
REVIEW
published: 24 October 2019

doi: 10.3389/fimmu.2019.02507

Frontiers in Immunology | www.frontiersin.org 1 October 2019 | Volume 10 | Article 2507

Edited by:

Miriam Wittmann,

University of Leeds, United Kingdom

Reviewed by:

Krzysztof Guzik,

Jagiellonian University, Poland

Luz Pamela Blanco,

National Institutes of Health (NIH),

United States

*Correspondence:

Onur Boyman

onur.boyman@uzh.ch

†These authors have contributed

equally to this work as first authors

Specialty section:

This article was submitted to

Inflammation,

a section of the journal

Frontiers in Immunology

Received: 01 July 2019

Accepted: 07 October 2019

Published: 24 October 2019

Citation:

Egholm C, Heeb LEM, Impellizzieri D

and Boyman O (2019) The Regulatory

Effects of Interleukin-4 Receptor

Signaling on Neutrophils in Type 2

Immune Responses.

Front. Immunol. 10:2507.

doi: 10.3389/fimmu.2019.02507

The Regulatory Effects of
Interleukin-4 Receptor Signaling on
Neutrophils in Type 2 Immune
Responses
Cecilie Egholm 1†, Lukas E. M. Heeb 1†, Daniela Impellizzieri 1 and Onur Boyman 1,2*

1Department of Immunology, University Hospital Zurich, Zurich, Switzerland, 2 Faculty of Medicine, University of Zurich,

Zurich, Switzerland

Interleukin-4 (IL-4) receptor (IL-4R) signaling plays a pivotal role in type 2 immune

responses. Type 2 immunity ensures several host-protective processes such as defense

against helminth parasites and wound repair, however, type 2 immune responses also

drive the pathogenesis of allergic diseases. Neutrophil granulocytes (neutrophils) have

not traditionally been considered a part of type 2 immunity. While neutrophils might be

beneficial in initiating a type 2 immune response, their involvement and activation is rather

unwanted at later stages. This is evidenced by examples of type 2 immune responses

where increased neutrophil responses are able to enhance immunity, however, at the cost

of increased tissue damage. Recent studies have linked the type 2 cytokines IL-4 and

IL-13 and their signaling via type I and type II IL-4Rs on neutrophils to inhibition of several

neutrophil effector functions. This mechanism directly curtails neutrophil chemotaxis

toward potent intermediary chemoattractants, inhibits the formation of neutrophil

extracellular traps, and antagonizes the effects of granulocyte colony-stimulating factor

on neutrophils. These effects are observed in both mouse and human neutrophils. Thus,

we propose for type 2 immune responses that neutrophils are, as in other immune

responses, the first non-resident cells to arrive at a site of inflammation or infection,

thereby guiding and attracting other innate and adaptive immune cells; however, as soon

as the type 2 cytokines IL-4 and IL-13 predominate, neutrophil recruitment, chemotaxis,

and effector functions are rapidly shut off by IL-4/IL-13-mediated IL-4R signaling in

neutrophils to prevent them from damaging healthy tissues. Insight into this neutrophil

checkpoint pathway will help understand regulation of neutrophilic type 2 inflammation

and guide the design of targeted therapeutic approaches for modulating neutrophils

during inflammation and neutropenia.

Keywords: neutrophil, type 2 immunity, interleukin-4, interleukin-13, interleukin-4 receptor, inflammation,

helminth, neutropenia

INTRODUCTION

Neutrophil granulocytes (neutrophils) are the most abundant leukocytes in human blood
accounting for ∼60–70% of immune cells in circulation at steady state (1). With a very short life
span of approximately 5 days, there is a constant need for replenishment of this vast pool (2).
Neutrophils are generated in the bone marrow at a rate of 1–2× 1011 cells per day (3). Their release

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02507
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02507&domain=pdf&date_stamp=2019-10-24
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:onur.boyman@uzh.ch
https://doi.org/10.3389/fimmu.2019.02507
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02507/full
http://loop.frontiersin.org/people/604205/overview


Egholm et al. Interleukin-4 Receptor Signaling Dampens Neutrophils

from the bone marrow is regulated by the signaling of C-
X-C chemokine receptors (CXCR) 2 and 4. CXCR2-binding
chemokines, CXCL8 in humans and CXCL1 and CXCL2 in mice,
promote the mobilization of neutrophils and their egress into
the blood stream (4, 5). Conversely, the engagement of CXCR4
with its ligand CXCL12 presented on bone marrow stromal
cells keeps the newly-formed granulocytes in their bone marrow
niche (6). At steady state, this delicate interplay ensures the
maintenance of a stable peripheral blood pool of neutrophils. In
case of inflammation or infection, pro-inflammatory mediators,
such as granulocyte colony-stimulating factor (G-CSF), are
produced by the affected tissue and shift the balance toward
increased neutrophil generation and mobilization, for example
by increasing CXCR2 and decreasing CXCR4 surface expression
on neutrophils (7, 8).

Neutrophils are typically the first non-resident immune cells
that arrive at a site of inflammation (9, 10). Upon local activation
of the vasculature, endothelial cells present chemokines and cell
adhesion molecules at their luminal side (11). These ligands are
recognized by their counterparts on the surface of bypassing
neutrophils, leading to deceleration and eventually firm
adhesion of the leukocytes to the endothelium. The neutrophils
then crawl along the vessel wall following fixed gradients
of so-called intermediary chemoattractants, particularly
CXCR2-binding chemokines, before they transmigrate
through the endothelium into the interstitial space. There,
they advance to their destination by tracking gradients of
other chemotactic stimuli such as N-formylmethionine-leucyl-
phenylalanine (fMLP) released by bacteria (12, 13). These
end-target chemoattractants override the signals emanating
from intermediary chemokines (14). Once they reach the site
of infection, neutrophils employ various mechanisms to kill or
inactivate pathogens, including phagocytosis, degranulation,
production of reactive oxygen species (ROS), and neutrophils
extracellular trap (NET) formation (Figure 1; discussed in
section Neutrophil Effector Functions).

