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Mutants of a catalytically inactive variant of Proteinase 3 (PR3)—iPR3-Val103 possessing a
Ser195Ala mutation relative to wild-type PR3-Val103—offer insights into how autoantigen
PR3 interacts with antineutrophil cytoplasmic antibodies (ANCAs) in granulomatosis
with polyangiitis (GPA) and whether such interactions can be interrupted. Here we
report that iHm5-Val103, a triple mutant of iPR3-Val103, bound a monoclonal antibody
(moANCA518) from aGPA patient on an epitope remote from themutation sites, whereas
the corresponding epitope of iPR3-Val103 was latent to moANCA518. Simulated B-factor
analysis revealed that the binding of moANCA518 to iHm5-Val103 was due to increased
main-chain flexibility of the latent epitope caused by remote mutations, suggesting
rigidification of epitopes with therapeutics to alter pathogenic PR3·ANCA interactions
as new GPA treatments.

Keywords: autoimmunity, autoantigen, antigenicity, antineutrophil cytoplasmic antibody, Proteinase 3, B-factor

INTRODUCTION

Proteinase 3 (PR3) is a neutrophil serine protease targeted by antineutrophil cytoplasmic antibodies
(ANCAs) in the autoimmune disease granulomatosis with polyangiitis (GPA) (1–5). To investigate
how PR3 interacts with the ANCAs during inflammation and whether these interactions can be
intervened by therapeutics, we developed a human PR3 mutant (iPR3-Val103) with a Val103—the
major polymorphic variant at the Val/Ile polymorphic site of wild-type human PR3 [Val/Ile in
GPA patients: 64.7/35.3 (6)]—and a Ser195Ala mutation that alters the charge relay network of
Asp102, His57, and Ser195 and thereby disables catalytic functioning in PR3 (7–10). This mutant
recognized as many ANCA serum samples from patients with GPA as the wild-type human PR3-
Val103 in both immunofluorescence assay and enzyme-linked immunosorbent assay (ELISA), while
the Ser195Ala mutation is close to Epitope 5 of PR3 and remote from Epitopes 1, 3, and 4 as shown
in Figure 1 (8, 11). We also developed a number of variants of iPR3-Val103 in the course of our
investigation (11).

One such variant, iHm5-Val103 (formerly referred to as Hm5), has Ala146, Trp218, and Leu223
from human PR3 replaced by Thr146, Arg218, and Gln223 from mouse PR3. Our initial intent
of this chimeric triple mutant was to demonstrate reduced binding of ANCAs to Epitope 5 (and
possibly Epitope 1 but not Epitopes 3 and 4) of the mutant because Trp218 and Leu223 reside in
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Epitope 5 and Ala146 is in Epitope 1 as shown in Figure 1

(11). However, as described below, we serendipitously found
that a monoclonal ANCA (moANCA518) from a patient with
GPA bound to Epitope 3 of iHm5-Val103 but not iPR3-Val103,
although Epitope 3 is distal to the three mutations that reside in
Epitopes 1 and 5 (Figure 1). This finding indicates that Epitope
3, a mutation-free epitope of iHm5-Val103, is latent in iPR3-
Val103 but active in iHm5-Val103 for ANCA binding. It also
indicates that the latent epitope of PR3 can be activated by
remote mutations.

In this context, we raised a mechanistic question: How can
a latent antibody binding site in iPR3-Val103 be activated by
topologically distal mutations in iHm5-Val103? The experimental
and computational results described below offer insights into this
mechanistic question and open a new perspective on a possible
cause and novel therapy of GPA.

