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Cerebral malaria is a life-threatening complication of malaria in humans, and the

underlying pathogenic mechanisms are widely analyzed in a murine model of

experimental cerebral malaria (ECM). Here, we show abrogation of ECM by hemocoel

sporozoite-induced infection of a transgenic Plasmodium berghei line that overexpresses

profilin, whereas these parasites remain fully virulent in transfusion-mediated blood

infection. We, thus, demonstrate the importance of the clinically silent liver-stage infection

for modulating the onset of ECM. Even though both parasites triggered comparable

splenic immune cell expansion and accumulation of antigen-experienced CD8+ T cells

in the brain, infection with transgenic sporozoites did not lead to cerebral vascular

damages and suppressed the recruitment of overall lymphocyte populations. Strikingly,

infection with the transgenic strain led to maintenance of CD115+Ly6C+ monocytes,

which disappear in infected animals prone to ECM. An early induction of IL-10, IL-12p70,

IL-6, and TNF at the time when parasites emerge from the liver might lead to a diminished

induction of hepatic immunity. Collectively, our study reveals the essential role of early

host interactions in the liver that may dampen the subsequent pro-inflammatory immune

responses and influence the occurrence of ECM, highlighting a novel checkpoint in this

fatal pathology.

Keywords: Plasmodium, malaria, cerebral malaria, experimental cerebral malaria, liver-stage, pre-erythrocytic

stage, sporozoites

INTRODUCTION

One of the most severe pathological complications caused by P. falciparum infection is cerebral
malaria (CM) (1, 2). As an experimental murine model for CM, P. berghei ANKA infection
of C57BL/6 mice with a Th1-biased phenotype is well-established and termed experimental
cerebral malaria (ECM) (3). The ECM model recapitulates many aspects of human pathology,
such as up-regulation of inflammatory cytokines, activation of cerebral endothelial cells,
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platelet accumulation, sequestration of leukocytes and infected
red blood cells (iRBCs), reduced blood flow, intracranial
hypertension and hemorrhages, which together lead to
irreversible fatal cerebral pathology (4–10). ECM results in
rapid death often occurring within 4–5 h after the onset of the
first neurological signs, including ataxia, respiratory distress,
seizure, and coma (11, 12).

A central hallmark of ECM is destruction of the blood-brain
barrier (BBB) (12). It is nowwell-established that cytotoxic CD8+

T cells are the primary mediators of ECM development (13–21).
During ECM, parasite-specific CD8+ T cells accumulate along
cerebral vessels, where INF-γ release is thought to cause the
activation of endothelial cells and perforin-mediated disruption
of tight junctions to induce the BBB breakdown (20–24).

A major research focus of ECM has been on terminal immune
responses that take place in the brain using blood transfusion
of infected red blood cells, which have immensely advanced
our understanding of the underlying mechanisms of ECM
pathogenesis. However, there is very limited information on
how the pre-erythrocytic phase of an infection can influence the
disease outcome, where sporozoites from infectious Anopheles
mosquitoes are inoculated, followed by parasite propagation in
the host liver. Currently, the vast majority of ECM research is
conducted by bypassing the pre-erythrocytic phase and directly
starts the experiments from blood-stage infections.

In this study, we investigated the pathogenesis of ECM in
C57BL/6 mice using transgenic Plasmodium berghei ANKA
parasites that moderately over-express profilin under the control
of the apical membrane antigen 1 (AMA1) promoter (25).
Profilin is essential for blood infection and is likely involved in
nucleotide re-loading of actin monomers, thus accelerating the
microfilament turnover and modulating parasite motility (26,
27). Transgenic parasites, termed PRF parasites herein, express
elevated (∼10-fold increase) levels of profilin in sporozoites and
blood-stage parasites (25). All experiments were conducted with

FIGURE 1 | Improved pre-erythrocytic development of PRF parasites. (A) Prepatent period of sporozoite-induced infections. Appearance of blood-stage parasites

was monitored by daily microscopic examination of Giemsa-stained blood films. C57BL/6 mice were infected by intravenous injection of 5,000 WT or PRF hemocoel

sporozoites (n = 22 each). Shown is a Kaplan-Maier analysis of time to first detection of blood infection, ***P < 0.001 (Mantel-Cox test). (B) In vivo quantification of

parasite loads in the liver of infected mice. Livers were harvested 42 h after infection of C57BL/6 mice by intravenous injection of 5,000 WT or PRF hemocoel

sporozoites. Expression levels of P. berghei 18S rRNA were quantified by real-time RT-PCR and normalized to mouse GAPDH. Results represent mean values

(± SEM) (n = 8 each for infected mice; n = 3 for naïve mice). Differences between WT- and PRF-infected livers were non-significant (Mann-Whitney test).

(C) Sporozoite cell traversal. Hepatoma cells were incubated for 30min or 2 h with medium (white; Con), FITC-dextran only (dotted line), and FITC-dextran together

with either WT (blue; WT), or PRF (red; PRF) hemocoel sporozoites. Cells were analyzed by flow cytometry to enumerate the percentage of dextran-positive cells

indicative of sporozoite traversal. Results represent mean values (±SD) of at least three independent experiments with duplicates each. *P < 0.05 (Mann-Whitney test).

hemocoel sporozoites, since they display similar virulence and
immunogenicity as sporozoites isolated from salivary glands (28),
and PRF sporozoites display decreased salivary gland invasion
(25). Lower salivary gland infectivity is in good agreement with
premature sporozoite maturation and led us to hypothesize
that PRF sporozoites might display enhanced liver infection
and population expansion, which has not yet been achieved by
experimental genetics.