Given the abundance and readiness of these heavily-armed
immune cells, overshooting neutrophil activity can lead to
detrimental tissue damage. Thus, mechanisms need to be in place,
which keep neutrophil responses in check but at the same time
allow efficient clearance of pathogens. Although neutrophils have
traditionally been associated with type 1 and type 3 immunity,
they have recently been found to contribute to type 2 immune
responses, thus also aiding in the removal of helminth parasites
(15, 16). Conversely, neutrophils are often conspicuously absent
from tissues where the type 2 cytokines interleukin (IL)-4 and
IL-13 dominate (17, 18). In this review, we will propose a
mechanism that connects these seemingly contradictory findings.
We will first summarize beneficial and harmful effects of
neutrophils in type 1, type 2, and type 3 immune responses.
We will then focus on a growing body of evidence that suggests
involvement of neutrophils in type 2 immunity. Finally, we
will discuss recent results from mouse and human neutrophil
research that have demonstrated how IL-4 and IL-13 receptor
signaling inhibits several neutrophil effector functions (19–
21), and we will elaborate on a temporal model unifying the
reported findings.

NEUTROPHIL EFFECTOR FUNCTIONS

Phagocytosis
Themost prominent neutrophil effector function is phagocytosis,
the process during which pathogens are recognized, encapsulated
and internalized in membranous vesicles, and digested by
fusion of the vesicles with lysosomes and granules containing
enzymes and antimicrobial peptides. The recognition step usually
depends on pathogen- and damage-associatedmolecular patterns
(PAMPs and DAMPs, respectively) as well as opsonization of
the pathogen by antibodies or complement factors that bind
to Fc or complement receptors on the neutrophil, respectively
(22–24). Engagement of these receptors leads to the active
engulfment of the pathogen. Subsequently, lysosomal hydrolases
and granular enzymes are released into the vesicle by fusion
with the respective organelles and start the destruction of
the phagocytosed material (25). Additionally, the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase complex is
assembled on the phagolysosome membrane, leading to the
formation and discharge of superoxide anions (O−

2 ) into the
lumen. These harm pathogens directly or react further into other
ROS, all of which have antimicrobial activity (see below) (26).

Degranulation
Neutrophils possess a large pool of intracellular vesicles
(granules) whose contents can be released into the extracellular
space or into phagosomes in a process called degranulation.
Not all neutrophil granules are the same: There are four very
distinct types of secretory organelles that can be distinguished
by their content, membrane proteins, function, and time
point of mobilization. Primary or azurophilic granules contain
the most potent cargo: myeloperoxidase (MPO), defensins,
neutrophil elastase (NE), and cathepsins. These proteins are
powerful antimicrobial agents and are released only after several
checkpoints have been passed and the neutrophil is in closest
proximity to the pathogen. Secondary or specific granules
also accommodate antimicrobial factors (e.g., lactoferrin,
neutrophil-gelatinase associated lipocalin) together with matrix
metalloproteases (MMPs) neutrophil collagenase (MMP-8)
and leukolysin (MMP-25). The antimicrobial factors provide
protection against pathogens while the MMPs can degrade
extracellular matrix and thus enable more efficient neutrophil
migration through tissues. Tertiary or gelatinase granules
predominantly contain their namesake gelatinase (MMP-9)
which also facilitates migration. The fourth type are secretory
vesicles, which serve as reservoirs of membrane proteins that are
needed on the cell surface upon priming, such as the CD11b–
CD18 heterodimer (αMβ2-integrin, Mac-1, complement receptor
3), CD35 (complement receptor 1), and the fMLP receptor. They
do not contain notable soluble cargo. Besides this multitude of
proteins working in situ, neutrophils are also capable of releasing
several chemokines, cytokines, and growth factors that recruit
other immune cells to a site of inflammation (27–32).

Despite being an essential means of combating infection,
degranulation can also cause serious damage if not kept in check.
While MMPs may be beneficial for cell migration, they can
also destroy the connective tissue, and several constituents of
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the azurophilic granules not only kill pathogens, but are also
cytotoxic to host cells (33) (Figure 1). Moreover, uncontrolled
recruitment and activation of immune cells leads to excessive
inflammation. It is thus not surprising that over-shooting
degranulation of neutrophils has been associated with several
inflammatory disorders such as septic shock, severe lung injury,
rheumatoid arthritis, and severe asthma (34, 35).

Reactive Oxygen Species
ROS are a group of small, unstable oxygen-based molecules.
Owing to their chemical instability, they are highly reactive
and can denature or damage proteins, lipids, and DNA
(36). In neutrophils, ROS are produced in a process called
respiratory or oxidative burst by the multi-unit enzyme complex
NADPH oxidase (37). The different subunits of the enzyme
are stored in separate compartments of the cell to prevent
accidental generation of ROS. Upon activation, the NADPH
oxidase assembles on the phagosomal or plasma membrane and
produces and releases superoxide anions into the phagosome or
extracellular space, respectively (38). Superoxide can react further
with protons to hydrogen peroxide (H2O2), which is used by
MPO to create hypochlorous acid (HClO) (39). All these types
of ROS have microbicidal activity, but also consume protons in
their chain of reactions, thereby neutralizing the acidic content
from lysosomes and granules (40). This in turn facilitates the
liberation of NE and cathepsins, which at low pH are tightly
bound to proteoglycans and thus less active (41). In fact, ROS
likely participate less in direct pathogen killing, but they rather
facilitate proper activation of azurophilic granule enzymes, which
cause pathogen killing in the phagosome (42).

