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Monozygotic twins provide a unique opportunity to better understand complex genetic

diseases and the relative contribution of heritable factors in shaping the immune

system throughout life. Common Variable Immunodeficiency Disorders (CVID) are

primary antibody defects displaying wide phenotypic and genetic heterogeneity, with

monogenic transmission accounting for only a minority of the cases. Here, we report

a pair of monozygotic twins concordant for CVID without a family history of primary

immunodeficiency. They featured a remarkably similar profile of clinical manifestations

and immunological alterations at diagnosis (established at age 37) and along the

subsequent 15 years of follow-up. Interestingly, whole-exome sequencing failed to

identify a monogenic cause for CVID, but unraveled a combination of heterozygous

variants, with a predicted deleterious impact. These variants were found in genes involved

in relevant immunological pathways, such as JUN, PTPRC, TLR1, ICAM1, and JAK3.

The potential for combinatorial effects translating into the observed disease phenotype

is inferred from their roles in immune pathways, namely in T and B cell activation. The

combination of these genetic variants is also likely to impose a significant constraint

on environmental influences, resulting in a similar immunological phenotype in both

twins, despite exposure to different living conditions. Overall, these cases stress the

importance of integrating NGS data with clinical and immunological phenotypes at the

single-cell level, as provided by multi-dimensional flow-cytometry, in order to understand

the complex genetic landscape underlying the vast majority of patients with CVID, as well

as those with other immunodeficiencies.
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BACKGROUND

Monozygotic twins provide a unique opportunity to evaluate
the relative contribution of genome and environment to the
development and evolution of the immune system throughout
life (1–3). A recent study on a large twin cohort suggests that life
experience is the main determinant, challenging the importance
of genetic background (2). Monozygotic twins (MZ) also provide
a valuable tool to investigate complex diseases of the immune
system like Common Variable Immunodeficiency (CVID).

CVID is defined overall by a marked decrease in serum
IgG and IgA, normal or decreased serum IgM, poor antibody
responses to vaccines and absence of other identifiable causes for
hypogammaglobulinemia (4). However, almost all components
of the immune system may feature alterations, with high
heterogeneity between patients (5, 6). Given the marked clinical
heterogeneity, multiparametric flow-cytometry is instrumental
to detail the individual immune profile (7–10), allowing
personalized approaches to treatment and monitoring of co-
morbidities (7, 10).

A genetic basis for CVID was already recognized in 1968 (11),
though the identification of the underlying molecular defects has
been hampered in the majority of patients, which usually do not
have a family history. In recent years, next generation sequencing
(NGS) strategies, including genome-wide association and whole-
exome/genome sequencing studies (WES/WGS) (9, 12–19), have
facilitated the identification of an increasing list of genes, with
heterozygous or biallelic variants associated with monogenic
CVID (9, 12–20). Nevertheless, monogenic transmission is
currently assumed in only 15–25% of the patients with CVID,
in association with pathogenic variants in genes related mostly
to B-cell activation, T-cell signaling and cytokine expression
(14, 15, 17, 20). Conversely, CVID is likely to be polygenic in the
majority of patients, resulting frommultiple epistatic interactions
with cumulative effects (12, 21). Consistently, CVIDmay develop
clinically at any age, suggesting progressive and cumulative
deterioration of B-cell functions, in a putative multifactorial
pathogenic process (8, 22).

The contribution of non-heritable influences, such as
infectious exposure, to the establishment of the clinical and
immunological phenotypes in CVID is also recognized (23).
The possible role of viral infections as triggers to disease onset,
and the impact of microbiome are illustrative ongoing debates
(23, 24). Twin studies thus provide a powerful model to dissect
the relative contributions of heritable and non-heritable variables
to the establishment of clinical and immunological profiles, but
have so far been poorly explored, given the rarity of these
cases (2, 3).

We provide here the first report of MZ twins concordant
for CVID. Extensive phenotypic profile of circulating B and T-
cell subsets was obtained by flow-cytometry at diagnosis and
during 15-years follow-up. The twins featured a remarkably
similar immunologic and clinical profile, despite the absence
of a recognizable monogenic cause, being 50 years-old, and
having lived apart for many years. Importantly, WES allowed
us to identify a combination of variants with putative impact in
the immune system that is not shared by their progenitors or

progeny, supporting a polygenic basis for the CVID phenotype
and their concordant immune evolution.

