
cells (55). Interestingly, the effect of hypoxia on DCs is attenuated
by rapamycin (47) and augmented by concurrent exposure to
LPS (56).

Together, these data suggest that DCs are reprogrammed
by a hypoxic environment to modulate their inflammation-
activating repertoire, however discrepant features in many
studies may reflect differences in hypoxia duration and severity.
In vivo, HIF-1α is crucial for DC-dependent generation of
Tregs and Treg homing to inflammatory sites. Absence of
DC-specific HIF-1α limits IL-10 and TGF-β expression (both
potent inducers of Tregs) and reduces expression of aldehyde
dehydrogenase (necessary for catalytic production of retinoic
acid) (57). Although HIF-1α is protective against IRI (58), there
are no studies assessing its specific effect on DCs in this model.

ISCHEMIC PRECONDITIONING

Ischemic preconditioning (IPC) occurs when brief periods
of sublethal ischemia are performed prior to a subsequent
prolonged episode and increases organ resistance to IRI
(59). However, the underlying mechanism (s) remain elusive.
Exposure of renal parenchyma to IPC prior to IRI does not alter
the number of infiltrating leukocytes, but reduces CD11c+ DCs
(compared to IRI alone), which display lower CCR7 and IL-
17 transcript levels, decreased CD80 expression and upregulated
IL-10 (60). Elimination of CD11c+ DCs (CD11b+ and CD8+

subsets) using liposomal clodronate is associated with partial loss
of preconditioning benefits.

ORGAN CROSS-TALK DURING IRI

IRI rarely occurs in isolation—systemic release of pro-
inflammatory cytokines and cell trafficking to primary and
secondary lymphoid tissue ensures widespread modulation of
innate immunity. Substantial cross-talk between the injured and
remote organs manifests clinically as multi-organ failure. The
onset of acute lung injury in the context of acute kidney injury
(AKI) occurs more frequently than any other organ combination
(61). Experimental models have identified a distinct pulmonary
genomic signature during AKI, with differentially expressed
pro-inflammatory and pro-apoptotic pathways (62). The
intestine can also aggravate the systemic inflammatory response
syndrome (63). Increased permeability from gut hypoperfusion,
modification of microbiota composition, and blood-borne

propagation of toxins contribute to the outcome of AKI. Gut
microbiota can also modulate the inflammatory response to
injury. Short-chain fatty acids such as acetate, propionate, and
butyrate are produced by fermentation of complex carbohydrates
and have a broad range of anti-inflammatory effects (64).
Concurrent incubation of murine BMDCs with short-chain
fatty acids and LPS reduces upregulation of maturation markers
CD80, CD86, and CD40 (65). Butyrate specifically inhibits
production of IL-12 in human monocyte-derived DCs, limiting
development of effector Th1 cells (66, 67). Treatment with
short-chain fatty acids also protects against AKI, with lower
frequencies of infiltrating macrophages and activated DCs (65)
in addition to effects on renal tubular epithelial cell apoptosis
and ROS production.

ORGAN-SPECIFIC ROLES OF DCS IN IRI

Tissue-Specific Phenomena
The majority of animal data on the function of DCs in IRI is
limited to the liver, heart and kidney, and is best characterized in
the latter. Robust models of pulmonary, intestinal and pancreatic
IRI are lacking due to technical challenges. Human data is also
sparse due to inherent difficulties with DC detection and limited
tissue availability. In vivo targeting of organ-specific DCs to limit
IRI and innate immune activation is difficult due to the lack of
defining cell-surface markers. Tables 1, 2 outline the breadth of
available markers, which show significant overlap.

Kidney
CD11c+ DCs are resident within the kidney parenchyma (86),
infiltrate following ischemic insult and are the dominant TNFα-
producing cells (77) (Figure 1). TNF-α is crucial to neutrophil
influx post-IRI, renal tubular epithelial cell apoptosis, glomerular
endothelial damage and fibrin deposition (87–90). The effect
of TNF-α depends on the transcription factor IRF-4 (91).
Non-specific elimination of DC using liposomal clodronate
or administration of etanercept (a decoy receptor for TNF-α)
abrogates AKI in IRF-4 deficient mice (91).

