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Head and neck squamous cell carcinomas (HNSCCs) are closely linked with

immunosuppression, accompanied by complex immune cell functional activities. The

abnormal competition between costimulatory and coinhibitory signal molecules plays

an important role in the malignant progression of HNSCC. This review will summarize

the features of costimulatory molecules (including CD137, OX40 as well as CD40) and

coinhibitory molecules (including CTLA-4, PD-1, LAG3, and TIM3), analyze the underlying

mechanism behind these molecules’ regulation of the progression of HNSCC, and

introduce the clinic application. Vaccines, such as those targeting STING while working

synergistically with monoclonal antibodies, are also discussed. A deep understanding

of the tumor immune landscape will help find new and improved tumor immunotherapy

for HNSCC.

Keywords: HNSCC, costimulatory signaling molecules, coinhibitory signaling molecules, tumor immunity,

immunotherapy

INTRODUCTION

The head and neck squamous cell carcinoma (HNSCC) is the sixth most common systemic
malignant tumor (1, 2). Its occurrence is closely related to exposure to tobacco, alcohol (3) and
HPV infection (4). The clinical outcomes of HNSCC are always frustrating and the 5-year survival
rate of early HNSCC is only 40–60%. For patients with local recurrence or/and distant metastasis,
the median survival time after palliative chemotherapy is 6–9 months, while only 3–6 months for
chemotherapy tolerance (2). Thus, the question of how to improve the poor prognosis of HNSCC
has attracted great attention, and there is a need for further study into the molecular mechanisms
of tumor growth and metastasis.

Previous studies have demonstrated that almost all types of tumors, including HNSCC, have the
ability to evade the immune surveillance and clearance, resulting in tumor growth and metastasis.
In an immunosuppressive tumormicroenvironment (TME), there are several suppressive cytokines
and chemokines, such as IL-10, TGF-β, VEGF, and PGE2, as well as negative regulatory cells,
including myeloid-derived suppressor cell (MDSC), regulatory T cell (Treg) and so on. In this
negative TME, the function of some effector immune cells, such as T cells and NK cells, are
suppressed in various direct or indirect ways, resulting in tumor growth and metastasis (5). One
such way is aimed at effector cell activation and involves the costimulatory and coinhibitory signal
molecules on the surface of the immune cells.
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Costimulatory molecules as a second signal for T cell
activation could promote the secretion of many cytokines and
the expression of their corresponding receptor molecules, which
participate in the activation and proliferation of T cells as well
as the induction of T cells to differentiate them into different
functional subgroups (6–8). For example, CD28 on T cells
binding with B7 on an antigen-presenting cell (APC) surface
exert their immune function. On the other hand, coinhibitory
molecules, such as CTLA-4 and PD-1, expressed on the surface
of activated T cells could play the role of the inhibitor of T
cells function via a suppression signal. Therefore, the interaction
between the costimulatory and coinhibitory signal molecules
directly affects the function of immune cells (9, 10). And the
same signal molecules on the surface of different immune cells or
tumor cells play different functions, leading to a more complex
TME. This review will describe the common costimulatory
and coinhibitory signal molecules in HNSCC and analyze the
underlying mechanism of these molecules in regulating the
malignant progression of HNSCC, and it will also introduce the
clinic application of mAbs for costimulatory and coinhibitory
signal molecules (Figure 1).

COSTIMULATORY SIGNAL MOLECULES

Costimulatory signals offer the requisite second signal for
immune cell activation and proliferation. Most activated T
cells could play an anti-tumor role in inhibiting tumor growth
(11). However, the activation of regulatory T cell (Tregs) could
negatively regulate T cell function and promote tumor growth
in most types of cancer. Many costimulatory signaling molecules
on the surface of immune cells, including CD137, OX40 and
CD40, have now been found to play a vital role in HNSCC
development (12–14).