We show that PRF blood stages are fully virulent and
pathogenic, since infections with asexual blood-stage parasites
cause ECM. However, these parasites are unable to elicit
ECM pathology when the infection is induced by sporozoites.
Remarkably, this abrogation of ECM occurred upon comparable
onset of blood-stage development, thus allowing us to study,
for the first time, how the liver phase affects the subsequent
development of the cellular immune responses ultimately leading
to ECM. Collectively, our data reveal the pre-erythrocytic
phase of infection as a novel checkpoint for the development
of the subsequent immune response and the progression to
fatal immunopathology.

RESULTS

Enhanced Transmigration and Invasion of
Hepatocytes by Transgenic PRF
Sporozoites
We first characterized pre-erythrocytic development of PRF
sporozoites and injected susceptible mice with 5,000 freshly
dissected hemocoel sporozoites from wild-type (WT)- or
PRF-infected Anopheles stephensi mosquitoes (Figure 1A). The
prepatent period was 3 days for all mice infected with PRF
sporozoites, whereas mice infected by WT sporozoites required
up to 3–4 days for microscopic detection of blood-stage parasites
by Giemsa-stained blood smears (Figure 1A). To gain a better
understanding of liver-stage infection by PRF parasites in vivo
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FIGURE 2 | Full virulence after PRF blood infection, but very low ECM pathology after sporozoite infection. (A) Time course of blood infection after sporozoite

inoculation or transfusion of iRBCs. C57BL/6 mice were infected by intravenous injection of 5,000 hemocoel sporozoites (solid lines) of either wild type (WT; blue) or

PRF (red) parasites (n = 22 each) or 5,000 iRBCs (dashed lines) of WT (blue) or PRF (red) parasites (n = 15 each). Parasitemia was monitored daily by microscopic

examination of Giemsa stained blood-films. Differences between asexual blood-stage propagation were non-significant (Mantel-Cox test). (B) Kaplan-Meier analysis of

time to development of signature symptoms of experimental cerebral malaria (ECM). ***P < 0.001 (Mantel-Cox test). (C) Quantification of parasite loads in the brain

(square), BM (polygon) and liver (triangle) was done by qPCR. Organs were harvested 6 days after infection of C57BL/6 mice with 5,000 WT or PRF sporozoites.

Animals were perfused via the left heart ventricle to remove non-sequestering infected red blood cells from the circulation of blood. Relative expression levels of P.

berghei 18S rRNA were normalized to mouse GAPDH. Results represent mean values (±SD). *P < 0.05 (Mann-Whitney test). (D) Visualization of integrity of

blood-brain barrier in infected mice. Infected mice were intravenously injected with 2% Evans blue dye 8 days after infection by 5,000 WT sporozoites (upper left), PRF

sporozoites (upper right), WT- iRBCs (bottom left), and PRF-iRBCs (bottom right). (E) Vascular leakage also occurs in the spinal cords of mice with ECM symptoms.

Isolated spinal cords are indicated by arrows and show leakage of the dye in mice with signature ECM symptoms.

FIGURE 3 | Cerebral vessels from mice infected by PRF sporozoites maintain a healthy status. (A) Hematoxilin and eosin (H&E) stain of a brain tissue section from an

animal displaying signature ECM symptoms. An arrow indicates RBCs that leaked into the cerebral parenchyma. Scale bar, 10µm. (B) Quantification of hemorrhage

sites based on H&E stains of horizontal cross-sections of the brain (n = 10 each). Results represent mean values (±SD) from at least two independent experiments.
***P < 0.001 (Mann-Whitney test). (C) Visualization of brain vessel integrity. Shown are H&E stains of representative brain histological cross-sections. Comparison of a

healthy vessel (left) from a mouse infected with PRF sporozoites and a collapsed vessel (right) from a mouse infected with WT sporozoites. The latter vessel also

contains accumulated leukocytes. Scale bar, 10µm. (D) Morphological scoring of cerebral vessels based on histological sections. Quantification of mice infected with

5,000 WT sporozoites, PRF sporozoites, WT iRBCs or PRF iRBCs (n = 10 animals for infected groups, n = 3 mice for naïve group; >20 cerebral vessels were

quantified for each animal).
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and in vitro experiments were conducted. Quantification of the
parasite load in the liver 42 h after inoculation with sporozoites
revealed no difference betweenWT or PRF parasites (Figure 1B),
suggesting full maturation of PRF liver stages. However, when
PRF sporozoites were deposited onto cultured hepatoma cells
for 2 h, we detected elevated levels of transmigration in
comparison to WT sporozoites (Figure 1C). Enumeration of
liver stages in cultured hepatoma cells revealed higher numbers
for PRF infection compared to WT infection after 24 and 48 h
(Supplemental Figure 1).

Together, PRF sporozoites are enhanced in cellular
attachment (25), as well as transmigration and invasion
of liver cells as compared to WT sporozoites. This gain of
function is unprecedented and allowed us to explore, whether
enhancement of the first parasite—host interactions may lead to
modulations of infection and immune responses.