MATERIALS AND METHODS

Materials
Reagents were obtained from Sigma (St. Louis, MO) unless
specified otherwise. The human embryonic kidney cell line 293
(HEK293) used for the expression of recombinant PR3 mutants
was obtained from ATCC (Rockville, MD).

iPR3-Val103 and iHm5-Val103: The cDNA constructs coding
for iPR3-Val103 and iHm5-Val103 and their expression inHEK293
cells were described in detail elsewhere (11, 12). Both mutants
carry a carboxy-terminal cmyc-peptide extension and a poly-
His peptide extension for purification using nickel columns from
GE Healthcare (Chicago, IL) and for anchoring in ELISAs as
previously described and specified below (11–15).

moANCA518: DNA barcode-enabled sequencing of the
antibody repertoire was performed on plasmablasts derived
from a PR3-targeting ANCA (PR3-ANCA) positive patient
as described elsewhere for rheumatoid arthritis and Sjögren
syndrome (16–18). Phylograms of the antibody repertoires
revealed clonal families of affinity matured antibodies with
shared heavy and light chain VJ usage. Twenty-five antibodies
were selected for recombinant expression (18) and tested
for reactivity with recombinant ANCA antigens [including
myeloperoxidase (15), human neutrophil elastase (19–21), iPR3-
Val103, and iHm5-Val103] using the ELISA. As described in
Results, one antibody bound iHm5-Val103 but not iPR3-Val103

and is termed moANCA518, whereas none of the other 24
antibodies bound either of the two PR3 antigens or other
ANCA antigens.

Epitope-specific anti-PR3 moAbs: PR3G-2 (22) was a gift
from C.G.M. Kallenberg of the University of Groningen. WGM2
(11, 23) was purchased from Hycult Biotech Inc (Wayne, PA).
MCPR3-3 was made as previously described (8, 11).

Enzyme-Linked Immunosorbent Assays
ELISAs used for detection of PR3-ANCAwere described in detail
elsewhere (12, 13, 15). In brief, either purified PR3 mutants or
culture media supernatants from PR3 mutant-expressing HEK
293 cell clones diluted in the IRMA buffer (0.05mM Tris-
HCl, 0.1M NaCl, pH 7.4, and 0.1% bovine serum albumin)

FIGURE 1 | Front and back views of PR3 depicting its four known epitopes,
each comprising multiple surface loops with high Cα B-factors derived from
simulations. L1A, Loop 1A of residues 36–38C; L1B, Loop 1B of residues
145–151; L1C, Loop 1C of residues 75–79; L3A, Loop 3A of residues
110–117; L3B, Loop 3B of residues 124–133; L3C, Loop 3C of residues
202–204; L4A, Loop 4A of residues 59–63C; L4B, Loop 4B of residues
92–99; L5A, Loop 5A of residues 165–178; L5B, Loop 5B of residues
186–187; L5C, Loop 5C of residues 192–194; and L5D, Loop 5D of residues
219–224; wherein the residue numbering here is identical to that of the PR3
crystal structure (PDB ID: 1FUJ).

were incubated in Pierce R© nickel-coated plates from Thermo
Fisher Scientific (Waltham, CA) for 1 h at room temperature;
control wells were incubated with the IRMA buffer only. The
plates were washed three times with Tris-buffered saline (TBS;
20mM Tris-HCl, 500mM NaCl, pH 7.5, and 0.05% Tween
20) in between steps. The ANCA-containing serum samples
were diluted 1:20 in TBS with 0.5% bovine serum albumin and
incubated in the plates with or without the PR3 mutants for
1 h at room temperature. The PR3·ANCA complexation was
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detected after incubation for 1 h at room temperature with
alkaline phosphatase-conjugated goat anti-human IgG (1:10,000
dilution). P-Nitrophenyl phosphate was used as substrate at a
concentration of 1 mg/mL. The net UV absorbance was obtained
by spectrophotometry at 405 nm after 30min of exposure.
Similarly, when epitope-specific anti-PR3 moAbs were used to
immobilize iHm5-Val103 on Maxisorp R© plates from Invitrogen
(Carlsbad, CA), complexation of moANCA518 with the antigen
was detected after incubation of HRP-conjugated anti-human
IgG antibody (1:250 dilution) for 1 h at room temperature;
3,3′,5,5′-tetramethylbenzidine (Thermo Fisher Scientific R©) was
used as substrate, and the net UV absorbance was obtained by
spectrophotometry at 450 nm after 15min of exposure.