CASE PRESENTATION

CVID diagnosis was performed at 37 years of age in a pair of
Caucasian MZ twins, living in Lisbon, Portugal, born from non-
consanguineous parents and with no family history of primary
immunodeficiency. They presented a remarkably similar clinical
and immunological profile throughout 15 years of follow-up,
despite distinct living conditions (jobs, housing, and nuclear
families) since age 25.

At diagnosis, both twins featured severe
hypogammaglobulinemia, with very low serum IgG (<0.3
and 1.65 g/L, cases 1 and 2, respectively), undetectable IgA
(<0.25 g/L) and IgM (<0.19 g/L), and no increase in titres
of specific IgG upon polysaccharide pneumococcal and
conjugated Haemophilus influenzae vaccinations. They had
a low frequency of circulating total and memory B cells,
particularly of switched-memory B cells, with no expansions
of transitional B cells or of cells expressing low levels of CD21
(Figure 1A), thus featuring an identical EuroClass classification
B+smB−Trnorm21norm (25). They also exhibited comparable
naïve/memory subset distribution and expression of activation
markers in CD4 and CD8T cells (Figure 1B), with a defect in
CD45 alternative splicing leading to the persistence of CD45RA
in memory/effector T cells. Functional studies in T cells revealed
an equal production of IL-2, IL-4, IFNγ, and IL-17 (Figure 1B)
and impairment of proliferative responses to recall antigens,
despite the relative high levels of proliferative responses to
mitogens (Figure 1C).

Along the follow-up there was concordant evolution of
their immunological profile, shown by the PCAs obtained at
age 50 with the EuroFlow protocols (Figure 2A). The detailed
phenotypic evaluation of circulating B cells revealed severe B-cell
depletion (total B cells <1%) in both, with residual preservation
of IgG3+CD27− memory B cells detected by high-sensitivity
methods (7, 26, 27) (Figure 2B). This profile, which reflects
extreme deterioration of IgG-switching capacity in memory B
cells, is compatible with the most severe (CVID-6) subgroup, as
recently reported in the literature (7).

The type and severity of clinical manifestations before
diagnosis and during follow-up have also been very similar.
Both twins featured upper and lower respiratory infections
since their twenties, with progressively increased frequency
leading to several hospital admissions for pneumonia; bilateral
bronchiectasis; and nasal polypectomy at age 32 in both. Upon
diagnosis, intravenous IgG replacement was initiated, leading to
serum IgG levels above 800–900 mg/dL and a marked decline in
the frequency of infectious episodes. Both maintained persistent
sinusitis, with recurrent exacerbations mostly in conjunction
with H. influenza infection, and intermittent non-infectious
diarrhea compatible with minor chronic lymphocytic infiltration,
observed in duodenal and colon mucosa.

This remarkably similar profile in MZ twins strongly
suggested that the genetic background is the main contributor
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FIGURE 1 | Immune phenotype at CVID diagnosis at age 37 in the MZ twins. (A) Representative plots of the flow-cytometry analysis of switched-memory B cells

(top), CD21lowCD38low B cells (middle) and transitional B cells (bottom). Numbers represent the percentage of the given population within CD19+ cells (3.0%/4.2% in

case-1/case-2, respectively). (B) Frequency of naïve and memory subpopulations, expression of activation marker HLA-DR+, and frequency of cells producing IL-2,

IL-4, IFN-γ, and IL-17 within CD4 and CD8T cells (1,777/1,380 lymphocytes/µL; CD4T cells 42.2%/43.6%; CD8T cells 44.1%/39.8%; in cases 1/2, respectively) (C)

Lymphoproliferative responses upon culture with antigens (top) and mitogens (bottom) in comparison with healthy adult individuals.