Whether ROS are directly or indirectly responsible for
pathogen killing, they are a vital part of innate immunity.
In fact, bacterial strains that are able to disarm ROS by
producing superoxide dismutase (SOD), which catalyzes the
reaction of O−

2 into O2 and H2O2, and catalase, which in
turn catalyzes the decomposition of H2O2 into O2 and H2O,
are much more virulent than their SOD- or catalase-negative
counterparts (43). Another example is chronic granulomatous
disease (CGD), a genetic disorder affecting the NADPH oxidase,
which renders patients incapable of producing ROS. These
patients suffer from frequent and recurrent infections, also
with opportunistic pathogens (44). Despite their importance
in combatting infection, unchecked production of extracellular
ROS leads to tissue damage by virtue of their lack of pathogen
specificity (45) (Figure 1).

Neutrophil Extracellular Traps
NETs are meshes of DNA decorated with antimicrobial peptides
that can be released by neutrophils in response to various
stimuli. They were first described by Brinkmann et al. as a
novel mechanism of how neutrophils can combat infection
(46). Pathogens, mainly yeast and bacteria, stick to the DNA
fibrils, which prevents them from spreading in the tissue, and
they are degraded by the granule proteins that are attached
to the chromatin network (47). Since 2004, numerous stimuli
have been described to induce NET formation, of which large
pathogens seem to be the main trigger (48). The exact process

of how NETs form remains an active area of research. The
most widely accepted model involves chromatin decondensation
including histone citrullination, disintegration of nuclear, and
granule membranes, intracellular mixing of the components and,
finally, release into the extracellular space (49). Some reports
provided evidence that the NADPH oxidase was necessary for
NET formation. Interestingly, however, despite their lack of a
functional NADPH oxidase CGD patients have been shown to
form NETs by using mitochondrial ROS (50). It seems that
depending on signal type and strength, NET formation can be fast
and non-lytic, leaving behind an intact anuclear cytoplast (51),
or slow and lytic, spilling the cell contents while the NET breaks
free from the cell membrane (52). Some studies also present the
possibility of NET release by living cells using mitochondrial in
lieu of nuclear DNA (50, 53).

NETs have been shown to have several beneficial properties.
Their main use is in immobilizing and degrading bacteria,
fungi, and viruses (54–56). Another less prominent function is
the shielding of damaged tissues that might otherwise elicit an
unwanted inflammation (57). As helpful these mechanisms may
be, NETs have also been implicated as players in a multitude
of different diseases. Firstly, the release of nuclear material into
the extracellular space provides access to otherwise shielded
antigens and may result in the formation of autoantibodies
(Figure 1), as suggested for rheumatoid arthritis (RA), systemic
lupus erythematodes, anti-phospholipid syndrome, and anti-
neutrophil cytoplasmic antibody (ANCA)-associated vasculitis
(58–61). Secondly, the massive release of proteins can be
a double threat. On the one hand, cytokines may drive
inflammation leading to tissue damage or atherosclerosis (62).
On the other hand, the proteases associated with NETs may
degrade cytokines and chemokines, resulting in a possibly
unwanted anti-inflammatory effect (63). Moreover, the giant and
sticky structures of NETs can occlude blood vessels, leading to
thrombosis or sepsis (14). Finally, NETs have also been proposed
as players in cancer dissemination and metastasis formation
(64, 65) (Figure 1).

ROLE OF NEUTROPHILS IN DIFFERENT
TYPES OF IMMUNE RESPONSES

The immune system has evolved different types of effector
immune responses to counter the various pathogens. These are
commonly referred to as type 1, type 2, and type 3 immunity, and
each engage different subtypes of innate lymphoid cells (ILCs)
and other innate immune cells, CD4+ helper T (TH) and CD8+

cytotoxic T cells, as well as CD4+ follicular helper T (TFH) cells
and antibody responses by B cells, as discussed below (Figure 2).

Type 1 Immunity
Type 1 immunity serves to protect against intracellular pathogens
by the production of the effector cytokine interferon-γ (IFNγ)
and engagement of type 1 ILCs (ILC1), natural killer (NK)
cells, type 1 TH (TH1) cells, CD8+ cytotoxic T cells, type 1
TFH cells and immunoglobulin (Ig) G1 and IgG3 antibody
responses. Together with these immune cells, also macrophages
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FIGURE 1 | Advantages and disadvantages of neutrophil effector functions. During phagocytosis, microbes are engulfed and degraded in specialized organelles

called phagolysosomes. This is a very powerful and clean method to dispose of pathogens because it takes place in a contained space, thus preventing widespread

inflammation. However, should a pathogen manage to survive intracellular degradation, it is protected from extracellular factors and other immune cells that could

potentially contain it (Left). Neutrophils can release several different cytokines, antimicrobial peptides, and granular enzymes into their surroundings, a response

termed degranulation. This mechanism facilitates migration within the tissue, activates and attracts other immune cells and can help fight pathogens that cannot be

phagocytosed. However, the release of too many cytokines can lead to an overshooting immune activation. Tissue degradation could aid the spreading of pathogens

and destroy the structural basis of organs, and several granular proteins are also toxic for host cells (Middle Left). Neutrophils can release reactive oxygen species