Absence of ECM Pathology After Infection
With PRF Sporozoites but Not Blood
Transfusion
We next studied blood infection and intravenously injected
5,000 sporozoites or infected red blood cells (iRBCs) from WT
or PRF parasites into naïve mice (Figure 2A). Quantification
of parasitemia and growth dynamics revealed similar numbers
of iRBCs. Strikingly, the majority of mice infected with PRF
sporozoites (86%) did not develop ECM (Figure 2B). Of 22
mice that were infected with PRF sporozoites, only three mice
developed signatures of ECM-like symptoms on day 7–8 after
inoculation, while all other mice remained symptom-free as
indicated by rapid murine coma and behavior scale (RMCBS)
scores of 18 (29). In contrast, all mice infected with WT or PRF
blood-stage parasites and all mice infected by WT sporozoites
developed signature ECM symptoms (RMCBS scores of 0–4).
PRF sporozoite-infected mice that survived the critical period
of ECM onset (days 7–10 after inoculation) progressed to high
parasitemia, and as a consequence, anemia several weeks later
(Supplementary Figure 2).

To obtain more information about the development of blood-
stage PRF parasites in vivo, the accumulation of parasites was
analyzed in the brain, bone marrow (BM), and liver in perfused
animals on day 6 p.i. with 5,000 sporozoites (Figure 2C),
where no apparent difference between PRF and WT parasite
burden in the three organs was observed. Altogether, these data
demonstrate that PRF blood-stage parasites are fully virulent.
Therefore, we infer from the markedly reduced incidence of
ECM in mice infected with PRF sporozoites that the initial, pre-
erythrocytic stage of a malarial infection profoundly impacts on
the development of ECM.

Reduced Inflammation of Cerebral Vessels
in PRF Sporozoite-Infected Mice
We compared the integrity of the BBB in infected mice as
visualized by the coloration of the brain after intravenous
infection of 2% Evans Blue dye, an indicator of BBB leakage
(Figure 2D). Mice infected with WT sporozoites, WT iRBCs,
and PRF iRBCs all showed strong diffusion of Evans Blue in the

brain on day 7 or 8 p.i., while naïve mice and mice infected
with PRF sporozoites remained unstained. We also observed
vascular pathology in the spinal cord, which correlated with
ECM (Figure 2E), a previously unreported finding. We propose
that the progression of ECM extends to the spinal cord, which
may be due to the disruption of the choroid plexus that acts as
a blood-cerebrospinal fluid barrier (30). Furthermore, sites of
hemorrhage i.e., areas where RBCs had leaked into the cerebral
tissue were quantified by H&E stain of histological sections
(Figure 3A). While hemorrhage sites were frequent in brain
tissue derived from infectedmice with ECM signatures, they were
rarely detected in PRF sporozoite-infected mice (Figure 3B).

Additional key histopathological alterations associated with
ECM are cerebral vessel plugging by RBCs/iRBCs, leukocytes
and platelets (10, 31). Visualization of vessel plugging based
on H&E stain showed vessels that were collapsed within
an enlarged perivascular space in WT parasite-infected mice
(Figure 3C). In contrast, cerebral vessels from naïve mice or mice
infected with PRF sporozoites displayed healthy perivascular
spaces, with the endothelium attached to surrounding tissues
and almost no leukocyte infiltration (Figure 3C). From
these sections, similar proportions (∼90%) of healthy vessels
were scored for naïve and PRF sporozoite-infected animals
(Figure 3D). As expected from the associated pathology,
mice infected with WT sporozoites, WT iRBCs, and PRF
iRBCs displayed vessel plugging in the vast majority (∼80%)
of their cerebral vessels (Figure 3D). In conclusion, mice
infected with PRF sporozoites displayed little morphological
alteration of cerebral vessels despite similar blood-stage
parasite abundance.

Accumulation of Parasite Antigen-Specific
CD8+ T Cells in the Brain and Spleen Is a
Signature of Infection, but Not of ECM
Development
The identification of parasite antigen-specific CD8+ T cells
recognizing an epitope of Plasmodium glideosome-associated
protein 50 (GAP50) allows for their quantification in the
brain during infection (22). We first analyzed the expansion
of splenic CD8+ T cells from day 5–8 after WT and PRF
sporozoite-induced infections by flow cytometry, where
the CD8+ T cell number was not significantly different
between the two infections (Supplementary Figure 3A).
The accumulation of CD8+ T cell number was significantly
increased in infected animals compared to naïve mice
on day 8 p.i., where the increase was more prominent
for the ECM-developing group (Figure 4A). We next
investigated the proportion of antigen-specific CD8+ T
cells by measuring intracellular IFN-γ in isolated cerebral
lymphocytes after re-stimulation with the GAP5040−48

peptide (Figure 4B). The IFN-γ-secreting antigen-specific
CD8+ T cells were not significantly different in the spleen
(Supplementary Figures 3B,C) on day 8 after sporozoite
infection. Furthermore, cerebral analysis revealed that the
numbers, percentages and even the mean fluorescence intensity
of IFN-γ-secreting antigen-specific CD8+ T cells were not
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FIGURE 4 | Quantification of total and antigen-experienced CD8+ T cells in

the brains of infected mice. (A) Time course of total cerebral lymphocyte

counts during the late stages of blood infection. Mice were infected with WT

(blue) or PRF (red) sporozoites by intravenous injection (n = 6 each), and

cerebral lymphocytes were isolated and analyzed at indicated time points.