to their clinical and immunological evolution. We therefore
sequenced their whole exome (WES) using DNA extracted from
blood samples. We focused the analysis on genes involved
in immunological pathways, identifying SNVs with a non-
synonymous coding effect predicted to be either probably
damaging or deleterious (28, 29), or frame shift variants (see
Methods). We also looked for variants affecting mRNA splice
sites, but we found no variants in genes reported as monogenic

causes of CVID. In fact, WES analysis was unable to reveal a
monogenic cause for CVID. However, we identified in both a
combination of 7 heterozygous SNVs, occurring in JAK3, JUN,
LYST, MBL2, ICAM1, and TLR1 (Table 1 and Figure 3A). None
of these 6 genes has previously been shown to be associated
with monogenic CVID (15, 32). A compound heterozygous
change, combining one variant from each parent, was found
in ICAM1.
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FIGURE 2 | Supervised flow-cytometric analysis of blood lymphocytes in MZ twins concordant for CVID at age 50. (A) Principal component analysis (PCA)

multidimensional view of the distribution of major lymphocyte subsets analyzed with the EuroFlow PID orientation tube in 1 × 106 peripheral blood leukocytes. (B)

Distribution of memory B cells according to the surface membrane expression of the IgH-isotypes (IgM, IgD, IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2) in 5 × 106

peripheral blood leukocytes analyzed from an age-matched healthy donor and the two twins with CVID (7, 8, 26).

In face of the defect in CD45 alternative splicing observed in
T cells, we additionally looked at variants in PTPRC (CD45).We
found the twins were heterozygous carriers of C77G (Table 1 and
Figure 3A), a heterozygous variant that was previously reported
in heterozigosity in CVID patients (33, 34).

In order to elucidate the segregation of the identified variants
and their possible associations with clinical manifestations
and/or immunological profile, their parents and children were
also evaluated. Neither the progenitors nor the progeny had
any severe/recurrent infections or immune-mediated diseases,
and all had normal levels of serum IgG, IgA, and IgM,
except for one son with a past-history of autoimmune
thrombocytopenia (III:3, Figure 3A). Parents and children were
genotyped for the 8 genetic variants (Figure 3A) and the
variants considered were found to be split between parents,
and none of the descendants inherited the combination
of variants observed in the twins. Due to the frequent
onset of CVID-associated clinical manifestations in adulthood,
prospective follow-up of the offspring, particularly of the
son with a past-history of autoimmune thrombocytopenia,

will be important to complete our current interpretation of
NGS data.

METHODS

Patients and Relatives
Longitudinal data obtained from a pair of MZ twins followed
at Centro de Imunodeficiências Primárias, of Lisbon Academic
Medical Center. The patients met the European Society for
Immunodeficiencies (ESID) diagnostic criteria for CVID at the
time of enrolment (35). Patients and relatives gave written
informed consent. The study was approved by the ethical boards
of the Faculty of Medicine of University of Lisbon and Centro
Hospitalar Universitário Lisboa Norte.

Immunological Studies
Phenotypic analysis was performed by flow-cytometry during
follow-up using previously described protocols (8, 36, 37)
and different cytometers (FACSCalibur, FACSCanto and
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TABLE 1 | Selected SNVs with impact in the immune system identified by WES.

Gene Change coordinates Ensembl

transcript ID

Protein variant

(HGVS)

dbSNP ID ExAC (MAF EUR) PolyPhen SIFT Immunological role of the gene-encoded

protein

JAK3 chr19:17952472 T/C ENST00000428406

ENST00000458235

ENST00000527670

ENST00000534444

T321A NA NA PD T Member of Janus kinase family of tyrosine kinases;

Cytokine receptor-mediated intracellular signal

transduction

ICAM1 chr19:10394792 G/A ENST00000264832 G241R rs1799969 0,1102 PD D Cell surface glycoprotein with major role in cell-cell

adhesion, in endothelia and immune cells

chr19:10395468 G/A ENST00000423829

ENST00000264832

R397Q rs5497 0,0006 PD D

JUN chr1:59248405 C/G ENST00000371222 G113A rs1462279538 NA PD D Transcription Factor AP-1 interacts with specific

target DNA sequences to regulate gene expression

in the immune system

LYST chr1:235972992 G/T ENST00000536965

ENST00000389794

ENST00000389793

P376T rs770362521 3 × 10−5 PD T Regulates intracellular protein trafficking in

endosomes; Mutations associated with

Chediak-Higashi syndrome with impaired cytotoxic

lymphocyte function (30)

TLR1 chr4: 38799956;

NM_003263.4:c.497del

ENST00000308979

ENST00000502213

K166fs rs761749628 0,0003454 NA D Member of the Toll-like receptor family, with a role in

pathogen recognition and activation of innate

immunity. Identified as a critical mediator of intestinal

immunity

MBL2 chr10:54531242 G/A ENST00000373968 R52C rs5030737 0,076 PD D Belongs to collectin family. Important element in the

innate immune system

Variants associated with susceptibility to

autoimmunity and infections (31)