(ROS) into phagolysosomes as well as into the extracellular space. These molecules can potentiate pathogen killing, but are not selective and can therefore also

damage host cells (Middle Right). The formation of NETs can be an efficient means to trap and kill pathogens and potentially walling off harmful stimuli. However, the

release of cytoplasmic and nuclear proteins can cause the formation of autoantibodies, favoring autoimmunity. Furthermore, NETs can obstruct blood vessels and

glandular ducts leading to inflammation. Granular proteins attached to the chromatin fibrils damage host tissue and the release of pro-inflammatory mediators may

result in overshooting inflammation. Moreover, NETs have also been implicated in the facilitation of tumor metastasis (Right).

and neutrophils play a central role in type 1 immunity. These
innate cells can directly detect foreign microbes via PAMPs,
which they recognize by pattern recognition receptors (PRRs)
(66). During infection with the intracellular pathogen Listeria

monocytogenes, neutrophils were shown to have an important
protective role. This was particularly seen in the liver, which
is one of the primary target organs of this bacteria. Here,
the early phagocytosis mediated by recruited neutrophils was
essential for limiting bacterial spread and controlling infection
(67–69). It has also been suggested that IFNγ has a direct
effect on neutrophil activation and can induce MHC class II
expression, at least ex vivo (70). Although macrophages have
a protective role against intracellular pathogens, they are also
very susceptible to becoming infected themselves. In the case
of Mycobacterium tuberculosis infection of macrophages, it
has been reported that neutrophil granules can be transferred
to macrophages and facilitate the clearance of chronically
infected cells (71).

Type 2 Immunity
Type 2 immunity has evolved to efficiently induce resistance
and tolerance to parasitic infections, especially helminthic
infestations. Type 2 immunity is typically initiated by the
activation of epithelial cells and PRR-expressing myeloid cells
that secrete IL-25, IL-33, and thymic stromal lymphopoietin
(TSLP). In response to these cytokines, type 2 ILCs (ILC2) begin
to produce IL-5 and IL-13, which induce the differentiation
of CD4+ T cells to type 2 TH (TH2) cells, which in turn
secrete the characteristic type 2 cytokines IL-4, IL-5, IL-9, and
IL-13 (72–74). This cytokine milieu fosters the development
and proliferation of other cells involved in type 2 immunity,
including basophils, eosinophils, mast cells, and NKT cells, and
drives the differentiation of type 2 TFH cells and IgE antibody
responses. Especially IL-4 and IL-13 are central cytokines in
type 2 immunity, and they both signal via the IL-4 receptor
(IL-4R) system (75). Two types of IL-4Rs exist (Figure 3): type
I IL-4Rs consist of IL-4Rα and the common gamma chain
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FIGURE 2 | Different types of immune responses. Type 1 immune response (Top): Intracellular pathogens induce differentiation of naïve T cells into TH1 cells via

antigen-presenting cells and IL-12. IFNγ is the main effector cytokine that stimulates and actives NK cells, type 1 innate lymphoid cells (ILC1), and TH1 cells, which in

turn activate CD8+ cytotoxic T cells, macrophages and neutrophils. NK cells, macrophages and neutrophils can also be directly activated via pattern recognition

receptor (PRR)-mediated recognition of pathogen-associated molecular patterns (PAMPs). The result of this immune response is lysis of cell and pathogen. Type 2

immune response (Middle): Parasites induce epithelial damage, which leads to the release of thymic stromal lymphopoietin (TSLP), IL-25, and IL-33 from

(Continued)
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FIGURE 2 | epithelial cells. This in turn causes both differentiation of naïve T cells into TH2 cells via antigen-presenting cells and stimulation of ILC2, mast cells,

basophils and eosinophils. In response to this, the activated immune cells produce IL-4, IL-5, IL-9, and IL-13. These effector cytokines stimulate B cells and induce

isotype switching to immunoglobulin E and differentiation of macrophages to alternatively-activated macrophages (also termed M2 macrophages). The result of this

immune response is parasite expulsion. Type 3 immune response (Bottom): Extracellular pathogens induce differentiation of naïve T cells into TH17 cells via

antigen-presenting cells and IL-23. Production of IL-17 and IL-22 by ILC3 and TH17 cells leads to the activation of macrophages and neutrophils. The result of this

immune response is pathogen killing. Initiation of immune response is indicated by black arrows. Blue arrows mark stimulatory signals by cytokines produced by

immune cells. Effector responses are indicated by red arrows.

FIGURE 3 | Interleukin-4 receptors. Different heterodimeric IL-4 receptors (IL-4Rs) exist and they share the IL-4Rα subunit. The type I IL-4R (Left) consists of IL-4Rα

and the common gamma chain cytokine receptor (γC), and the type II IL-4R (Right) is made of IL-4Rα and IL-13Rα1. IL-4 can associate with and signal via both

IL-4Rs, whereas IL-13 can only bind to and signal via the type II IL-4R. Additionally, IL-13 can bind to IL-13Rα2 (not depicted), which is referred to as non-signaling

decoy receptor. Cytokine-mediated receptor dimerization leads to the activation of receptor-associated Janus kinases (JAK) and consequently to the phosphorylation

and activation of signal transducer and activator of transcription (STAT) proteins. Phosphorylated STAT (pSTAT) proteins subsequently dimerize and translocate to the

nucleus where they initiate transcription of their target genes. Different treatment strategies have been developed to inhibit IL-4R signaling. Lebrikizumab is a

neutralizing anti-IL-13 antibody. Pitrakinra, an IL-4 antagonist, and Dupilumab, an IL-4Rα-blocking antibody, are both preventing cytokine–receptor interaction. JAKs

can also be inhibited pharmaceutically by small molecules. Upadacitinib is a selective JAK1 inhibitor currently being investigated in clinical trials, whereas Tofacitinib

inhibits both JAK1 and JAK3 and is approved for the treatment of rheumatoid arthritis and psoriatic arthritis (76).