Intra-renal DCs post-IRI constitutively express markers that
designate them as professional APCs (MHC, CD80, CD86, CD40,
CD54, CD1d), but not tissue macrophage markers [CD169,
CD204 (77)]. As early as 4 h post-IRI, higher levels of maturation
marker expression are observed, favoring the hypothesis that DC
maturation occurs in situ rather than by cell replacement (77).
Multiple studies have identified a continuum of DC phenotypes
that contribute to the innate immune response and IRI.
Monocyte subsets migrate to inflamed tissue and differentiate
into activated DCs as CCR2+CX3CR1loGR-1+Ly6Chi cells (92).
Resident CX3CR1hi monocytes patrolling the parenchymal space
also migrate, differentiate, and participate in inflammation. Both
CCR2 (93) and CX3CR1 (94) are essential to this process.

The traditional paradigm has been discrete separation
of mononuclear phagocytic cell populations into CD11b+

macrophages and CD11c+ DCs that increase following IRI. More
recent thinking has focused on phenotypic heterogeneity and
functional plasticity of these cells. They are divided broadly into
5 subsets based on intensity of CD11b and CD11c expression and

Frontiers in Immunology | www.frontiersin.org 4 October 2019 | Volume 10 | Article 2418

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Dai et al. Dendritic Cells and Ischemic Injury

TABLE 2 | Identified DC subsets implicated in IRI.

Organ Mouse Human Function

Heart (68) Steady-state

Myeloid DC:

CD45+Lin−CD11c+MHCII+

cDC1: CD103+CD11b−,

Clec9a, Flt3/CD135, CD205,

CD24, CD283

cDC2: CD103− CD11b+,

CD115/M-CSFlo, F4/80lo,

CX3CR1lo, Ly6Clo

Double negative (DN) cDC:

CD103−CD11b−

Plasmacytoid DC:CD45+ Lin−

CD46−

MHCIIlo CD11b− CD11clo

PDCA1+ Ly6C+

SiglecH+ Clec9a+

Steady-state

Hu-mice reconstituted with

human stem cells + Flt3L:

Myeloid DC:

HLA-DR+ CD11c+

BDCA1+ (CD1c+), IRF4

BDCA3+, IRF8

Plasmacytoid DC:

CD123+BDCA2+

LAMP+

IRF8

Murine: post-IRI 10-fold increase, DC

depletion improves cardiac function

post-MI (68), OR worsens LV function

(69), increased DC worsen MI

outcomes (70, 71), cDC2 increase

numbers and CD40 expression in

response to MI, prime autoreactive T

cells, 4-fold increase, no functional

role post-MI

Liver (72) mDC: CD11c+CD8α−CD11b+

CD8α
+ DC: CD11c+

CD8α+CD11b+

GM-CSF administration:

CD11c+CD11b+B220−CD205−

pDC:

CD11cloB220+Ly6C+CD11b−

NK-DC: CD11c+NK1.1+

Liver perfusate and explanted

livers CD11c+ DC subsets (72):

CD141+ Clec9A+ (30% of total

CD11c population)

ILT3+ (38%)

ILT4+ (52%)

CD1c+ (20% of total CD11c

population)

Plasmacytoid DC: HLA-

DR+Lin−CD11c−CD123+ (15%)

Human: CD141+ cells enriched in

healthy livers, secrete CXCL10, IL-1β,

IL-17, and IFN-γ; initiate Th1/Th17

responses, express TLR3

Mouse: 65% reduction in cDC

post-IRI (73), DC depletion

(CD11c-DTR system) worsens IRI

(73), Flt3L KO depletes DC and

protects against IRI (74), CD11bhi

cells increase CD80/86 expression

(33), CD40 (DC)-CD154 (T cell)

ligation activates innate immunity (75)

Kidney Steady-state

Mononuclear phagocyte

subsets (76): 1.

CD11bhiCD11chi: MHCII+

CCR2+ CD16+ Zbtb46+ 2.

CD11bhiCD11clo: CCR2+

CSF1R+ 3. CD11bintCD11cint:

F4/80+CD14+CX3CR1+CSFR1+

MHCII+ IL-10+ 4.

CD11bloCD11chi:

CD103+CCR7+

Zbtb46+Batf3+ IRF8+ 5.

CD11b−CD11cint IRF8+

Post-IRI CD45+CD11c+

MHC-II+

TNF-α+CD80+CD86+CD40+

CD54+ (ICAM), C1d+

CD8α−CD4−CD205− (77)

Steady-state (78, 79)

Myeloid DC:

Lin−HLA-DR+

cDC1: CD11c+

CD141+Clec9A+

cDC2: CD11c+CD1c+ CD1a+

(subset)

Plasmacytoid DC:

Lin−HLA-DR+

CD11c−CD123+ CD303+

IRI increases: total CD45+ cells,

CD45+CD11c–Ly6C+ (monocytes),

CD45+CD11c–Ly6G+ (neutrophils),

CD45+CD11c+ Ly6C–F4/80– (DC).