PTPRC chr1:198665917 C/G ENST00000352140

ENST00000367376

ENST00000418674

ENST00000442510

ENST00000529828

C77G rs17612648 0,016 S N/A Important for efficient T and B-cell antigen receptor

signal transduction

CD45RA persistence in memory T cells in

alternative splicing defect

HGVS, human genome variation society; NA, not available; MAF, minor allele frequency; EUR, European; PD, probably damaging; S, synonimous; T, tolerated; D, deleterious.
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FIGURE 3 | Identified genetic variants and predicted functional impact on B and T-cell activation pathways. (A) Family tree of the patients. The sectors and color

patterns represent the 8 genetic variants identified in the 7 listed genes, and their presence/absence in both the progenitors and the children of the two siblings. Each

(Continued)
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FIGURE 3 | sector corresponds to one specific variant. Paternally inherited variants are represented on the left, and maternal variants on the right, with a color code

per gene, next to the gene ID and identified variant (in parenthesis). The black dotted pattern highlights the maternal variant in the case of ICAM, for which the patients

have two altered alleles. (B) Role of affected genes in T and B-cell activation processes. The figure represents a generic lymphoid cell with the major membrane

receptors, signaling molecules and transcription factors (identified by their names) and intracellular signaling pathways (identified by arrows) involved in the activation

process. Red and green arrows represent the final stages of the lymphocyte activation pathways leading to the expression of genes that promote anergy (red) or

survival/proliferative responses (green) within the cell nucleus. The top half of cell highlights proteins and processes specific for T cell activation and the bottom half

those specific for B-cell activation. The names of proteins encoded by genes that present potentially pathogenic variants are presented in orange. The figure compiles

all the information that was retrievable from pathways databases and literature search regarding the connections between genes presented in (A) and the B and T cell

activation pathways. Of these 7 genes, LYST did not present any connection to these processes, whereas two others (MBL2 and TLR1) have reported functions in

lymphocyte activation but their connection to signaling pathways remains unclear and are thus not represented in the figure.

LSR-Fortessa X-20 flow-cytometers, Becton/Dickinson
Biosciences (BD), San José, CA). Briefly, stainings with
monoclonal antibodies were performed in whole blood after
red blood cells lysis using BD FACS Lysing Solution (BD
Biosciences), and a minimum of 100,000 lymphocytes were
acquired per sample with data analyzed using CellQuest
Software (BD Biosciences) and FlowJo Software (Tree Star Inc.,
Ashland, OR). More recently, 107 nucleated cells were stained
with the EuroFlow 12-color Ig-isotype B-cell tube and bulk-lyse
standard operating procedure (SOP; www.EuroFlow.org), ≥5
× 106 leukocytes were acquired in LSR-Fortessa X-20, with
instrument set-up and calibration performed according to the
EuroFlow SOP (38), and data analyzed with Infinicyt software
(Cytognos S.L., Salamanca, Spain).

Cytokine production was assessed at the single-cell level in
peripheral blood mononuclear cells (PBMC) freshly isolated
by Ficoll-Hypaque density gradient (Amersham Pharmacia
Biotech, Uppsala, Sweden), as described (39). Briefly, after a
4-h culture with phorbol myristate acetate (PMA; 50 ng/mL,
Sigma-Aldrich) plus ionomycin (500 ng/mL; Calbiochem, Merck
Biosciences, Nottingham, U.K.), in the presence of brefeldin
A (10µg/mL; Sigma-Aldrich), PBMC were surface stained,
fixed, permeabilized, and stained intracellularly with monoclonal
antibodies against IL-2, IL-4, IFN-γ, and IL-17, as described
(36). Flow-cytometric analysis was subsequently performed as
described above.

Lymphocyte proliferation was evaluated as follows: 105 freshly
isolated PBMCs were cultured in a 96-well plate in the absence
or presence of mitogens PHA (20µg/mL), anti-CD3 (1µg/mL),
anti-CD3 anti-CD28 (1µg/mL), PWM (1µg/mL) and PMA
(50 ng/mL)+ ionomycin (500 ng/mL) and antigens Candida
albicans (40µg/mL) and PPD (5µg/mL), for 3 and 6 days,
respectively, at 37◦C, 5% CO2. Proliferation was assessed by 3H-
Thy (Amersham Pharmacia Biotech) incorporation in the last
8 h of culture. Results were expressed as stimulation indexes (SI)
which represents the ratio of the mean counts per minute (cpm)
in the presence of a given mitogen or antigen over the mean cpm
in the absence of the stimulus.