Shown are total CD8+ T cell numbers. The dotted line represents the mean

cerebral CD8+ T cell number in all naïve animals (n = 16). The scatter dot plots

represent mean values (±SD). **P < 0.01 (Mann-Whitney test). (B) Gating

strategy for detection of intracellular IFN-γ expression in CD3+CD8+ cells after

re-stimulation with PbGAP5040−48 peptide. Shown are representative plots for

naïve animals, as well as mice infected with WT or PRF sporozoites.

(C) Quantification of cerebral CD8+ T cells expressing intracellular IFN-γ after

re-stimulation with PbGAP5040−48 peptide. Shown are numbers of this

population in the brain. The scatter dot plots represent mean values (±SD)

from samples isolated on day 8 from three independent experiments (n = 10

each for infected mice; n = 4 for naïve mice). IFN-γ-secreting antigen-specific

CD8+ T cells number from WT vs. PRF infected animals is non-significant.

**P < 0.01 (Mann-Whitney test).

significantly different after both infections in brain (Figure 4C
and Supplementary Figure 4). Other lymphocyte populations
including CD4+ T, NKT, and NK cells accumulated in the
brains on day 8 p.i., as previously published (31), although
this occurred in lower amounts in mice infected with PRF

sporozoites compared to mice that received the WT parasite
(Supplementary Figure 5), as observed for total CD8+ T cells
(Figure 4A).

Taken together, our data show that infections with PRF
sporozoites elicit high frequency of IFN-γ-secreting antigen-
specific CD8+ T cells, yet trigger a lower accumulation
of total immune cells in the brain, as compared to WT
sporozoites. This finding is reminiscent of what was observed
in mice infected with different strains of P. berghei (20,
22). Our data likely reflect diverse degrees of re-activation
of parasite-specific CD8+ T cells locally in the brain, so
that there is reduced endothelial cell activation upon PRF
sporozoite infections.

Parasite Infection Leads to Similar
Cerebral Myeloid Populations Regardless
of Disease Outcome
Although the contribution of myeloid cells to ECM remains
unclear, these cells represent suitable sensors of an infection
locally. We, thus, examined the cerebral myeloid populations in
our infection models. Cerebral myeloid populations were defined
as CD45med/loCD11b+ cells, which excluded lymphocytes
(Figure 5A). We further excluded Ly6G+ neutrophils, which
were not significantly different between the three groups
(Supplementary Figure 6). Based on their CD45 expression,
myeloid cell populations were separated into CD45lo microglia
and CD45med microglia, monocytes or macrophages, which
are difficult to distinguish further (Figure 5B). Although it has
been reported recently that non-ECM animals display lower
numbers and less activation of microglia (32), we found that
the CD45lo microglia number was not significantly different
between naïve, WT sporozoite- and PRF sporozoite-infected
animals (Figure 5C). There was a comparable increase in the
number of CD45med microglia, monocytes and macrophages in
both groups of infections (Figure 5D). Moreover, the activation
of microglia in infected mice was also apparent from the ionized
calcium-binding adapter molecule 1 (IBA-1) immunostaining
of brain cross-sections (Figures 5E–G). We detected high IBA-
1 expression especially in proximity to the vessels, where
microglia were exposed to parasite antigens, inflammatory
cytokines, and chemokines. Thus, microglia activation was
overall comparable after WT or PRF parasite infections.
We also determined that during WT and PRF sporozoite
infections most of the cells in this population were Ly6Chi

pro-inflammatory monocytes (Supplementary Figure 7A), and
their accumulation in the brain was similar for both groups
of infections (Supplementary Figure 7B). In summary, we
found no difference in the phenotype of myeloid populations
in the brains from WT- and PRF sporozoite infected-mice,
which is in perfect agreement with our observation of
similar parasite growth and abundance in the brain during
both infections.

Interestingly, while investigating Ly6C+ monocytes in
the spleen of mice infected with WT or PRF sporozoites
on day 8 after infection, we found that mice with onset of
ECM displayed a striking loss of CD115+Ly6C+ monocytes
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FIGURE 5 | Quantification of myeloid cells after infection. (A) Representative contour plots from day 8 after infection showing CD45 vs. CD11b expression on live cells

obtained from naïve mice (left), and mice infected with WT (center) and PRF (right) sporozoites. Indicated are gated populations of lymphocytes, CD45hiCD11b− cells

(gray circles) and myeloid cells, CD45med/loCD11b+ cells (red circles). (B) CD45 vs. CD11b expression on the Ly6G− myeloid population. CD45loCD11b+ cells

(orange circles) represent microglia and CD45medCD11b+ cells (green circles) activated microglia, monocytes and macrophages, respectively. (C) Quantification of