Western Blots
Non-reductive, purified PR3 mutant proteins were loaded (1
µg/lane) onto 12% Tris-HCl gels from BioRad (Hercules,
CA). The SDS gel electrophoresis was performed at 180V for
35min. The proteins were transferred from gels to nitrocellulose
membranes, which were subsequently washed with TBS, blocked
for 45min at room temperature with TBS with 0.2% non-fat
dry milk. The membranes were then washed twice with TBS
with 0.1% Tween 20. Monoclonal antibodies (0.5–1.0µg/mL)
were incubated on the membranes overnight at 4◦C. The
membranes were then washed twice with TBS with 0.1% Tween
20 and incubated with goat anti-human or anti-mouse IgG HRP
conjugates, diluted to 1:20,000, for 20min at room temperature.
The membranes were washed again and developed with the
Pierce ECL Western Blotting Substrate kit from Thermo Fisher
Scientific (Waltham, MA).

Statistical Analysis
SPSS R© Statistics for MacOS, version 25 from IBM (Armonk, NY,
USA) was used to calculate the means and standard errors of 3–
5 repeat experiments and to compare the means between groups
with the two-tailed paired t-test.

Initial Conformations of PR3 Variants
The initial conformation of PR3-Ile103 (residues 16–239;
truncated for atomic charge neutrality) was taken from the
crystal structure of PR3 (24). The initial conformations of
the corresponding PR3-Val103 and iPR3-Val103 (residues 16–
239) were taken from the initial PR3-Ile103 conformation
with mutations of Ile103Val alone and Ile103Val together with
Ser195Ala, respectively. The initial conformation of iHm5-
Val103 (residues 16–238; truncated for atomic charge neutrality)
was taken from the initial PR3-Ile103 conformation with
mutations of Ala146Thr, Trp218Arg, Leu223Gln, Ile103Val, and
Ser195Ala. The crystallographically determined water molecules
with residue identifiers of 246–249, 257–259, 261–263, 268, 270,
274–276, 279, 280, 291, 292, 296, 298, 307, 309, and 317 were
included in all four initial conformations. The AMBER residue
names of ASP, GLU, ARG, LYS, HID, and CYX were used for
all Asp, Glu, Arg, Lys, His, and Cys residues, respectively. All
initial conformations were refined via energy minimization using
the SANDER module of AMBER 11 (University of California,
San Francisco) and forcefield FF12MClm (25) with a dielectric

constant of 1.0, a cutoff of 30.0 Å for non-bonded interactions,
and 200 cycles of steepest descent minimization followed by 100
cycles of conjugate gradient minimization.

Molecular Dynamics Simulations
Each of the four energy-minimized conformations described
above was solvated with 5578 (for iHm5-Val103) or 5536 (for all
other variants) TIP3P (26) water molecules (using “solvatebox
PR3 TIP3BOX 8.2”) and then energy-minimized for 100 cycles
of steepest descent minimization followed by 900 cycles of
conjugate gradient minimization using SANDER of AMBER 11
to remove close van der Waals contacts. The initial solvation
box size was 58.268×68.409×65.657 Å3 (for iHm5-Val103) or
67.337×66.050×58.335 Å3 (for all other variants). The resulting
system was heated from 5 to 340K at a rate of 10 K/ps under
constant temperature and constant volume, then equilibrated
for 106 timesteps under a constant temperature of 340K and
a constant pressure of 1 atm using the isotropic molecule-
based scaling. Finally, 20 distinct, independent, unrestricted,
unbiased, isobaric–isothermal, 316-ns molecular dynamics (MD)
simulations of the equilibrated system with forcefield FF12MClm
(25) were performed using PMEMD of AMBER 11 with a
periodic boundary condition at 340K and 1 atm. The 20 unique
seed numbers for initial velocities of the 20 simulations were
taken from Pang (27). All simulations used (i) a dielectric
constant of 1.0, (ii) the Berendsen coupling algorithm (28),
(iii) the particle mesh Ewald method to calculate electrostatic
interactions of two atoms at a separation of >8 Å (29), (iv) 1t
= 1.00 fs of the standard-mass time (25), (v) the SHAKE-bond-
length constraint applied to all bonds involving hydrogen, (vi) a
protocol to save the image closest to the middle of the “primary
box” to the restart and trajectory files, (vii) a formatted restart
file, (viii) the revised alkali and halide ion parameters (30), (ix)
a cutoff of 8.0 Å for non-bonded interactions, (x) a uniform
10-fold reduction in the atomic masses of the entire simulation
system (both solute and solvent), and (xi) default values of all
other inputs of the PMEMDmodule. The forcefield parameters of
FF12MClm are available in the Supporting Information of Pang
(31). All simulations were performed on a cluster of 100 12-core
Apple Mac Pros with Intel Westmere (2.40/2.93 GHz).