Whole Exome Sequencing
Genomic DNA was extracted from peripheral blood, subjected
to library construction using the Agilent Sure Select Human
All Exon 50Mb kit (Agilent Technologies) and sequenced
on a Hiseq2000 Illumina sequencer (BGI-Shenzhen, China)
(40). Low-coverage and low-quality Single-Nucleotide Variants

(SNVs) were removed as described (41). High-quality reads
were aligned to the reference human genome (GRCh37/hg
19) and annotated with SnpEff Tool. Non-synonymous SNVs
predicted to be probably damaging or deleterious [either by
PolyPhen 2.2.2 (28) or SIFT 5.1.1 (29)], or frameshift variants,
regardless of the minor allele frequency were filtered and
prioritized. Criteria to further narrow down the candidate gene
list were applied as previously described (42). Extensive search
was performed in the literature, interactome and pathways
databases regarding the roles of identified genes in the immune
system, particularly concerning their involvement in B and T-cell
activation pathways, illustrated in Figure 3B.

DISCUSSION

Here we report the first study of a pair of MZ twins
concordant for CVID. They featured remarkable similarity
in clinical and immunological phenotypes at diagnosis and
during 15-year follow-up, and the analysis of WES data
did not identify pathogenic variants in genes previously
reported in association with monogenic CVID. In contrast, we
identified 7 non-synonymous coding variants with predicted
damaging/deleterious impact on the 6 proteins coded by the
involved genes. These genes integrate relevant immune pathways
and are therefore likely to have a clinical impact, supporting
a polygenic burden for CVID, as well as to constrain the
evolution of immunological profiles, leading to the high degree
of similarity observed between the twins, despite having led
separate lives for over 25 years. The clinical and immunological
outcome in the twins likely results from the accumulation of
distinct functional impairments, due to variants in genes related
to critical immunological pathways (12, 21), as none of the
identified heterozygotic variants can independently explain their
clinical/immunological picture. Consistent with this polygenic
model, there is a potential combinatorial impact of the observed
SNVs in B and T-cell activation, as illustrated in Figure 3B. The
absence of clinical and immunological manifestations in close
family members also argues in favor of a pathogenic burden
derived from the unique combination of variants shared by
the twins.

There are previous reports of CVID patients who are
heterozygous carriers of C77G in CD45 (33, 34). CD45 is known
to be important for efficient T and B-cell antigen receptor signal
transduction and for control of signaling thresholds through TCR
(31, 43). C77G is the most common cause of CD45 abnormal

Frontiers in Immunology | www.frontiersin.org 7 November 2019 | Volume 10 | Article 2503

www.EuroFlow.org
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Silva et al. Monozygotic Twins Concordant for CVID

splicing in European populations (44), which leads to the
persistence of CD45RA in memory T cells (45, 46). The twins are
heterozygous for C77G and exhibit a strong mitogenic response
to anti-CD3, but markedly diminished proliferative responses
to the tested recall antigens. Our data add to previous reports
(33, 34) favoring a role for this SNV in a polygenic scenario
for CVID, although the frequency of (heterozygous) carriers of
C77G in CD45 was not increased in a large CVID cohort (33)
and different clinical phenotypes have been associated with C77G
in CD45.

Obviously, we cannot exclude a role for other variants, such
as non-coding variants, in the genes that we mentioned, nor in
other genes, that may impact in the clinical and immunological
phenotype of the twins. Nevertheless, it is worth noting that 4
out of the 7 selected genes with variants act on both T and B-
cell receptor signaling-pathways, namely JUN, CD45 (PTPRC),
and ICAM1 (Figure 3B); and MBL2 and TLR1, influence these
processes through as yet unidentified mechanisms (see below)
(30, 31, 46–53). Furthermore, the presence of a potentially
damaging variant in the JAK3 kinase may influence the cytokine
receptor-mediated intracellular signal transduction, with crucial
implications in the differentiation, function and survival of B
and T cells (Figure 3B) (54). Other immune pathways that may
be influenced by this group of variants are: Fcγ R-mediated
phagocytosis (CD45), TNF signaling-pathway (ICAM1, JUN),
Toll-like receptor signaling-pathway (TLR1, JUN) and innate
immune responses (ICAM1, TLR1, MBL2) (55). TLR1 encodes
for a member of the Toll-like receptor family, and plays a
fundamental role in pathogen recognition and activation of
innate immunity (30, 56). TLR1 was identified as a critical innate
receptor for protective intestinal Th17 immunity (57) but, to our
knowledge, has not been previously associated with increased
susceptibility to infections, or hypogammaglobulinemia.