CD45lo microglia. Shown are percentage (left) and absolute numbers (right) of CD45loLy6G−CD11b+ microglia. (D) Quantification of CD45medLy6G−CD11b+ cells,

which correspond to CD45med microglia, monocytes and macrophages. Shown are percentage (left) and absolute numbers (right) of CD45med

microglia/monocytes/macrophages in the brain. The scatter dot plots in (C,D) represent mean values (±SD) from samples (n = 4–7) isolated 8 days after infection

from two independent experiments. n.s, non-significant; *P < 0.05; **P < 0.01 (Mann-Whitney test). (E–G) Representative images from the IBA-1+ microglial cells of

brain histological cross-sections. Cerebral vessels are indicated by arrows. The IBA-1 staining reaction was visualized with diaminobenzidine (DAB), highlighting some

microglial cells with thin processes in naïve mice, while they are more prominent in WT sporozoite-infected mice and they also tend to cluster around vessels. This

feature is also pronounced in PRF sporozoite-infected mice, dark brown. Scale bar, 50µm.

in spleen, which was neither apparent in PRF sporozoite-
infected nor in naïve mice (Figures 6A,B). Moreover,

the decrease in the number of CD115−Ly6C+ myeloid

cells in the spleen of mice infected with WT sporozoites

was also pronounced in comparison to PRF sporozoite-
infected mice (Figure 6C). CD115 can be used to distinguish

monocytes from macrophages (33), and CD115 is a receptor

for macrophage colony-stimulation factor (M-CSF) and

IL-34 (34).

PRF Parasites Induce Higher Systemic
Cytokines Levels at the Time of Their
Emergence From the Liver
To address whether PRF sporozoites induced a different immune
response during the liver phase in comparison to WT parasites
we quantified the systemic cytokine levels in the blood on days
0, 3, 5, and 7 after sporozoite-induced infections (Figure 7). In
PRF sporozoite infections, we observed an abrupt rise in the
serum levels of the regulatory cytokine interleukin-10 (IL-10),
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FIGURE 6 | Reduced CD115 expressions on splenic Ly6C+CD11b+ monocytes in mice infected with WT sporozoites during the development of ECM.

(A) Representative contour plots showing gating of Ly6C vs. CD115 expression on CD45+Ly6G−CD11b+ myeloid cells from naïve mice (left), and mice infected with

WT (center) and PRF (right) sporozoites 8 days after infection. An arrow indicates the disappearance of CD115+Ly6C+ monocytes (blue circles) in spleens of mice

infected with WT sporozoites. CD115−Ly6C+ monocytes are gated in gray circles. (B) Quantification of splenic CD115+Ly6C+ monocytes. Shown are percentage

and numbers of CD115+Ly6C+ monocytes in the spleen. (C) Quantification of splenic CD115−Ly6C+ cells. Shown are percentage and numbers of CD115−Ly6C+

myeloid cells in the spleen. The scatter dot plots in (B,C) represent mean values (±SD) from samples (n = 8–11) isolated 8 days after infection from two independent

experiments. n.s, non-significant; *P < 0.05; **P < 0.01; ***P < 0.001 (Mann-Whitney test).

which is known to be the key suppressive cytokine implicated in
ECM prevention (35). Strikingly, IL-10 up-regulation was only
observed on day 3 p.i. (Figure 7A), coinciding with the time
point when transgenic blood-stage parasites emerged from the
liver into the blood circulation (Figure 1A). We also observed
an increase in IL-12p70, IL-6, and tumor necrosis factor (TNF)
on day 3 after PRF sporozoite infections as compared to
WT sporozoite infections (Figures 7B–D). Of note, an early
production of cytokines, such as IL-10 and IL-12 can be
protective rather than deleterious in ECM pathology (36, 37).

Mice infected with PRF sporozoites displayed lower systemic
IFN-γ levels than mice infected with WT sporozoites at day 7
p.i., which is consistent with a lower re-activation of CD8+ T
cells in PRF parasite-infectedmice at the time whenmice infected
with WT parasites develop ECM (Figure 7E). These changes

were specific since the levels of other soluble factors, such as
monocyte chemo attractant protein-1 (MCP-1), were similar in
both infections (Figure 7F).

PRF Pre-erythrocytic Parasites Mount
Reduced Hepatic Immune Responses
To explore whether the pre-erythrocytic phase of infection with
transgenic parasite modifies the subsequent immune response,
we used irradiation-arrested sporozoites that are capable of
invading the host hepatocytes, yet maturation is halted during
early liver-stage development. This approach is typically used
to study the sterile immunization by the whole-sporozoite
vaccination strategies, but it also allows the study of hepatic
immune responses elicited by the early pre-erythrocytic phase
of the infection. Two doses of weekly intravenous inoculations
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FIGURE 7 | Serum cytokine levels are up-regulated 3 days after infection with PRF sporozoites, at the onset of blood infection. (A–F) Serum from peripheral blood was

collected on days indicated after infection with 5,000 WT (blue triangles) or PRF (red circles) sporozoites. Systemic cytokines were captured using a Cytokine Bead

Array and analyzed by flow cytometry. Day 0 results represent data from uninfected mice. Shown are the steady-state levels of the systemic cytokines (A) IL-10, (B)

IL-12p70, (C) IL-6, (D) TNF, (E) IFN-γ, and (F) MCP-1. The results represent mean values (±SD) (n = 5 for WT, n = 4 each for PRF). *P < 0.05 (Mann-Whitney test).