Alpha Carbon B-Factor Calculation
In a two-step procedure using PTRAJ of AmberTools 1.5, the
B-factors of alpha carbon (Cα) atoms in PR3 were calculated
from all conformations saved at every 103 timesteps during
20 simulations of the protein using the simulation conditions
described above except that (i) the atomic masses of the entire
simulation system (both solute and solvent) were uniformly
increased by 100-fold relative to the standard atomic masses,
(ii) the simulation temperature was lowered to 300K, and
(iii) the simulation time was reduced to 500 ps. The first
step was to align all saved conformations onto the first saved
conformation to obtain an average conformation using the root
mean square fit of all Cα atoms. The second step was to
perform root mean square fitting of all Cα atoms in all saved
conformations onto the corresponding atoms of the average
conformation. The Cα B-factors were then calculated using
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FIGURE 2 | Selective binding of moANCA518 to Epitope 3 of iHm5-Val103. (A)
Dilution curves show dose-dependent binding of moANCA518 to iHm5-Val103

but not iPR3-Val103 in the ELISA using an antigen whose C-terminal poly-His
tag was anchored at the plate. The culture media supernatants from PR3
mutant expressing 293 cells were used in the ELISA. (B) Epitope-specific
anti-PR3 moAbs PR3G-2, MCPR3-3, and WGM2 (2, 4, and 4µg/mL,
respectively), which were coated to the plate and used to capture iHm5-Val103

in the ELISA, show Epitope 3 of iHm5-Val103 as a major target site by the
primary antibody moANCA518 (1.0µg/mL). The purified PR3 mutants were
used in the ELISA.

the “atomicfluct” command in PTRAJ. For each protein, the
calculated B-factor of any atom in Table S2 was the mean of
all B-factors of the atom derived from 20 simulations of the
protein. The standard error (SE) of a B-factor was calculated
according to Equation 2 of Pang (32). The SE of the average
Cα B-factor of each PR3 variant was calculated according to
the standard method for propagation of errors of precision
(33). The 95% confidence interval (95% CI) of the average
Cα B-factor was obtained according to the formula mean
± 1.96 × SE because the sample size of each PR3 variant
exceeded 100.

Conformational Cluster Analysis and Root
Mean Square Deviation Calculation
The conformational cluster analyses were performed using
CPPTRAJ of AmberTools 16 with the average-linkage algorithm

(34), epsilon of 3.0 Å, and root mean square coordinate
deviation on all Cα atoms of the proteins. Cα root mean square
deviations (CαRMSDs) were manually calculated using ProFit
V2.6 (http://www.bioinf.org.uk/software/profit/). The first unit
of the crystal structure of the PR3 tetramer and the time-
averaged conformation (without energy minimization) of the
most populated cluster were used for the CαRMSD calculations.

RESULTS

In characterizing moAbs identified and cloned from B cells in
patients with GPA, we found that one of these, moANCA518,
bound to iHm5-Val103 but not iPR3-Val103 (Figure 2A)
according to the ELISA using iHm5-Val103 and iPR3-Val103

both of which contain a C-terminal poly-His tag for anchoring
the antigens without perturbing the folded conformations of
the antigens and without blocking the epitopes of the antigens
(12). Further, the binding of moANCA518 to iHm5-Val103 was
dose dependent (Figure 2A) and confirmed by the Western
blot under non-reducing conditions (Figure S1) as well as by
ELISAs using untagged PR3 variants (data not shown). This
serendipitous finding prompted us to investigate how the triple
chimeric mutations in iHm5-Val103 changed the conformation of
iPR3-Val103 and consequently the antigenicity to moANCA518.