cytokine receptor, whereas type II IL-4Rs are made of IL-
4Rα and IL-13Rα1. IL-4 can signal via both type I and type
II IL-4Rs, whereas IL-13 only signals via the type II IL-4R.
Additionally, IL-13 can bind to IL-13Rα2, which is thought to
be a non-signaling decoy receptor of very high affinity to IL-
13. Currently, there are several treatment strategies in clinical
use that interfere with IL-4R signaling. For targeting both
IL-4 and IL-13 signaling Dupilumab, a monoclonal antibody
blocking IL-4Rα, and Pitrakinra, an IL-4Rα antagonist, exist. For
more selectively blocking of IL-13, Lebrikizumab, a monoclonal
antibody targeting IL-13, is of use. Downstream of the IL-4R, the
Janus kinases (JAKs) JAK1, JAK2, and JAK3 can the inhibited
by the use of the small molecule JAK inhibitors Upadacitinib
and Tofacitinib (see also section Biologics and Small Molecules
Targeting the IL-4R Signaling Axis).

Upon the establishment of a type 2 cytokine environment
a positive feed-back loop is initiated where more naïve T
cells differentiate into TH2 cells and stimulation of eosinophils,
basophils, and ILC2 takes place. B cells respond to type
2 cytokines by isotype switching to IgE and production of

antibodies. Macrophages develop under the influence of type 2
cytokines into alternatively-activated macrophages (also termed
M2 macrophages).

At barrier organs, such as the skin, lungs, and intestine,
ILC2 are more numerous than in internal organs without
barrier function. As ILC2 likely serve to amplify type 2 immune
responses initiated by tissue and tissue-resident myeloid cells
carrying PRRs, it is conceivable that type 2 immune responses
at non-barrier sites differ from those at external and internal
barriers. In this context, cobalt chromiummicroparticles injected
intraperitoneally caused a type 2 inflammation dependent on
IL-33 release by macrophages, followed by recruitment of
neutrophils and production of IL-4, IL-5, IL-13, arginase-
1, chitinase-like protein 3 (Chil3 or Ym1), and resistin-like
molecule (RELM)-α (77).

In the lung, type 2 immune responses induce goblet cell
hyperplasia. These cells produce mucins and anti-nematode
protein RELM-β (78, 79). RELM-β together with RELM-α
and arginase-1, produced by epithelial cells and fibroblasts,
respectively, are also involved in tissue repair and deposition
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of extracellular matrix, which in the context of helminth
infections can serve to encapsulate and trap the parasite. Both
IgG and IgE antibodies, produced by B cells, help to limit
the motion and fecundity of the worms (80). Antibodies are
also crucial for surface labeling of pathogens, which favors
opsonization and antibody-dependent cell-mediated cytotoxicity
(ADCC). ADCC is mediated via Fc receptors expressed on many
innate immune cells. Altogether, these Fc receptor-bearing cells
contribute to the reduction of worm fitness, lower transmission,
and expulsion, which all serve to protect the body from
nematode infections.

Whether and how neutrophils are involved in type 2
immunity and which role the affected barrier vs. non-barrier
tissue plays, remains unclear. In mouse models of helminth
infection, neutrophils have been reported to have a beneficial role
during the early pulmonary stages (15), however this also comes
at the price of increased tissue damage (81, 82). Conversely,
in human type 2 inflammatory disorders neutrophils have been
reported to be absent (17). The role of neutrophils in type 2
immune responses will be further discussed later.

Uncontrolled type 2 immune responses can lead to the
development of allergic diseases, including allergic conjunctivitis,
allergic rhinitis, allergic asthma, allergic gastrointestinal
disorders, and atopic dermatitis (AD). These diseases are
characterized by elevated levels of type 2 cytokines and
accumulation of the above-mentioned immune cells (83).
Dupilumab, a monoclonal antibody blocking IL-4Rα (Figure 3),
has been shown to be effective as a treatment of moderate-
to-severe AD and moderate-to-severe asthma (84, 85). Thus,
interference with this central type 2 cytokine receptor subunit
can control some of these allergic diseases.

Type 3 Immunity
Type 3 immunity is typically directed against extracellular
bacterial and fungal infections, and it is characterized by the
presence of the effector cytokines IL-17 and IL-22, which
are prominently synthesized by type 3 ILCs (ILC3) and IL-
17-producing TH (TH17) cells (86). Moreover, IL-26, TNF,
and granulocyte-macrophage colony-stimulating factor (GM-
CSF) are also produced during type 3 immunity. Fibroblasts,
epithelial cells, macrophages and, particularly, neutrophils
become activated in response to these cytokines. IL-17 and GM-
CSF induce extensive recruitment, activation and survival of
neutrophils (87). IL-22 promotes epithelial cell homeostasis and
has also been found to be important in antimicrobial defense (88).

Type 3 immunity is characterized by extensive neutrophil
infiltration. Neutrophils are crucial for protection against and
clearance of fungi (89). Also, immunity to certain encapsulated
extracellular bacteria (e.g., Staphylococcus aureus) depends
on efficient recruitment and activation of neutrophils. The
importance of neutrophils in anti-fungal and anti-bacterial
immunity is also apparent in subjects suffering from CGD and
in patients receiving IL-17-targeting biologic agents (biologics),
as these individuals are more susceptible to fungal and
staphylococcal infections (90, 91).