with 10,000 irradiated WT or PRF hemocoel sporozoites were
followed by a challenge infection by 10,000 WT salivary gland
sporozoites 14 days after the last immunization (Figure 8A).
Sterile protection was determined by daily monitoring of
parasitemia after the challenge infection. As expected, naïve mice
became blood-stage positive on day 3 after infection. Only 2 out
of 12 mice immunized with irradiated WT hemocoel sporozoites
became infected and the remaining 10 mice were free of blood-
stage infection throughout the observation period of 3 weeks.
In marked contrast, 7 out of 12 PRF hemocoel sporozoite-
immunized mice developed parasitemia starting 5 days after
the challenge infection (Figure 8B). In conclusion, these data
show that immunization with PRF hemocoel sporozoites induces
weaker immunity, despite the enhanced cytokine production and
sporozoite activity.

We further studied the expansion of hepatic CD8+ T
cells by pre-erythrocytic parasites using irradiated sporozoites.
We found no differences in the total CD8+ T cells after
two doses of weekly intravenous inoculation with 10,000
irradiated WT or PRF hemocoel sporozoites (Figure 8C).
However, there was a marginally reduced number of IFN-
γ-secreting PbTRAP130−138-specific CD8+ T cells expansion
in PRF sporozoite-immunized mice as compared to WT
sporozoite-immunized mice (Figure 8D), in good agreement
with the inferior ability of irradiated PRF sporozoites to

mount sterilizing immune responses (Figure 8B). This finding
suggests that the enhanced early production of cytokines
by PRF sporozoites is linked to dampening of cell-based
protective immune responses in the liver, similar to the
dampening of pathogenic immune responses associated with
ECM disease onset.

DISCUSSION

The utilization of a transgenic parasite line, which displays
enhanced hepatocyte transmigration and invasion, allowed us
to identify a novel checkpoint in ECM disease onset. We
propose that this checkpoint is defined by signatures of cellular
immunology and can bemodulated to the benefit of Plasmodium-
infected hosts. Only few studies addressed how the pre-
erythrocytic phase of the infection impacted on ECM, either
employing chemical attenuated- (38) or knock-out P. berghei
ANKA parasites (32, 39, 40), which are no longer virulent.
Thus, the prevention of cerebral pathology in these infections
can be largely explained by considerable delays in the time to
blood infection or by strongly reduced parasite virulence and
lower infection rates, which do not induce the threshold of pro-
inflammatory responses required for ECM. In marked contrast,
PRF sporozoites displayed no apparent attenuation, yet failed
to induce cerebral pathology in sporozoite-induced infections,
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FIGURE 8 | PRF sporozoites do not induce more liver-stage antigen specific CD8+ T cells compared to WT sporozoites upon immunization. (A) Immunization and

challenge protocol. C57BL/6 mice were immunized twice at weekly intervals with 10,000 irradiated hemocoel sporozoites (10 k γ-spz). Animals were challenged with

10,000 WT salivary gland sporozoites (10 k spz) 14 days after the last immunization. (B) Kaplan-Meier analysis of time to blood infection. Naïve mice (n = 9), WT and

PRF sporozoite-immunized mice (n = 12 each). Blood parasitemia was determined by daily microscopic examination of Giemsa-stained blood films. The statistics for

WT vs. PRF sporozoite-immunized mice were non-significant for Log-rank (Mantel-Cox) test. (C) Enumeration of total liver CD8+ T cell numbers after 14 days from the

last immunization. Livers were isolated for flow cytometric analysis from naïve and WT and PRF sporozoite-immunized mice (n = 5). The results represent mean values

(±SD). (D) Quantification of IFN-γ-secreting antigen-specific liver CD8+ T after 14 days from the last immunization. Hepatic leukocytes were stained for intracellular

IFN-γ production without (left) or after re-stimulation with PbTRAP130−138 peptide (right). The results represent mean values (±SD). *P < 0.05; **P < 0.01

(Mann-Whitney test).

while emerging normally from the liver and being fully virulent
when the infection was induced by blood transfusion of iRBCs.

Irrespective of the parasite strains used and the outcome
of brain pathology, accumulation of IFN-γ-secreting antigen-
specific CD8+ T cell in the brain was readily altered, which
has been similarly observed in previous studies using ECM
inducing ANKA and non-ECM inducing NK65 P. berghei strains
(20, 22). In fact, it has been demonstrated that vascular pathology
is triggered when these parasite antigen-specific CD8+ T cells
interacted with IFN-γ activated cerebrovascular endothelial cells
that cross-present malaria antigens (21–23, 40). PRF sporozoite
infections show healthy cerebral microvessels, but further work
will be required to confirm the molecular mechanism of
protection from the vascular destruction by examining factors
such as cytotoxicity of CD8+ T cells, cerebral chemokine levels
and other increased populations like CD4+ T, NKT, and NK cells.