CD45+CD11c+Ly6C−F4/80+ DC

were unchanged (77).

CD11c+ DC present Ag to T cells in

draining renal lymph node (80).

Pulmonary (81, 82) Steady-state

Myeloid DC: CD11chi

Airways:

CD103+CD11bloCD207+

(Langerin), XCR1+Clec9A+

Batf3, ID2, IRF8, Zbtb46

Beneath basement

membrane: CD103−CD11b+

RELB, IRF2, IRF4, Zbtb46

Plasmacytoid DC: CD11cint

MHC IIintB220+Ly6C/Gr-

1hiSiglec-H+BST-2+

IRF8, E2-2

Steady state

Myeloid DC:

HLA-DR+ CD1c+CD11c+

CD14−

Plasmacytoid DC:

HLA-DR+ CD123+

CD11c−CD14−

Maturation: CD83+

Tightly associated with conducting

airways and epithelia (83).

No information in IRI models.

(Continued)
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TABLE 2 | Continued

Organ Mouse Human Function

Intestine (84, 85) Steady state

cDC1: CD103+

XCR1+ CD11b−CD172− IRF8,

Batf3

cDC2: CD103+CD11b+CD172+

IRF4, Notch2

or CD103−CD11b+CX3CR1 int

Steady state

cDC1: CD103+CD141+

XCR1+DNGR1+

cDC2: CD103+CD172+

CD141−

orCD103− CD172+CD141−

cDC1 and cDC2 CD103+ cells within

epithelium, lamina propria, and

draining lymph nodes

Batf, basic leucine zipper transcriptional factor-ATF like; BDCA, blood dendritic cell antigen; Clec, C-type lectin receptor; CSF, colony stimulating factor; FLT3, fms like tyrosine

kinase 3; HLA, human leukocyte antigen; MHC, major histocompatibility complex; ICAM, intercellular adhesion molecule; ID, inhibitor of DNA binding; IFN, interferon; IL, interleukin;

ILT, immunoglobulin-like transcript; IRF, interferon regulatory factor; IRI, ischemia reperfusion injury; Lin, lineage; MI, myocardial infarction; RELB, v-rel avian reticuloendotheliosis viral

oncogene; Siglec, sialic acid binding immunoglobulin like lectin; Zbtb, zinc finger and BTB domain-containing protein.

are further characterized by a comprehensive set of cell surface
markers and transcription factors (76). All subsets demonstrate
phagocytic capacity but differ in their migratory capacity and
cytokine profile as well as their ability to stimulate naïve T cells
and alter T cell polarization ex vivo. Renal DCs are capable of
presenting self-Ag to a variety of T cells in the context of IRI, -
CD11c+ DCs cross-present Ag to CD8+ T cells post-IRI (95) and
glycolipids are presented to NKT cells via the CD1d cell surface
receptor (96). Activation of NKT via CD40 initiates IFN-γ to
amplify the innate immune response. Administration of CD1d
Ab that blocks NKT-DC interactions or genetic depletion of NKT
provides significant protection against renal IRI (96). Renal DCs
are also primarily responsible for presenting renal proteins to
Ag-specific CD4+ T cells within draining renal lymph nodes.
In a model of unilateral IRI where ovalbumin is placed beneath
the operated kidney capsule, CD11c+ DCs from the ipsi- or
contra-lateral renal lymph nodes induce proliferation of DO11.10
(ovalbumin-restricted) T cells (80). CD11c− fractions failed to
induce T cell stimulation.

Naïve rodent kidneys demonstrate additional DC subsets
defined by the expression (or absence) of CD103+. The CD103+

subset is primarily involved in Ag cross-presentation after
migrating to lymph nodes (97). Transplantation of syngeneic
grafts subjected to negligible or prolonged cold storage leads to
depletion of CD103+ DCs, regardless of IRI, but only CD103−

DCs under the former condition (98). Donor cells are replaced
by host DCs, accompanied by increases in CD3+CD4+CD62L−

T cells, indicative of effector/effector-memory populations.

Heart
Despite advances in percutaneous coronary intervention and use
of statin and antiplatelet agents, the incidence of post-infarct
heart failure is rising (99). Adverse ventricular remodeling
following myocardial infarction increases mortality by
precipitating heart failure. Studies of DC subsets in experimental
myocardial IRI are relatively uncommon, mostly due to the
technical difficulty, high mortality, and significant variations
in infarct size associated with left anterior descending artery
ligation (100, 101).