A typical pathologic manifestation characterized by a type
3 immune response is the chronic-inflammatory skin disease

psoriasis (92). Notably, neutrophil-rich microabscesses (termed
Munro’s microabscesses) in the uppermost layers of the
epidermis are a characteristic hallmark of the skin lesions in
plaque-type psoriasis. Inhibition of IL-17 by the use of IL-17-
targeting biologics is very effective in psoriasis.

NEUTROPHILS IN TYPE 2 IMMUNE
RESPONSES

The Importance of Neutrophils During
Helminth Infections
Several groups have shown that neutrophils are important for
limiting parasite survival and spreading in mouse models of
helminth infections (15, 81, 82). Upon inoculation of mice with
infective third-stage larvae of Nippostrongylus brasiliensis, the
larvae migrate via the lungs to the intestine. Around the same
time as the larvae arrive to the lungs, an increase of lung-
infiltrating neutrophils is observed, which most likely represents
a rapid mechanism to contain spreading. Thus, both mouse and
human neutrophils have been shown to kill helminth larvae
in vitro, when collaborating with macrophages (15). In fact,
there are a number of studies showing that neutrophils and
macrophages collaborate in immobilization and killing of these
parasites. In different nematode infectious models, neutrophils
and macrophages have been described to cluster together around
the pathogen, however, neither of the two cell types was able to
kill the larvae efficiently by itself (93–95).

As previously described, neutrophils are professional
phagocytes, which is important in situations where the microbe
is small. On the contrary, helminths are macropathogens and
due to their size impossible for a neutrophil to ingest. Instead,
neutrophils take advantage of other effector functions, namely
degranulation and NET formation. Guided by virulence factors
and chemokines neutrophils and other granulocytes arrive to
the site of infection. Interaction between antibodies covering the
helminth and Fc receptors on the cells causes ADCC-mediated
degranulation (96). Complement factors serve a similar
function as antibodies and can lead to complement-dependent
cytotoxicity (15). Although eosinophils are acknowledged as the
main effector granulocytes in helminth infestations, basophils
and neutrophils are also recognized for their importance (97, 98).
Both neutrophil granule proteins and NETs are efficient effector
mechanisms to trap helminth larvae (99). Exposure of human
and mouse neutrophils to Strongyloides stercoralis induces an
even faster formation of NETs than the extremely potent NET
stimulator phorbol 12-myristate 13-acetate (PMA).

Even though neutrophils have a very short life span, they
are capable of initiating immune responses that persist long
after they die. One example of this is priming of macrophages.
M2 macrophages have been shown to rapidly surround
nematodes and facilitate killing and clearance during helminth
infection, particularly, during secondary infection (100). This
priming of macrophages to become M2 macrophages during
an initial infection was, however, only possible in the presence
of neutrophils. Without neutrophils, macrophages could not
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efficiently adapt an M2-like transcriptional phenotype, which
also resulted in impaired helminth expulsion.

All these studies support the importance of neutrophils
especially in the early stages of a type 2 immune response
against helminths. However, with activated neutrophils comes
unavoidable tissue damage (82), and it is therefore important that
activated neutrophils are kept in check.

Type 2 Cytokines Dampen Neutrophil
Functions
Evidence From Mouse Models
In contrast to the apparent importance of neutrophils in
helminth infections, there is accumulating evidence that IL-
4R signaling by IL-4 and IL-13 inhibits neutrophil effector
functions (21). Woytschak et al. found that treatment of mice
with IL-4 during cutaneous and systemic bacterial infections
increased bacterial and disease burden, while blood neutrophil
counts, neutrophil migration, and overall survival of animals
decreased (19). The same trend was observed during sterile
inflammation induced by using G-CSF, IL-1β, or monosodium
urate crystals. Peripheral neutrophils of mice treated with IL-4
were found to have lower CXCR2 expression levels, which fits
neatly with their impaired migratory ability. Conversely, bone
marrow neutrophils of IL-4-injected animals expressed higher
levels of CXCR4, offering an explanation for their decreased
egress into the blood stream. All these effects were not observed
in IL-4Rα-deficient mice as well as animals treated with a
blocking anti-IL-4 monoclonal antibody. Moreover, mice lacking
the IL-4Rα were shown to survive a systemic infection with
Listeria monocytogenes that was lethal for wild-type control
animals (19). Throughout all of the experiments performed in
this work, the neutrophils behaved homogenously and there was
no observation of duality that could hint at the presence of
distinct bona fide neutrophil subpopulations.

Chen and colleagues found that neutrophil infiltration
into the lungs upon infection of mice with the helminth
Nippostrongylus brasiliensis was associated with IL-4R signaling
(82). In this model, IL-4Rα-deficient mice presented with
increased pulmonary neutrophil infiltration and worse disease
scores, while neutrophil depletion led to a decrease of acute lung
injury. In a mouse model of RA, a disease where neutrophils
are believed to play a major role in the pathogenesis (101),
Schmid et al. demonstrated that treatment of mice with IL-
4 protected from joint inflammation (102). Other groups
made similar observations treating RA with IL-4 and identified
neutrophils and macrophages as the main targets of the therapy
(103, 104). In a study combining helminth infection and RA,
elicitation of a type 2 immune response by the parasite improved
joint inflammation (105). In a recent publication, Harris and
colleagues showed that IL-4R signaling under hypoxic conditions
directly inhibited the survival of human neutrophils (106).
These results highlight that IL-4R signaling during hypoxic
acute respiratory distress syndrome, protects against neutrophil-
induced lung injury. Under normoxic conditions, IL-4 or IL-
13 did not appear to increase neutrophil apoptosis (20). Thus,
IL-4R signaling seems to have yet another way of limiting

neutrophil actions and protect against the harmful consequences
of uncontrolled neutrophils.