CD137

CD137 is amember of the tumor necrosis factor receptor (TNFR)
families and has been regarded as a costimulatory signal receptor
(12). CD137 is expressed on the surface of activated T cells, DCs
and NK cells (15–17). CD137, activated by its ligand CD137L,
conveys polyubiquitination-mediated signals via TNF receptor
associated factor 2 and activates the NF-κB pathway that inhibits
apoptosis, as well as enhances proliferation and effector functions
of T cell and NK cell (18, 19). Activated CD137 could enhance
the antibody dependent cell-mediated cytotoxicity (ADCC) effect

Abbreviations: APC, antigen-presenting cells; AICD, Activation-Induced Cell

Death; CTL, cytotoxic lymphocyte; CTLA-4, Cytotoxic T-Lymphocyte Antigen-

4; ESCC, esophageal squamous cell carcinoma; EMT, epithelial-mesenchymal

transition; FDA, Food and Drug Administration of America; HPV, human

papillomavirus; HNSCC, Head and neck squamous cell carcinoma; TCIP-H, high

T-cell inflamed phenotype; ICB, immune checkpoint blockade; TCIP-L, low T-cell

inflamed phenotype; MDSC, myeloid-derived suppressor cell; mAb, monoclonal

antibody; PD-1, programmed death-1; Treg, regulatory T cell; Breg, regulatory B

cell; DCreg, regulatory dendritic cell; sCD137, soluble CD137; sCTLA-4, soluble

CTLA-4; sPD-1, soluble PD-1; TAM, tumor-associated macrophage; Th17, T

helper 17 cell; TAN, tumor-associated neutrophil; ADCC, the antibody-dependent

cell-mediated cytotoxicity; TEX, tumor-derived exosomes.

through the use of NK cells (20), promote the differentiation
of effector T cells, inhibit the function of Tregs and facilitate
T cells to play an anti-tumor function (21). When NK cells
encounter tumor cells, the expression of CD137 on NK cells
increases significantly (22), helping NK cell clean tumor cells by
ADCC. Besides, DC cells activated with CD137 could not only
secrete IL-2 and IL-6 to promote the proliferation of T cells (23)
but also activate cytotoxic lymphocytes (CTLs) and promote the
secretion of IFN, hereby enhancing the anti-tumor effect (24).
However, previous experiments indicated that soluble CD137
(sCD137), secreted by tumor cells in a low oxygen environment,
blocked its membrane-CD137 costimulatory function, resulting
in tumor escape (25). How tumor cells increase sCD137 secretion
in hypoxic conditions remains unclear.

Based on the physiological effects of CD137 against tumors,
Lucido et al. found that agonists for CD137 in the HPV (+)
HNSCC mouse model had a synergistic effect on inhibiting
tumor growth compared to traditional single radiotherapy and
chemotherapy. Meanwhile, CD137L on the surface of tumor
cells could also improve the efficacy of chemotherapy/radiation
through the CD137/CD137L signal axis (26). Srivastava et al.
showed that the use of CD137 agonists in HNSCC patients
promoted the maturation of DC cells induced by cetuximab, and
it also enhanced the cross-presentation function of NK cells and
DC cells to HNSCC antigens. Besides, urelumab, agonistic mAbs
(monoclonal antibodies) of CD137, helped inhibit the apoptosis
of NK cells, playing an anti-tumor effect (27).

Two agonistic mAbs of CD137, urelumab (BMS-663513) and
PF-05082566, have been developed for clinical use. Urelumab
alone has a very severe hepatotoxicity and its exact mechanism
is still unclear (28, 29). On the other hand, CD137 agonist mAbs
could enhance other mAbs’ efficacy in HNSCC patients, such as
cetuximab (27). Thus, it may have an enhanced anti-tumor effect
and could weaken hepatotoxicity through reducing anti-CD137
mAbs’ dosage when combined with other mAbs.

OX40 (CD134)

OX40, one of the tumor necrosis factor receptors, is mainly
expressed on the surface of activated T cells, especially on CD4+
T cells (30), while the expression on CD8+T cells is low (31).
What’s more, OX40 is highly expressed on intratumoral T cells,
particularly the FoxP3+ regulatory T-cell (Treg) lineage (32, 33).
In general, the ligand of OX40 (OX40L) on the surface of DCs or
MCs binds directly to OX40. Besides, bone marrowmononuclear
cells (BMMCs) and someDCs could secrete exosomes containing
OX40L, which remotely regulate T cell differentiation (34, 35).