Two potentially damaging variants were identified in ICAM1,
which encodes a cell surface glycoprotein involved in cell-cell
adhesion, expressed on endothelial cells and cells of the immune
system, and has a prominent role in several types of immune
responses (51, 52). Variants in ICAM1 have been associated with
inflammatory bowel disease (58). The p.G241R variant, which the
twins inherited from their father, has been associated with adult
onset celiac disease in a French cohort (59).

Flow-cytometry is crucial to the functional validation of
genetic variants, allowing adequate interpretation of NGS
data and stratification of patients (25, 26, 60). Notably,
we documented a synchronous progressive B-cell depletion
throughout follow-up. Taking advantage of the EuroFlow
strategy for highly-sensitive Ig-subclass analysis of blood B
cells and plasma cells, six subgroups of patients were recently
identified in CVID, with different IgG-switching patterns and
clinical profiles, even in patients with <1% B cells (7). The
immunological phenotype of both twins at 50, was compatible
with the CVID-6 subgroup, the most severe, defined by markedly
decreased CD27+ unswitched and switched-memory B cells,
with very low CD27−IgG3+ memory B cells. CVID-6 patients
also show significantly reduced pre-germinal B cells, reflecting
defective B-cell production in the bone marrow (61, 62). These
recently developed standardized flow-cytometry assays to analyse

memory B-cell immunoglobulin isotypes and IgH-subclasses
will be very important in longitudinal studies to investigate the
progression of B-cell defects, that has been hypothesized, but not
yet supported by solid immunological data (7, 8).

The remarkable similarity between the immune profiles of
the MZ twins, at age 50, even though they have lived in
different households since they were 25, with distinct jobs and
nuclear families, is even more striking in light of studies that
have emphasized the dominant contribution of non-heritable
influences to the shape and function of the immune system (1, 2).
Although they live in the same geographical region, the impact
of co-habitation has been considered very relevant in the shaping
of the immune system, as illustrated by the immunological data
from non-related housemates (63, 64). This debate on relative
contributions of “nature” vs. “nurture” was addressed in a study
that included 105 pairs of healthy MZ twins, which shows that
variation in immune cell frequencies and serum proteins between
twins increases with age, likely due in large part to exposure to
pathogens, namely CMV (2). Notably, there has been no evidence
of CMV infection in the MZ twins, both with negative PCR for
CMV in blood on different occasions, and no evidence of CMV
infection in gut biopsies.

Epigenetic modifications necessarily contribute to the
discordance in clinical and immunological phenotype between
MZ twins (1, 3). In line with this, a pair of MZ twins discordant
for CVID was previously reported (3), with a significant
increase in DNA methylation of B cells in the affected sister
(3, 65). Consistent with this finding, a recent study showed that
impaired demethylation in B-cell key genes is associated with
the reduction of memory B cells in CVID patients (66). In our
context, it will be interesting to explore the epigenetic landscape
of the MZ concordant twins in order to confirm its contribution
to the disease and add a new layer of insight to our clinical,
immunological, and genomic data.

CONCLUDING REMARKS

The clinical, immunologic and genetic profile of a pair of
monozygotic twins concordant for CVID provides further
support to the hypothesis that a combination of allelic variants
can additively predispose to non-familial CVID. Moreover, these
data suggest that genetic variants may impose a significant
constraint on the impact of the environment, as attested by
the remarkably similar immunological phenotype observed in
both twins, despite prolonged exposure to different living
conditions. The integration of NGS data with clinical and
immunological phenotypes at the single-cell level, as provided
bymulti-dimensional flow-cytometry, is crucial to further expose
the complex genetic landscape underlying the vast majority of
patients with CVID, and patients with other immunodeficiencies.
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