We did not observe any differences in cerebral myeloid
populations in all infected animals, irrespective of disease
propagation, suggesting that myeloid cells respond to the similar
amount of blood-stage parasites in both infections and reflect
peripheral sensing of inflammation. An interesting observation
in this study is the lack of CD115 marker on Ly6C+ monocytes

in the spleen of mice with ECM symptoms. M-CSF signaling
via CD115 is important for the late stage of monocyte and
macrophage lineage development (41), where in a similarmanner
to fatal ECM pathology, a lethal Listeria monocytogenes infection
has also been reported to induce a down-regulation of CD115
expression on monocytes (42). We could not directly test the
possibility of infiltration of CD115+Ly6C+ monocytes to the
brain due to cleavage of CD115 after the collagenase treatment
during the cerebral leukocyte isolation (43). Further investigation
is warranted to characterize and identify the different subsets
of Ly6C+ monocytes during ECM and other pathological
conditions of Plasmodium infections.

A failure to establish an appropriate balance between pro- and
anti-inflammatory immune responses is believed to be central
to the development of cerebral pathology (44). Profilin from the
distantly related coccidian parasite, Toxoplasma gondii, has been
shown to be a key immunomodulatory protein that is sensed
by the murine-specific Toll-like receptor 11 (TLR11), leading
to activation of the myeloid differentiation primary response
protein 88 (MyD88) pathway in murine dendritic cells (45).
Activation of dendritic cells by T. gondii profilin induces IL-12
followed by IFN-γ production from NK cells and neutrophils,
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which predetermines host resistance to Toxoplasma infection
(46). Systemic up-regulation of IL-12 on day 3 p.i., together
with IL-10, TNF, and IL-6, reflects the early checkpoint and is
a major contributor to the prospective lack of ECM pathology
after PRF sporozoite infection. Although induction of TLR11
was not observed by recombinant Plasmodium profilin (45),
we cannot formally exclude that artificially elevated levels of
Plasmodium profilin also contribute to the observed phenotype,
in addition to an enhancement of parasite transmigration and
liver stage development. While we suggest that the elevated
early cytokine responses signify a host response to enhanced
cellular transmigration, penetration and invasion of sinusoid
cells and hepatocytes by transgenic sporozoites, we cannot
formally exclude that higher expression of the otherwise
inert P. berghei profilin or other proteins driven by the
genetic modification in sporozoites might also contribute to
the immune modulatory property of PRF parasites. Such a
role would, however, be specific to sporozoites, since similar
expression in merozoites (25) does apparently not trigger
such a response, as seen by full virulence of infections with
PRF iRBCs.

Interestingly, despite the enhanced sporozoite activity and
elevated early cytokine responses, the expansion of antigen-
specific CD8+ cells in the liver and sterilizing immunity were
inferior in immunizations with irradiated PRF sporozoites. At
this stage, we cannot determine the level of antigen exposure
by PRF sporozoites; however there appears to be a dampening
effect to the subsequent T cell immunity elicited specifically
by PRF pre-erythrocytic parasites. Careful examination of
detailed morphology during the pre-erythrocytic stages, such as
formation of vacuoles and tubular protrusions will be needed to
unravel the protective scenario of a liver-stage infection that can
ultimately prevent the ECM development.

Further studies on how transgenic sporozoites and liver-stage
parasites develop and interact with the host immune cells are
critical to delineate the involvement of hepatic immunity to
affect the blood-stage outcome. Besides the CD8+ T cells that we
have examined in this study, recent findings by others on γδ T
cells in Plasmodium infection may shed light on the underlying
immune mechanism that determines the prevention of ECM
during PRF sporozoite infection. Absence of IFN-γ-producing
γδ T cells during the liver-stage infection resulted in a less
pro-inflammatory microenvironment that prevented mice from
ECM development, demonstrating the role of hepatic immunity
on cerebral pathology (47). In another study using P. chabaudi
infection induced IFN-γ-secreting γδ T cells during the early
infection, while γδ T cells shifted toM-CSF secretion toward later
time points in infection (48).

In conclusion, our study demonstrates the critical importance
of the pre-erythrocytic phase of infection, which is clinically
silent. Additional work is warranted to uncover the molecular
and cellular mechanisms of the entire cascade that commences
with the first sporozoite-host interaction and ultimately leads
to the detrimental brain pathology. Whether modulation of
the early pre-erythrocytic immune response could also dampen
cerebral malaria in P. falciparum-infected patients remains to
be determined for the development of novel adjunct therapies

and early diagnoses that are urgently needed to alleviate the fatal
outcomes of cerebral malaria in patients.

MATERIALS AND METHODS

Plasmodium berghei Parasites
Anopheles stephensi mosquitoes were raised at 20◦C in 75%
humidity under a 14-h light/10-h dark cycle. NMRI mice were
infected by intraperitoneal injection of wild type P. berghei
(strain ANKA) (49) or the transgenic parasite line expressing
profilin under the control of the AMA-1 promoter (PRF) (25).
iRBCs were collected from a drop of blood obtained from
the tail vein. Sporozoites were isolated from the hemocoel of
infected mosquitoes from day 17–22 after an infectious blood
meal (28). For blood-stage infection, 5,000 iRBCs or freshly
isolated sporozoites were injected intravenously into C57BL/6
mice. To exclude accumulation of unrecognized mutations,
stocks of PRF iRBC were generated from sporozoite-induced
infections, which were confirmed to not display ECM signatures.
Microscopic examination of daily Giemsa-stained blood smears
was conducted to determine parasitemia. Approximately, 20,000
RBCs were screened to determine the prepatent period.