OX40 activation could augment the downstream signaling of
TCR mainly through the PI3-K/PKB pathway, accounting for
T cell division, survival and cytokine production. Meanwhile,
OX40 activated in conjunction with TCR signaling could increase
calcium influx, promote nuclear factor of activated T cells
(NFAT) activation and enhance several cytokines secretion, such
as IL-2, IL-4, IL-5, and IFN-γ. These cytokines help promote
the proliferation and differentiation of immune cells and exert
anti-tumor effects. Therefore, the signaling downstream of OX40
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FIGURE 1 | Normal activation of T cells requires costimulatory and coinhibitory signal molecules. The activation of T cells means firstly that T cells recognize the

antigen presented by APC, and secondly that the costimulatory molecule B7 on the APC surface binds to the CD28 presenting on the surface of T cells to provide the

second signal for the activation of T cells, which makes T cells secrete IL-2 and express high levels of IL-2R, thus promoting the proliferation and activation of T cells.

Meanwhile, a variety of costimulatory and coinhibitory molecules are expressed successively on the surface of T cells: costimulatory signals further promote T cell

proliferation and coinhibitory signals limit T cell activation and proliferation, which regulate T cell moderate activation accurately, effectively start the immune response,

and prevent excessive immune damage to the tissue.

FIGURE 2 | Costimulatory and coinhibitory signal molecules can be expressed on different cell surfaces and play different roles. In the process of T cells’ immune

response to tumors, costimulatory and coinhibitory signal molecules regulate the immune response in opposite ways. The same signal molecules may exist on the

different cell surface, and the same cell surface may express many different signal molecules. The adding of TEX and soluble molecules makes the regulation of the

whole immune response more complex. The blue represents the costimulatory molecules, and the gray represents the coinhibitory molecules. The signaling pathways

of OX40 and PD-1 are explained in the figure.

can augment proliferation, suppress apoptosis and induce greater
cytokine responses from T cells (36).

An experiment on skin squamous carcinomas in vitro
observed that there were more OX40 + Tregs in tumor tissues
than in peripheral tissues, which could inhibit the function

of effector T cells and the secretion of IFN-γ. Stimulated
OX40 was found to not only obviously suppress the inhibition
conducted by Tregs but also reduce the number of Tregs in
tumor microenvironments by activating FccRs, finally inhibiting
tumor growth (32–36). However, some studies showed that
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OX40-stimulated Tregs by agonist mAbs retained suppressive
qualities, and Tregs function had not intrinsically been impaired.
The expression of IFN-γ, TNF-α, and granzyme B, which
had potent anti-tumor effects, was increased significantly, and
this may provide another explanation for the mechanism of
OX40 (37).

OX40 could be expressed on the surface of T cells in HNSCC
patients (38). Recent studies have found that the expression of
OX40 on CD4(+) T cell surfaces in HNSCC patients was lower
than in healthy people. Compared to patients with early tumors,
the level of OX40 expressed on the CD4+ T cell surface was
significantly decreased in patients with advanced tumors (39).
In HNSCC, the low expression of OX40L could not help secrete
adequate cytokines with anti-tumor effects (40).

A series of pre-clinical experiments have shown that anti-
OX40 dose-tolerant mAb could enhance the humoral and cellular
immunity of cancer patients by amplifying the effector T cells
and inhibiting the function of Tregs (41, 42). In a mouse ovarian
tumor, the combined application of anti-PD-1/OX40 mAb had
greatly improved the anti-tumor effect (43). Besides, Gough, et al.
showed that, in tumor animal models, the overall survival could
be effectively improved from 50% to 100% by combining anti-
OX40 therapies after complete surgery or radiotherapy (44). It
indicated that OX-40 mAbs could play a synergistic role with
traditional treatment (45), which provided a new promising
combination treatment for HNSCC patients.

CD40

CD40 is a costimulatory receptor molecule on the surface of
APCs (DCs), monocytes and tumor cells. CD154, the ligand
of CD40, is generally expressed on the surface of T cells and
some innate immune cells, such as activated DCs and NK
cells (46). Circulating sCD40L was higher in tumor patients,
which may have a predictive role and could be an ambiguous
therapeutic target (47). Binding with its ligand CD154, CD40
without enzymatic activity in the cytoplasmic domain recruits
and interacts with TNF-receptor-associated factors (TRAFs),
promoting the activation of the NF-κB signaling to maintain
homeostasis and immunogenic pathogenic processes (48, 49).
The activation of the CD40/CD154 axis results in the secretion
of cytokine, transformation of immunoglobulin gene, prevention
of B-cell apoptosis, increased expression of costimulatory
molecules such as CD80 and CD86, formation of germinal
center, production of high-affinity antibodies and formation of B
memory cells (50). Furthermore, a combination of CD40/CD154
could promote antigen presentation, help effector T cells exert
their role, activate mononuclear cells and down-regulate the
expression of inhibitory molecules, such as PD-1 (15).