Accordingly, we developed computer models of PR3-Val103,
iPR3-Val103, and iHm5-Val103 to understand how mutations of
these variants affect the ANCA-binding capabilities of the four
reported epitopes of PR3 (11). These models were derived from
MD simulations using our published forcefield and simulation
protocol (25), which reportedly folded fast-folding proteins
in isobaric–isothermal MD simulations to achieve agreements
between simulated and experimental folding times within factors
of 0.69–1.75 (35) and are hence suitable for predicting in vivo
conformations of PR3 and its variants. The initial conformations
of the three variants used in these simulations were derived
from the PR3-Ile103 crystal structure (24) because experimentally
determined structures of these variants have been unavailable to
date. Although small differences in the time-averagedmain-chain
conformations of two surface loops (Loops 3 and 5) between
iHm5-Val103 and PR3-Val103 (or between iHm5-Val103 and iPR3-
Val103) were observed (Figure 3), the overall conformations
of the three variants resembled one another according to
the Cα root mean square deviations of ≤1.63 Å (Table S1).
Given these conformational properties, we could not determine
how mutations of these variants affect the ANCA-binding
capabilities of the PR3 epitopes, primarily because these surface
loops are highly flexible and lack the time dimension (due to
time-averaging) that is required for immunological function
analysis (36).

To take the time dimension into account, we turned our
attention to the dynamic properties of the PR3 variants. It is
well-known that a folded protein is fluid-like with fluctuations
in atomic position on the picosecond timescale and that the
dynamics of these atomic displacements are dominated by
collisions with neighboring atoms involving reorientation of
side chains or localized portions of the backbone (37). Two
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FIGURE 3 | Superimposed time-averaged conformations of three PR3 variants in cross-eye stereo view. The time-averaged conformations were obtained via cluster
analyses (without energy minimization) from the most populated cluster in the three sets of molecular dynamics simulations. The L3A in iHm5-Val103 is slightly
structured relative to that in two other variants, indicating that L3A in iHm5-Val103 is less mobile than that in the others. The L3B in iHm5-Val103 is slightly contracted
(due to time-averaging) relative to that in two other variants, indicating that L3B is more mobile than that in the others. See Figure 4 legend for definition of L3A, L3B,
L3C, and L5D.

seminal studies have also shown that the crystallographically
determined high B-factors of a protein fragment are linked to the
antigenicity of the fragment (38, 39). This link indicates that the
crystallographically determined B-factor—defined as 8π2<u2> to
reflect the displacement u of the atom from its mean position,
thermal motions, local mobility, or the uncertainty of the atomic
mean position (40–48)—can be used to aid the identification and
characterization of epitopes.

However, the crystallographically determined B-factor of an
atom reflects not only the thermal motion or local mobility of
the atom but also conformational and static lattice disorders
of the atom, and even the refinement error in determining
the mean position of the atom (43, 45, 47, 49). Therefore,
using crystallographically determined B-factors to investigate
epitopes requires the comparison of B-factors of different crystal

structures of the same protein, which are in different space groups
and obtained with different refinement procedures at different
resolutions, in order to identify the B-factors that reflect the local
mobility of the protein (49).

This requirement can be avoided by using simulated B-
factors derived from MD simulations on a picosecond timescale
because simulated B-factors are devoid of refinement errors and
conformational and static lattice disorders. In addition, local
motions, such as those of backbone N–H bonds, occur on the
order of tens or hundreds of picoseconds (50).