As discussed earlier, micro- and nanoparticles are potent
inducers of type 2 immunity. Since the body cannot degrade
them, microparticle-elicited reactions often do not resolve, but
lead to repeated waves of inflammation and immune cell influx.
Here, IL-4R-mediated dampening of neutrophil responses again
may serve as a preservation mechanism because neutrophils will
not be able to clear the microparticles, but will only potentiate
tissue damage while trying to do so.

Using a unique intravital imaging method, Wang et al. studied
the migration behavior of neutrophils after a focal thermal injury
in the liver. They found that after a short extensive influx,
neutrophils proceeded to reenter the vasculature 12 h after injury
and were finally recruited to the bone marrow in a CXCR4-
dependent manner (107). Here, neutrophils were found to be
responsible for the creation of paths through the tissue which
facilitated vascular regrowth and access for other immune cells.
Woytschak et al. found that treatment of neutrophils with IL-
4 reduced their ability to migrate toward CXCL2 and resulted
in downregulation of its receptor CXCR2, but not CXCR4
(19). Therefore, IL-4R engagement on neutrophils may not only
dampen their migration toward CXCL2, but also promote reverse
migration by shifting the balance toward signaling via CXCR4.

Ma and colleagues showed that the local phenotype of
neutrophils change over time after myocardial infarction in
mice (108). They found that proinflammatory N1 neutrophils
dominated at day 1, whereas anti-inflammatory N2 neutrophils
prevailed at days 5 and 7 after injury while they were not
detected in peripheral blood. Tissue repair and fibrosis is part
of the remodeling taking place after myocardial infarction.
It has been shown that IL-4 and IL-13 are key drivers of
these processes (109). It is therefore possible that the emerging
tissue repair environment with type 2 cytokine milieu shifts
the neutrophils from a pro-inflammatory N1 to an anti-
inflammatory N2 phenotype. Although neutrophils seem to lose
their pro-inflammatory phenotype in a type 2 immune milieu
and may even contribute to the resolution of inflammation,
they are distinct from conventional myeloid-derived suppressor
cells (MDSCs) since the former are mature cells that change
their phenotype in response to type 2 cytokines while the latter
form newly from myeloid precursors in response to G-CSF/GM-
CSF, IL-6, and a variety of other cytokines (110). There have,
however, been reports of IL-4R signaling being important for the
immunosuppressive nature of MDSCs (111, 112).

Translation to the Human Setting
Evidence of IL-4R signaling inhibiting neutrophils not only
covers preclinical studies in mice, but there is also clinical
data suggesting that this mechanism is evolutionarily conserved.
Impellizzieri et al. recently demonstrated that incubation of
human neutrophils with IL-4 or IL-13 significantly reduced their
ability to migrate toward CXCL8 and produce NETs (20). These
findings were mirrored when using freshly-isolated neutrophils
from allergic patients with acute symptoms. Moreover, IL-4- or
IL-13-treated neutrophils from healthy donors and neutrophils
from allergic individuals showed lower surface expression of
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FIGURE 4 | Kinetics of neutrophil activation and inhibition during type 2 immune responses. In an early phase of helminth infestation, neutrophils are quick to be

recruited to the site of infection because they are abundant in the blood stream and are primed rapidly. On their way through the tissue, they leave behind channels

and trails for other cells to migrate more efficiently toward the parasite. Once they encounter the helminth, the neutrophils release pro-inflammatory cytokines and

exert effector functions against the invader. This facilitates the activation of neighboring antigen-presenting cells (APCs). At this stage, only little IL-4 and or IL-13 is

produced by tissue-resident cells, such as type 2 innate lymphoid cells (ILC2), and thus neutrophil functions are unblunted (Left). At later stages, APCs migrate to the

lymph nodes where they initiate differentiation of TH2 cells, which in turn home to the infested tissue and produce their signature cytokines IL-4, IL-5, and IL-13. These

cytokines cause recruitment and activation of professional type 2 effector cells, eosinophils and alternatively-activated macrophages, which use the preformed

neutrophil channels to efficiently reach the pathogen. Our model proposes that, in a physiological condition, the presence of IL-4 and IL-13 dampens neutrophil

activity and thus prevents excessive tissue damage, as these first responders are not needed anymore at this stage and would do more harm than good (Middle). If

this inhibitory mechanism fails, neutrophils continue to fight the helminth simultaneously with eosinophils and macrophages, resulting in profound tissue damage far

beyond the necessary immune response to expulse the parasite (Right). The size of the helminth parasite is not to scale, which would be larger in reality.
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CXCR2 and its functional twin CXCR1, compared to untreated
neutrophils from healthy donors, whereas CXCR4 expression
was unaltered (20). The decrease in migratory ability in vitro
upon IL-4 stimulation was confirmed and extended in a
humanized mouse model, where an air pouch was induced in
the back of NOD-Prkdcscid-Il2rgnull (NSG) mice, followed by
triggering of local inflammation by injection of CXCL8 and
lipopolysaccharide in the air pouch and intravenous adoptive
transfer of human neutrophils. Flow cytometric analysis of
the air pouch content revealed significantly lower counts of
human neutrophils when the cells were pretreated with IL-
4 as opposed to controls, indicating that IL-4R signaling in
human neutrophils leads to impaired migration also in vivo. In
accordance with the findings of Woytschak et al. with mouse
neutrophils, Impellizzieri et al. did not find a duality in neutrophil
functionality in their experiments that would hint at different
bona fide subpopulations.