Stimulated CD40 could play a direct role in killing tumor
cells (51). CD40 agonists promoted the secretion of lL-12 and
reduced the expression of PD-1 on the surface of CD8+ T cells
(52). Besides, anti-CD40 mAb treatment reversed phenotypic T
cell exhaustion and increased the sensitivity of mAbs against
anti-PD1 refractory tumors (53). In mouse tumor models, high
expression of CD40/CD154 had an anti-tumor effect, and a low

level of CD40/CD154 was shown to promote tumor growth. A
possible explanation for this was that the former was related to
IL-12, while the latter was associated with IL-10 (54–56).

As for HNSCC patients with tumor high stage, the expression
of CD40 on APCs as well as tumor cells decreased, and the
same applies the level of CD154 on T cells, while soluble
CD40 increased in body fluids, representing a state of reduced
immunity. During the whole process, the proportion of IL-12
did not change much while the content of IL-10 increased,
showing an overall favorable environment for tumor growth (57).
Moreover, the activation of CD40 was beneficial to the secretion
of VEGF, which promoted the formation of tumor blood vessels
and the growth of tumors (58).

In a study of phase III and IV of esophageal squamous
cell carcinomas, the survival rate of CD40+ tumor patients
was significantly lower compared with CD40– tumor patients.
Besides, CD40+ tumor patients performed poorer in terms
of pathological stage, distant metastasis and clinical prognosis
(59). CD40+ tumor cells interacting with CD154+ activated
T cells promoted the secretion of TGF and the differentiation
of Th17, which contributed to the proliferation of tumor cells.
Activated by CD154 or IFN-γ, the CD40 pathway in tumor cells
induced the production of IL-6, promoting the progression of
a variety of tumors (59, 60). However, several studies reported
that stimulated CD40 may help protect bladder cancer cells from
apoptosis. However, the low expression of CD40 in HNSCC was
not associated with tumor cell growth. Therefore, the relationship
between the expression of CD40 and tumor growth may be
related to tumor types (61, 62).

So far, CD40 agonist antibodies (SGN-40, CP-870,893) are
being tested in early clinical trials either alone or in combination
with mAbs for lymphoma and solid tumors in humans (63).
However, considering the side-effect of CD40 agonists, such
as potential toxicity due to autoimmune reactions, severe
cytokine release syndrome (CRS), hyper-immune stimulation
syndrome leading to AICD, thromboembolic disease and
tumor proliferation or angiogenesis, the use of CD40 agonist
antibodies is still limited and need much more study to verify
their availability.

COINHIBITORY SIGNALING MOLECULES

The surface of immune cells will also express coinhibitory
molecules such as CTLA-4, PD-1, LAG3, TIM, and KIR. Modest
activation of coinhibitory molecules under normal conditions
coordinates the immune response and avoids excessive immunity
injury. However, when the suppressive signals overexpress in the
TME, the function of T cells could be inhibited, and tumor cells
could get the chance to immune escape (64–70).

CTLA-4

Stimulated by antigens or B7, CTLA-4 is expressed mainly on
the surface of T cells, especially Tregs (71, 72). In a normal
immune response, CTLA-4 can combine its ligand B7 with
stronger affinity than CD28 does (64), resulting in two different
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mechanisms for T cell suppression, the rapid inhibition of T
cell activation and the induction anergy of T cells. The first
mechanism depends on inhibiting Akt directly by activating
phosphatase PP2A, and the latter aims to replace CD28 binding
with B7 (73, 74). sCTLA-4(soluble CTLA-4), mostly derived
from Tregs, could play the same immunosuppression role by
binding with B7 on APCs, like membrane-CTLA-4, to inhibit
T-cell response. The blocking of sCTLA-4 also activated the
proliferation of CD8+ and CD4+ T cells and promoted the
secretion of cytokines (75).