In this context, we calculated the Cα B-factors of PR3-Val103,
iPR3-Val103, and iHm5-Val103 from MD simulations on a 50-
ps timescale using our published forcefield (25) and method
(51). The mean Cα B-factors of PR3-Val103, iPR3-Val103, and
iHm5-Val103 were 6.84 Å2 (95% CI: 6.75–6.94 Å2), 6.91 Å2
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FIGURE 4 | Simulated Cα B-factors of PR3-Val103, iPR3-Val103, and iHm5-Val103. (A) B-factor comparison of PR3-Val103 with iPR3-Val103. (B) B-factor comparison of
iHm5-Val103 with iPR3-Val103. The simulated mean Cα B-factors of PR3-Val103, iPR3-Val103, and iHm5-Val103 are 6.84 Å2 (95%CI: 6.75–6.94 Å2; labeled as
avg-PR3-Val103), 6.91 Å2 (95%CI: 6.82–7.00 Å2; labeled as avg-iPR3-Va103), and 7.13 Å2 (95%CI: 7.03–7.24 Å2; labeled as avg-iHm5-Val103), respectively, wherein
95%CI is the abbreviation of 95% confidence interval. The simulated Cα B-factors were plotted using the human PR3 sequence (NCBI P24158.3) numbering because
the PR3 crystal structure numbering is discontinuous. Therefore, the following loop residues are defined using the PR3 crystal structure numbering followed by the
NCBI P24158.3 numbering in parenthesis. L1A, Loop 1A of residues 36–38C(48–52); L1B, Loop 1B of residues 145–151(161–166); L1C, Loop 1C of residues
75–79(92–96); L3A, Loop 3A of residues 110–117(126–133); L3B, Loop 3B of residues 124–133(140–149); L3C, Loop 3C of residues 202–204(210–212); L4A, Loop
4A of residues 59–63C(73–80); L4B, Loop 4B of residues 92–99(108–115); L5A, Loop 5A of residues 165–178(180–184); L5B, Loop 5B of residues
186–187(192–195); L5C, Loop 5C of residues 192–194(200–202); L5D, Loop 5D of residues 219–224(223–229).

(95% CI: 6.82–7.00 Å2), and 7.13 Å2 (95% CI: 7.03–7.24 Å2),
respectively. Given these findings, we concluded that any surface
loop is highly mobile and hence potentially antigenic if the mean
Cα B-factor of the loop was >9.00 Å2. This conservative cutoff
of 9.00 Å2 was based on the mean Cα B-factors of all PR3
variants used in this study (6.84, 6.91, and 7.13 Å2). According
to this criterion, PR3-Val103 has 10 potentially antigenic surface
loops, and iPR3-Val103 and iHm5-Val103 have 11 each (Figure 4).
Consistent with the two seminal reports (38, 39), all of these
potentially antigenic loops identified a priori by using simulated
B-factors fall within all four known epitopes of PR3 (11),
demonstrating a clear association between a loop with a high
mean simulated Cα B-factor and the experimentally determined
antigenicity of the loop.

Further, we found that the Ser195Ala mutation caused no
significant reduction in the mean Cα B-factor of any of the 10
potentially antigenic surface loops in PR3-Val103 (Figure 4A).
This finding implies that the Ser195Ala mutation does not impair
the ANCA-binding capability of any of the four epitopes of iPR3-
Val103, and it explains our reported observation that iPR3-Val103

recognizes asmany ANCA serum samples as PR3-Val103 does (8).
We also found the mean Cα B-factors of Loop 3B in iPR3-

Val103 (possessing Ala146, Trp218, and Leu223) and iHm5-
Val103 (possessing Thr146, Arg218, and Gln223) to be 6.9
Å2 (95% CI: 6.8–7.0 Å2) and 12.8 Å2 (95% CI: 12.3–13.2
Å2), respectively (Figure 4B). According to the afore-described
antigenicity criterion of 9.00 Å2, these means suggest that the
three chimeric mutations make Loop 3B (a mutation-free loop)
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more mobile in iHm5-Val103, despite large separations between
Epitope 3 of PR3 and the chimeric mutation sites (∼32, ∼32,
and ∼31 Å from the Cα atom of Gln122 in Epitope 3 to the
Cα atoms of Ala146, Trp218, and Leu223, respectively, at the
chimeric mutation sites). The higher mobility of Loop 3B in
iHm5-Val103 relative to that in iPR3-Val103 is also evident from
the slight contraction (due to time-averaging) of Loop 3B in
iHm5-Val103 shown in Figure 3. Therefore, Epitope 3 of iHm5-
Val103 could bind ANCAs, whereas the ANCA-binding capability
of Epitope 3 of iPR3-Val103 would be rather limited.