DC subsets are found within the CD45+ leukocyte population
in healthy myocardium, particularly within the right atrium
(68). Conventional CD11c+MHC II+ DCs (cDC1s) have been

defined by CD103 or CD11b expression (or neither) (68).
These 2 subsets are also classified by XCR1 or CD172 (SIRP-
α) expression, and levels of transcription factors IRF8 and
IRF4, respectively (102). Under homeostatic conditions, cDC1s
present cardiac self-Ag to α myosin heavy chain-specific CD4+

T cells in mediastinal lymph nodes to induce Treg formation.
pDCs (CD11bloMHCII−CD11cloPDCA-1+Ly6C+) have also
been detected.

DCs infiltrate infarcted myocardium (103), increasing 10-
fold, particularly the CD11b+ subset expressing maturation
markers such as CD40 (68). Post-myocardial infarction
cDCs upregulate CCR7 (the chemokine receptor required
for lymph node migration) and CD40 expression; specific
activation of the cDC2 subset induces CD86 expression as
well as CD4+ T cell proliferation and accompanies IFN-γ
and IL-17 production (102). Although mature DC numbers
correlate with LV dysfunction (70) and depletion of cDCs
reduces infarct size and adverse cardiomyocyte hypertrophy
in the border zone (68), a deleterious contribution of DCs
is disputed. Prolonged DC ablation leads to impaired LV
remodeling, sustained expression of pro-inflammatory cytokines
and altered monocyte/macrophage recruitment (69). The
administration of liposomal clodronate, which depletes both
DCs and macrophages, also impairs wound healing (104). pDC
numbers also increase following infarction, but their depletion
appears not to affect LV function (68).

DCregs have therapeutic potential in post-infarct healing,
modulating Tregs and macrophages. “Tolerogenic DCs” primed
with TNF-α and mouse cardiac tissue Ags reduced infarct size,
improved LV ejection fraction and increased post-infarct survival
(105). This correlated with increased FoxP3+ Tregs in inguinal
and mediastinal lymph nodes, as well as in the post-infarct
heart. Adoptive transfer of these Tregs into mice post-MI also
improved wound healing. Interestingly, troponin- or myosin-
primed DCs failed to recapitulate the protective effects seen with
tissue-primed DCs.

Liver
Similar roles for DCs have been demonstrated in hepatic IRI.
Interestingly, cDCs are depleted from the liver parenchyma,
rather than enriched, during maximal injury (12 h post-
reperfusion). These DCs display a mature phenotype, with
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marked CD86 upregulation, but are also necrotic and apoptotic.
Depletion of CD11c+ DCs in CD11c-DTR mice worsens
tissue damage and the pro-inflammatory cytokine profile
following liver IRI. Adoptive transfer of cDCs into CD11c-
depleted mice mitigates this injury, dependent on intrinsic
TLR9 activation (from hepatocyte DNA release) and subsequent
IL-10 production (73). This is also thought to modulate
CD11bintLy6Chi inflammatory monocyte cytokine production
and ROS generation. Augmenting DC numbers with GM-CSF
increases susceptibility to liver IRI (106). Post-reperfusion, these
DCs exhibited a mature phenotype and enhanced allostimulatory
capacity. This effect required release of high motility box group
1 that upregulates DC-expressed TLR4 and interacts with both
TLR9 and the receptor for advanced glyosylation end-products
(RAGE) to activate DCs (107).

Liver transplant recipients aremore likely to develop a tolerant
phenotype compared to recipients of other solid organs. Thismay
be due to a comparatively high density of DCs to parenchymal
cell populations (108) and the refractory behavior of liver DCs
compared with DCs from other tissues in response to TLR
ligation (109, 110). Expression of CD39, which drives ATP
hydrolysis, is increased on murine liver mDCs but not pDCs,
and the levels exceed those in splenic DCs. Not unexpectedly,
CD39KO syngeneic liver transplants exhibit worse tissue injury
compared to WT grafts, with accompanying upregulation of
CD80, CD86, and MHC II, and downregulation of PD-L1
on hepatic mDCs (109). Notably, CD39 expression on freshly
isolated human hepatic CD45+Lin−BDCA-1+ DCs is higher
than on peripheral blood mDCs.