In HNSCC patients, the expression of CTLA-4 in tumor-
infiltrated lymphocytes was significantly higher than that
in peripheral lymphocytes (76). In laryngeal squamous cell
carcinoma, CD8+ lymphocytes showed higher expression of
CTLA-4 (77). Besides, HNSCC, esophageal squamous cell
carcinoma and nasopharyngeal cancer (NPC) patients with
a higher expression of CTLA-4 had a worse prognosis to
those with lower CTLA-4 level (78–80). It may suggest that
anti-CTLA-4 mAbs could be a promising therapeutic target
for cancers.

In HNSCC, CTLA-4 on Tregs had a stronger inhibitory
effect on the proliferation of CD4+T cells compared with
cyclic Tregs (81). The expression of CTLA-4 on CD4 (+)
FOXP3 (+) Tregs in the circulation and TME increased in
HNSCC patients treated with cetuximab. FOXP3(+) CTLA4(+)
suppressor cells might suppress the activation of NK cells in
oral squamous cell carcinomas (71). Furthermore, by using
an anti-CTLA-4 antibody (ipilimumab), the inhibition capacity
of Tregs to NK cells was found to be weakened (81, 82).
However, the exact inhibitory mechanism between Tregs and
CTLA-4 is still unclear. Some scholars believe that Tregs could
achieve immunosuppression through CTLA-4 (63, 83), while
other figures do not support this view (84). Currently, the
preferred school of thought is that both of them play independent
inhibitory roles in tumor immunity, but the inhibitory effects are
overlapped (85).

Some CTLA4-blocking mAbs, such as ipilimumab and
tremelimumab, are under study for further clinical importance.
Ipilimumab has now been approved for the treatment of
advanced melanoma by the Food and Drug Administration of
America (FDA). Ipilimumab has shown astonishingly positive
effects in the treatment of a variety of malignant tumors due to its
synergistic effect with chemotherapy and radiotherapy (86–88).
There is a new viewpoint indicating that anti-CTLA-4 antibodies
induce tumor recession by the selective depletion of Tregs in
tumors rather than the blocking of B7-CTLA-4 interaction in
lymphoid organs (89).

PD-1/PD-L1

PD-1 expresses on the surface of activated immune cells, such
as CD4+T cells, CD8+T cells, B cells, natural killer T cells,
activated monocytes, dendritic cells and macrophages (90, 91).
sPD-1(soluble PD-1), interacting with PD-L1, could prevent
PD-1 from binding with PD-L1 and promote effective tumor
immunity, possibly resulting from decreased IL-10, TGF-β and

increased IL-2 TNF-α and IFN-γ (92, 93). However, a different
phenomenon had taken place: sPD-1 could inhibit T cell
proliferation and IL-2 production when DCs and T cells were
cocultured with sPD-1 (94).

The ligands of PD-1 are PD-L1 and PD-L2. PD-L1 expresses
mainly on T cells, B cells, DCs and macrophages (95), while on
some tumors surface, such as glioblastoma multiforme, NSCLC
and some hematologic malignancies (96, 97). PD-L1 mRNA and
proteins were up-regulated by the effect of IFN-γ, IL-4, IL-10,
growth cell stem factors, LPS and VEGF (96, 98), which indicated
that PD-L1 overexpression may be accompanied by immune
inhibition in TME. On the other hand, the expression of PD-L1
on tumor cells could also be increased by activating intracellular
signaling pathways, such as IFN-γ/JAK2/IFN, ALK/STAT3, PI3K
and MEK/ERK/STAT1 (99, 100). Hypoxia-inducible factor-1
(HIF-1α) is an important factor for making tumor cells over-
express PD-L1 (101). Another important source of PD-L1 is
tumor exosomes, which can suppress the draining lymph node
activation, inhibit IFN-γ secretion, promote immune escape
and facilitate tumor growth (102, 103). sPD-L1 binding with
membrane-PD-1 could also exert a wide range of inhibitory
effects through the blood and lymphatic circulation (104).