We subsequently repeated the afore-described ELISAs in the
presence of epitope-specific moAbs that target either Epitope 1
or 3 of PR3. Consistently, we found that PR3G-2 that targets
Epitope 1 of PR3 (22) did not affect the binding of moANCA518
to iHm5-Val103, whereas MCPR3-3 and WGM2, both of which
recognize Epitope 3 of PR3 (11), reduced and abolished the
moANCA518 binding (p < 0.01; Figure 2B), respectively. We
also confirmed the binding of moANCA518 primarily to Epitope
3 of iHm5-Val103 using Fabs from epitope-specific moAbs that
target Epitope 2 or 5 of PR3 (8, 11, 52) (data not shown).

DISCUSSION

In view of the data above, we suggest a new mechanism for latent
epitope activation of PR3: Remote mutations can increase the
local mobility (i.e., main-chain flexibility) of a latent epitope of
PR3, which facilitates the conformational adaptation required for
antibody binding and thereby activate the latent epitope. This
type of exquisite epitope activation—achieved either in vitro by
remote mutations as we demonstrated or in vivo conceivably
by remote polymorphisms or by remote protein·ligand binding
including allosteric binding with an autoantibody—may be a
fundamental feature of GPA. There is evidence that increased
mobility of Epitope 3 occurs in vivo as more than 50% of
serum samples from patients with GPA preferentially bind iHm5-
Val103 (53). It is worth noting that the remote mutations do
not significantly change the main-chain conformation of iHm5-
Val103 as shown in Figure 3, although these mutations were
introduced with the intent for inducing conformational changes
to reduce binding of ANCAs to the mutant. Therefore, the latent
epitope activation described here conceptually differs from the
exposure of cryptic epitopes caused by citrullination (viz., post-
translational conversion of arginine to citrulline) (54). The latent
epitope activation is due to the significant increase of main-
chain flexibility of Loop 3B shown in Figure 4B caused by the
mutations, whereas the cryptic epitope exposure is reportedly due
to conformational changes triggered by multiple citrullinations
(54). It is also worth noting that identifying PR3 mutations
in patients with GPA that can increase the Epitope 3 mobility
is difficult because other factors such as remote protein·ligand
interactions may also increase the latent epitope mobility in vivo,
namely, it is challenging to identify the cause of the latent epitope
activation in vivo.

Nevertheless, knowing the increased mobility of Epitope 3
of iHm5-Val103 responsible for its binding to moANCA518
alone may have implications for the development of novel,

effective treatments of GPA that aim to disrupt the pathogenic
autoantibody·autoantigen interactions in GPA by reducing the
mobility of epitopes targeted by PR3-ANCAs. For example, the
present finding may explain in principle why a monoclonal
antibody strategy (that targets native PR3 and prevents binding
of pathogenic PR3-ANCAs to PR3 that is not in itself pathogenic)
is of advantage for disrupting the autoantibody·autoantigen
interactions over the molecular decoy strategy (that targets
pathogenic autoantibodies). For the latter, large numbers of
decoys are required to block a stock of distinct, pathogenic
PR3-ANCAs. The DNA recombination and affinity maturation
mechanisms, which create diversity and potency in specificity
of antibodies, can potentially lead to resistance against the
decoys. For the former, only one or a few small-molecule
or protein (e.g., monoclonal antibody) binders are required
to rigidify B-cell epitopes of PR3 and consequently make the
autoantigen inaccessible to a repertoire of distinct, pathogenic
PR3-ANCAs, thus obviating mechanisms that could potentially
lead to resistance against such binders.
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