Biologics and Small Molecules Targeting the IL-4R

Signaling Axis
In a small clinical trial with patients suffering from plaque-
type psoriasis, an autoimmune disease characterized by type 3
inflammation and cutaneous neutrophil infiltration, treatment
with IL-4 resulted in marked disease improvement (113); this
therapeutic effect was likely due to a shift in the cytokine
milieu from a type 3 to a type 2 immune response as well as
a direct inhibition of neutrophils by IL-4. Conversely, in AD,
an inflammatory skin disorder known for its type 2 cytokine
signature, afflicted individuals often suffer from recurrent skin
infections (18). Here, neutrophils are conspicuously absent in
both healthy and lesional skin (17, 114). However, neutrophil
chemoattractants were found to be elevated similarly in psoriatic
and atopic skin (115), thus the stark difference in skin-
infiltrating neutrophils in psoriasis and AD cannot be explained
by differences in chemoattractants. Moreover, treatment of
moderate-to-severe AD patients with the IL-4Rα-blocking
antibody Dupilumab has been shown to not only significantly
decrease disease burden, but also lower the incidence of skin
infections (84, 116, 117). This protective effect against infections
has been observed also for other type 2 immune diseases when
treated with biologics targeting the IL-4R complex, such as
the anti-IL-13 antibody Lebrikizumab in asthma and AD (118,
119) and the IL-4Rα-blocking agent Pitrakinra in asthma (120).
There are also small molecule inhibitors of the IL-4R signaling
axis targeting receptor-associated JAKs. Since JAKs are shared
between different cytokine receptors, they are less selective for
IL-4 or IL-13 signaling, but can also be used to suppress other
pathways. Tofacitinib inhibits JAK1 and JAK3 and is approved
for the treatment of RA and psoriatic arthritis (76). It has also
been investigated for use in AD, both as systemic and topical
treatment (121, 122). The selective JAK1 inhibitor Upadacitinib
is currently being investigated as an alternative to tofacitinib
for treating RA and psoriatic arthritis (76), but it may also be
interesting for the treatment of type 2 immune diseases since
IL-4Rα also uses JAK1 for signaling (Figure 3).

None of the studies involving IL-4 as a therapeutic agent
or inhibitors of the IL-4/IL-13-signaling axis mentioned here,

however, directly examined neutrophil activity before, after
or during treatment. Therefore, we can only speculate that
the amelioration of plaque-type psoriasis upon IL-4 treatment
and the decrease in infections in type 2 diseases upon IL-
4R signaling blockade is, at least in part, the direct result
of increased or decreased IL-4R signaling on neutrophils,
respectively. Further investigations focusing on neutrophils in
these disease and treatment conditions will reveal to what extent
direct IL-4R-mediated neutrophil inhibition contributes to the
clinical pictures.

Taken together, the growing body of evidence indicates that
IL-4 and IL-13 exert an inhibitory effect on neutrophils. Such
inhibition affects neutrophil migration and tissue infiltration
as well as neutrophil effector functions. These effects limit
neutrophil-mediated tissue damage. Although some of these
effects could be the result of the classical type 1 and type 3 vs. type
2 immune regulation, the aforementioned studies clearly prove
that cell-autonomous IL-4R signaling directly curtails mouse and
human neutrophil effector functions.

Hypothesis of Kinetic Involvement and
Exclusion of Neutrophils in Type 2 Immune
Responses
Having discussed the evidence suggesting an inhibitory
role of IL-4R signaling on neutrophils, it seems awkward
that neutrophils have been reported to play a significant
role in type 2 immunity against helminth infections.
Can these two seemingly contradictory paradigms fit
together? We propose a hypothesis that involves a temporal
separation of the two events and considers biological,
physiological, and clinical aspects of type 2 immune
diseases (Figure 4).

Neutrophils are abundant in the blood stream and very
easily primed for attack of pathogens. Hence, as soon as a
helminth parasite invades the body and is recognized as foreign,
there are countless neutrophils already at the right place to
extravasate and serve as a first line of host defense. By creating an
inflammatory environment, neutrophils promote the activation
of antigen-presenting cells (APCs). Moreover, pathogens killed
by neutrophils in these very early stages may be easier for
APCs to take up, digest, and present. Furthermore, starting
from the blood vessel, neutrophils create a channel decorated
with chemokine trails in the tissue, thus facilitating access for
other immune cells (123). At this stage, neutrophils constitute
the overwhelming majority of leukocytes in the tissue and there
are only low concentrations of IL-4 or IL-13 produced by
resident immune cells. Thus, the neutrophils are not inhibited.
APCs then migrate to the lymph nodes where they initiate
differentiation of antigen-specific naïve T cells to TH2 cells.
These in turn home to the infected and inflamed tissue where
they produce their signature type 2 cytokines IL-4 and IL-
13. Due to clonal expansion, there soon are many activated
TH2 cells present and the resulting cytokine milieu leads to
inhibition of neutrophils, but also the recruitment and activation
of eosinophils which are now taking over the neutrophils’
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job. Eosinophils are better equipped for fighting parasites and

helminths, but take longer to be activated and accumulate
in sufficient numbers. Simultaneous action of neutrophils and
eosinophils would be detrimental for the surrounding host

tissues. Thus, as soon as the type 2 immune response is
established, the neutrophils step back and become quiescent due
to IL-4R signaling.

In summary, the neutrophils bridge the time between
pathogen invasion and the arrival of sufficient numbers of
type 2 effector cells by initiating defense and help recruiting

other immune cells. In doing so, they also facilitate the
establishment of an inflammatory microenvironment. Since

overshooting neutrophil activity would be destructive for host

tissues, neutrophils are inhibited once they are not needed
anymore. We thus postulate that the connection between IL-

4R signaling and neutrophil inhibition has evolved as a safety
mechanism to protect the body from neutrophil-inflicted harm.
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