Phosphorylation of the tyrosine residues in the ITIM and
ITSM motifs in the cytoplasmic tail of PD-1 recruits SHP-1
and SHP-2, which, in turn, dephosphorylate proximal signaling
molecules downstream of the TCR and CD28 and inhibit the
activation of the PI3K/Akt and the Ras/MEK/Erk pathway (105).
Hence, T cell proliferation activity, cytokine secretion capacity
and cytotoxic effects are weakened, and tumor cells finally get
immune tolerance (67, 68).

In HNSCC patients, PD-1 on the surface of tumor infiltrating
CD8+T cells had a higher expression, which resulted in impaired
function of PD-1(+) CD8(+) T cells and facilitated tumor
growth (106). In the HNSCC microenvironment, the percentage
of tumor cells expressing PD-L1 was about 50–60% (107, 108). In
a survey of 74 cases of primary HNSCC, Roper et al. suggested
that the expression of PD-L1 was higher on tumor cells and
TILs, while individual higher expression of PD - L1 (>5%)
on primary tumor cells, primary TILs, and metastatic TILs
was associated with longer diseases-free survival (109). Previous
studies have found that higher expression of PD-L1 in gastric,
breast, renal and pancreatic cancer led to poorer prognosis
(110–113). However, in metastatic melanoma, Merkel cell
carcinoma, HPV-associated HNSCC, mismatch-repair-proficient
colorectal cancer, NSCLC and small cell lung cancer, higher
expression of PD-L1 indicated a better prognosis (68, 114–
118). The possible explanation may be that the expression of
PD-L1 on the latter tumor cells could be induced by IFN-
γ in a local inflammatory tumor microenvironment (114). In
HNSCC, epithelial-mesenchymal transformation (EMT) could
independently up-regulate the expression of PD-L1 on tumor
cells. Compared with EMT without PD-L1 expression, the
prognosis of patients with EMT-related PD-L1 expression was
poorer (107). In HNSCC patients, PD-L1 levels on exosomes
were associated with disease progression. The emergence of
circulating PD-L1+ exosomes may be a useful metric for disease
and immune activity in these patients (119).
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According to the immunosuppressive function of PD-1/PD-
L1, more and more blocking monoclonal antibodies have
been studied and applied in clinical practice. The phase I,
II, and III clinical studies have all showed that, in recurrent
or metastatic HNSCC, pembrolizumab demonstrated clinically
meaningful anti-tumor activity and took on a favorable
safety profile (120–122).

LAG3 (LYMPHOCYTE ACTIVATION
GENE-3)

LAG3, an inhibitory checkpoint receptor, expresses on the
activated CD4+T cells (69), CD8+T cells and a subset of natural
killer (NK) cells (123). For CD4+T cells, LAG3 binds to MHC II
molecules with an affinity higher than CD40, while most of the
molecular mechanisms remain unclear (124). For CD8+T cells
and NK cells, the ligand of LAG3 is LSECtin (125). Binding to
LAG3 expressing on CD8+T cells andNK cells, tumor cells could
get the capacity to escape immune clearance. Besides, Tr1 cells
could be identified in both humans and mice by the expression of
LAG3 together with CD49b (126). But it has not been confirmed
whether LAG3 is necessary for the immunosuppressive function
of Tr1 cells.

In HNSCC, the increased expression of LAG3 in TILs was
related to higher pathological grades, larger tumor size and
positive lymph node status. However, this expression had nothing
to do with several risk factors such as HPV infection. For patients
with recurrent and distant metastatic HNSCC, the LAG3 level in
TILs was up-regulated (127). In an immunocompetent HNSCC
mouse model, Deng et al. revealed that blocking LAG-3 could
suppress tumor development, potentiate antitumor response of
CD8+ T cells and reduce the population of immunosuppressive
cells (128). mAbs targeting LAG3 could inhibit the interaction
between LAG3 and MHC-II and induce IL-2 production in a T
cell assay (129).