The discrepant findings suggesting a dichotomous role for
DCs in liver IRI imply that tissue-resident and recruited DCs
may play distinct roles in the response to injury. DCs are
highly motile, and are recruited into the liver in response to
macrophage inflammatory peptide-1 (111) (MCP-1 = CCL2),
which is produced following IRI. Administration of Flt3L to
WT mice increases the DC-resident population 10-fold (112)
and enhances liver parenchymal injury; injury is significantly
reduced in Flt3L KO mice (74). Adoptive transfer of CD11c+

mDCs or PDCA-1+ pDCs into Flt3L KO mice at the time of
IRI significantly worsens injury. To distinguish the contribution
of hepatic-resident vs. infiltrating DCs, a liver transplant model
between congenic mice has been used. Donor-derived hepatic
DCs upregulated maturation markers to a higher level than
on infiltrating (recipient) DCs. Use of Flt3L KO liver donors
increased ischemic injury, suggesting a protective effect of liver-
resident DCs.

The role of pDCs in liver IRI is poorly defined. IFN-
α is produced predominantly by pDCs (113) in response
to sensing of self-DNA and TLR9 ligation, which drive the
inflammatory response in IRI. IFN-α promotes IRF-1 expression
by hepatocytes to induce pro-inflammatory cytokine and death
receptor expression (34). Depletion of pDCs using anti-PDCA-1
Ab or use of IFN-α blocking Ab protected the liver against IRI.

The Therapeutic Potential of DC
Despite decades of research and multiple clinical trials, no
pharmacological agents are in clinical use for IRI. Cell-based

therapy, which capitalizes on the capacity of regulatory cells
to modulate adverse immune responses, represents a potential
therapeutic option. DCs can exhibit a protective phenotype to
modulate pathogenesis of IRI. However, unlike adoptive transfer
of Tregs, which can change to a proinflammatory/effector
phenotype, depending upon the microenvironment (114, 115),
DCregs are maturation-resistant, phenotypically stable and do
not need to persist in vivo as functional cells to mediate immune
response change (116). Pharmacological or genetic manipulation
produces a regulatory phenotype (DCregs), secreting low levels
of Th1-driving cytokines (particularly bioactive IL-12), and
comparatively high levels of anti-inflammatory cytokines (such
as IL-10) (117). They are weak T cell stimulators and possess the
capacity to induce or expand Tregs. While the beneficial effect
of DCregs has been established in multiple pre-clinical models
of allograft rejection [reviewed in Thomson et al. (118)], their
testing in IRI has been minimal. Elegant experimental work has
demonstrated that following adoptive transfer, allogeneic DCregs
are rapidly killed by host immune cells (predominantly NK
cells), and their effect is mediated by recipient DCs (119, 120).
Even in the absence of alloAg, adoptively transferred DCs can
direct T cells to produce a regulatory response and mitigate
IRI. Thus, while lack of the sphingosine-1-phosphate receptor
3 (S1pr3) protects against renal IRI (121), infusion of S1pr3−/−

DCs also protects against IRI which requires functional Tregs,
CD11c+ DCs, and CD169+ macrophages (122). In addition,
DCs treated with an adenosine 2A receptor agonist protect WT
mice from IRI via suppressing NKT cell activation and IFN-γ
production (123).

Current Gaps in Knowledge
Variations and limitations in methodology, both for
identification and ex vivo generation of DCs, have made
it difficult to determine whether phenotype and function
are consistent between organs affected by IRI. Which self-
Ags DCs respond to in IRI is not well-defined and clearly
differs according to damaged organ segment, cell type or
cellular component (glomerulus vs. tubule, hepatocyte vs.
endothelia, myosin heavy chain vs. tubulin). In addition,
there is still no consensus to clearly distinguish tissue DCs
and macrophages (124, 125). Cell-surface molecules such as
CD11c and CX3CR1 are expressed on various myeloid cells
and are imperfect DC markers (126). A further caveat is that
ex vivo-generated DCs do not truly represent a physiological
subset of tissue-resident DCs. The majority of studies to date
have been conducted in animal models of IRI, and the paucity
of human data highlights limitations regarding generalizability
of results.

DCregs are currently being tested as cell therapy in
clinical liver and kidney transplantation, and the results
of these trials are eagerly awaited. If DCregs are to be
considered as therapy, it will be necessary to determine
cell type (autologous vs. allogeneic vs. donor Ag-loaded),
dosage, timing, and frequency of infusion (s) and cost.
Other aspects, such as potential sensitization of recipients
(with the use of banked allogeneic DCs) and comparison of
DCregs with other regulatory cell types, have also not been
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addressed. It is also unclear whether the relative efficacy of DC
therapy also depends on the organ undergoing IRI. Published
research has also focused on the effect of DCs given prior
to the onset of IRI, whereas their influence post-injury is
not known.
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