TIM-3 (T CELL IMMUNOGLOBULIN AND
MUCIN-DOMAIN CONTAINING-3)

TIM-3 is a coinhibitory receptor on IFN-γ-producing T cells,
FoxP3+ Tregs and innate immune cells and suppress immune
responses by interacting with TIM-3 ligand (130). Galectin-9 has
the highest affinity for TIM-3. The interaction between Galectin-
9 and TIM-3 triggers cell death in effector Th1 cells, dampening
tissue inflammation and inhibiting autoimmune disease EAE
(131). Moreover, Galectin-9 also induces cell death in Tim-3 +

CD8 + TIL in colon cancer (132). Another important ligand
of TIM-3 is carcinoembryonic antigen cell adhesion molecule
1 (Ceacam-1). TIM-3 was activated by the action of Ceacam-1,
resulting in a weakened interaction between TIM-3 and BAT3
(an inhibitory molecule downstream of TIM3) in T cells in TIM-
3 transgenic mice (133). Galectin-9 and Ceacam-1 are combined
in different sections of TIM3 IgV domain (133, 134). The two
ligands may therefore play a synergistic role in regulating TIM3
signals (135, 136).

In TME, tumor infiltration DCs showed higher expression of
TIM-3 than normal tissue. Binding to HMGB1, TIM-3 could
block the transport of nucleic acids into endosomes, suppressing
pattern-recognition receptor-mediated innate immune responses
to tumor-derived nucleic acids (137). TIM-3 could activate the
NF-κB signaling pathway to promote tumor cell metastasis
(137). In patients or animal tumor models with chronic HIV
infection, the expression of TIM-3 on T cells was significantly
high (138, 139). On CD8+TILs, TIM-3 often expressed together
with PD-1. Besides, their co-expression had a more potent
capacity to exhaust T cells compared with PD-1 alone (140–143).
In advanced melanomas and NSCLCs, about 1/3 of CD8+TILs
expressed TIM-3, which, co-expressed with PD-1, caused defects
in the proliferation of T cells and production of effector cytokines
(144, 145).

In HNSCC patients, TIM-3+ Tregs are functionally and
phenotypically distinct with TILs and are highly effective in
inhibiting T cell proliferation. IFN-γ induced by anti-PD-1
immunotherapy may be beneficial to reverse TIM-3+ Tregs
suppression (146). In the HNSCC mouse model, the expression
of TIM-3, the percent of Tregs and CD206 + macrophages were
increased, while the amount of effector T cells (CD4+, CD8+
T cells) was decreased. However, blockade of TIM-3 induced a
decrease of Tregs and promoted IFN-γ production on CD8+
T cells (147). The use of anti-TIM3 antibodies could not only
reduce the expression of TIM-3 on the surface of T cells, but also
decrease the number of MDSCs, inhibiting tumor growth (148).
Moreover, the treatment of anti-TIM-3 monoclonal antibodies
could restore the function of T cells to inhibit tumor growth
(149). However, some of the data indicated that TIM-3 could
function as a co-stimulatory receptor to enhance CTLs and other
immune cell responses, which indicated TIM-3 might play a
more complex role in regulating anti-tumor responses (150–152),
and much work should be done in this area (Figure 2).

IMMUNOTHERAPY STRATEGIES OF
HNSCC

HNSCC is in a status of immune suppression, relating not
only to the abnormal competition between costimulatory
and coinhibitory signal molecules, but also a general lower
immunogenicity. What’s worse, about 85% of HNSCC patients
are found to be resistant to immune checkpoint receptor (ICR)
blockades (153). Thus, we need an effective strategy to augment
the immunogenicity and inject the T cells with a “cardiac
stimulant” for their anti-tumor function. Tumor specific T
cell response could be induced by three classes of antigens:
antigens from viral proteins (e.g., HPV), somatic mutations and
those encoded by cancer-germline genes (153); vaccines may
be appropriate.

In HPV-related HNSCC, vaccines containing long HPV
peptides have been regarded as a new treatment to enhance
tumor immunogenicity. Recently, Dharmaraj et al. produced a
new type of cancer vaccine system with mesoporous silica rods
(MSR), which could provide virus antigens, recruit DC cells to
facilitate their maturation and transfer DCs to draining lymph
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nodes to promote T cell maturation (154). It suggested that the
combination of targeted vaccines and an appropriate controlled-
release system could produce a better synergistic immune effect.

Another effective vaccine is through the stimulation of
interferon genes (STING). STING could activate STING-TBK1-
IRF3 signaling pathways and secret INF-I, which plays an
anti-tumor role by promoting the maturation and migration
of DCs, enhancing cytotoxic T lymphocyte- or NK cell-
mediated cytotoxicity effects and protecting effector cells from
apoptosis (155). In humans, STING could express in the basal
layer of normal skin, while STING ligands are an effective
therapy for premalignant and malignant disease (156). However,
SOX2 enhances the degradation of STING in an autophagy
dependent manner, thereby blocking IFN-I activation. This
immunosuppression state could be mitigated with a STING-
inducing nanosatellite vaccine (containing a cGAMP andHPV16
E6/E7 peptide), which promotes APC maturation and enlarges
tumor-specific CTLs to inhibit the immune escape of HNSCC.

Notably, the use of STING vaccines greatly improved the
response of ICR-resistant HNSCC to the immune checkpoint
blockade (ICB) treatment (157, 158). In the pancreatic cancer
model, STING could be stimulated by the tumor antigen
released after radiotherapy, or the artificial agonist that blocks
M2 macrophage differentiation and decreases IL-10 secretion,
and control local and distant tumors (159). Moreover, the
Ataxia Telangiectasia Mutated (ATM)-inhibition could directly
activate TBK1 and enhanced radiation-induced T1IFN reporter
activity (160). They are all synergistic with checkpoint blockade
therapy. What’s more, the local delivery of STING agonists could
also enhance the efficacy of surgical resection by serving as
a platform to generate systemic immunity to treat or control
metastatic diseases. However, the anti-tumor effect of STING
agonists could be weakened by IL-10 (161). Hence, vaccines for
STING combined with mAbs for signal molecules and traditional
treatment methods (surgical, radiotherapy and chemotherapy)
may produce more powerful anti-tumor effects (158).

CONCLUSION

A variety of inhibitory and stimulatory receptors could co-
express on tumor antigen-specific CD8+ T cells (including
CD160, KLRG-1, TIM-3, 2B4, BTLA, and LAG3) (162). LAG3
and PD-1 could co-express in human ovarian tumor antigen-
specific CD8+T cells, leading to T cell dysfunction. Simultaneous
blocking of PD-1 and LAG3 could more effectively restore
the function of effector T cells (163, 164). In some tumor
models, anti-TIM3 has almost the same effect as anti-PD-1 and
anti-CTLA-4. Blocking PD-1 and TIM3 simultaneously plays a
stronger synergistic anti-tumor role. Similarly, antibodies against

PD-L1, TIM3, or LAG3 could restore responses of HCC-derived
T cells to tumor antigens, and combinations of those antibodies
had additive effects (165). Thus, the combined application of
multiple mAbs targeting at different signal molecules may bring
about preferable outcomes.

Since HPV (+) and HPV (−) have been regarded as
two distinct subtypes, immunotherapy for them could be

different. Results displayed that HNSCC with a high T-
cell inflamed phenotype (TCIP-H) were enriched in multiple
immune checkpoints (particularly PD-L1, PD-L2, PD-1, TIM3,
CEACAM1, LAG3, and CTLA4), had frequent mutations
in CASP8, EP300, EPHA2, and HRAS, and frequent co-
amplification of JAK2 and CD274. HNSCC tumors with a low T-
cell inflamed phenotype (TCIP-L) were enriched in the WNT/β-
catenin and Hedgehog signaling pathways, had frequent NSD1
mutations, EGFR, YAP1 amplifications and CDKN2A deletions.
HPV (+) tumors were enriched in markers of Tregs, while HPV
(–) tumors were enriched inM2macrophages (166). For HNSCC
patients, immunotherapy for a single molecule cannot achieve
full efficiency; for example, only 13.3% of the HNSCC patients
responded to anti -PD-1 (167). A combination of treatments for
individuals includingmAbs, vaccines, traditional methods as well
as signal pathway blocking is needed.

In addition, tumor-derived exosomes (TEX) have received
more attention and have been regarded as special immune
checkpoints. TEX could express many different inhibitory
molecules, including TGF-β1, PD-L1, CD73, and FasL on the
membrane (168, 169). It could therefore suppress immune cells
function and promote tumor growth (170, 171). A study of mice
using an OSCC model showed that TEX could suppress tumor
immune response by inhibiting proliferation of both CD4+ and
CD8+ T cells and reducing infiltration of T cells into tumors,
thereby promoting the carcinogenesis of murine oral squamous
cell carcinomas (172). The expression of exosomes is closely
related to tumor progression and immunosuppression, which
maymake it another promising biomarker of tumor development
and immune suppression (173).
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