Histopathological Scoring of Brain
Sections
Mice were intravenously injected with 200 µl of 2% Evan’s blue
dye (Sigma-Aldrich) prepared in PBS. After 5–10min, mice were
sacrificed and brain and spinal cord were carefully dissected,
rinsed quickly in PBS, and photographed. Histopathological
scoring of brain sections was prepared from perfused mice.
Organs were fixed in 2ml of 4% formaldehyde for 24 h and
embedded in paraffin blocks. H&E staining was done on 4µm
horizontal sections. Microglia were stained using anti-IBA1
antibody (Wako Chemicals GmbH). Hemorrhage sites and the
status of cerebral vessels were scored microscopically.

Leukocyte Isolation
Leukocytes from spleen, BM and brain were isolated on days
indicated after perfusion with 1xPBS. Brains were collected in
PBS/1% BSA/1mM EDTA on ice, transferred, and incubated in
digestion solution containing 0.02% collagenase type I (Sigma-
Aldrich) and 0.002% DNase I (Sigma-Aldrich) in RPMI medium
for 5min at 37◦C. Samples were incised into tiny sections
then incubated for 10min at 37◦C. Cells were filtered into
15ml falcon and centrifuged for 5min, 1,400 rpm at 4◦C.
Pellets were resuspended in 5ml 30% Percoll (Sigma-Aldrich)
and centrifuged for 20min, 2,000 rpm without break at room
temperature. Fatty layer on top and the supernatant were
aspirated. The cell pellets were resuspended in complete RPMI
as described previously (50). Marrows of tibia were extracted by
flushing the bone. Marrow and spleen were grinded between two
glass slides, and then treated by Gey’s solution (0.155M NH4Cl
and 0.01M KHCO3) to lyse the RBCs. Cells were stained with
DAPI (Thermo Fisher Scientific) to exclude the dead cells and
quantified using MACS Quant Analyzer 10. Isolated cerebral
cells were stained for anti-mouse CD45.2-APC antibody (clone
104; eBioscience) to quantify the leukocyte population.
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Leukocyte Surface Staining
Cells collected from brain, spleen, or BM were filtered through
50-µm cell strainer (Partec) and blocked with antibodies against
Fc-receptors (CD 16/32, clone 2.4G2; in house). Cells were
stained with following anti-mouse antibodies for the time course
experiment: CD3e-PeCy7 (clone 145-2c11; eBioscience), TCRβ-
APC (clone H57-597; eBioscience), CD4-FITC (clone RM4-5;
eBioscience), CD8-BV570TM (clone 53-6.7; Biolegend), CD49b
(clone DX5; in house), and Propidium Iodine (Thermo Fisher
Scientific) to test cell viability. The myeloid cell population was
stained with the following antibodies: CD45.2-APC, CD11b-
Pacific Blue (clone M1/70; in house), Ly6G-FITC (clone 1A8-
Ly6g; eBioscience), Ly6C-Biotin (clone AL-21, BD Biosciences),
CD115-PE (clone AF598, eBioscience), streptavidin-PerCP (BD
Biosciences), and Pacific Orange-N-Hydroxysuccinimide (NHS)
(in house) as viability dye. Stained live cells were acquired
(stopping gate of 100,000 live cells) using a MACS Quant
Analyzer 10 and analyzed by FlowJo software.

Re-stimulation and Intracellular Staining of
Lymphocytes
3 × 106 isolated leukocytes were distributed in 96-well plates
and resuspended in 100 µl of complete RPMI medium.
The immunogenic peptides PbGAP5040−48 (SQLLNAKYL-
NH2; peptides&elephants, Hennigsdorf, Germany) (22) and
PbTRAP130−138 (SALLNVDNL-NH2; peptides&elephants,
Hennigsdorf, Germany) (51) were used. 50 µl peptide diluted
in RPMI (10 g/ml) was incubated for 2 h at 37◦C, 5% CO2.
Thereafter, 50 µl of Brefeldin A (1:1,000; eBioscience) was added
to block secretion of cytokines, and cells were incubated for
additional 4 h. After centrifugation cells were stained for surface
markers with CD3e-PeCy7, CD4-BV421TM (clone RM4-5;
Biolegend) and CD8-BV570TM antibodies, followed by staining
with Pacific Orange-NHS for cell viability. Cells were fixed with
4% paraformaldehyde for 15min at room temperature, and
then permeabilized with Perm/WashTM buffer (BD Biosciences).
Intracellular IFN-γ was stained with Interferon gamma-APC
antibody (clone XMG 1.2; eBioscience). Cells were washed in
Perm/WashTM buffer, then resuspended in PBS/1% BSA for
acquisition (stopping gate of 20,000 CD8+ T cells) with MACS
Quant Analyzer 10 and analysis by FlowJo software (51).

Plasma Cytokine Measurements
C57BL/6 mice were infected intravenously with 5,000
sporozoites. Blood was collected from the tail in a heparinized
micro-hematocrit capillary on days indicated. Samples were
centrifuged at 13,000 rpm for 3min and plasma collected
and stored at −80◦C. Plasma cytokines were assayed by a
cytometric bead array (mouse inflammation kit; BD Biosciences)
as described previously (37). Analysis was performed using a
Fortessa cell analyzer (BD Biosciences) and FlowJo software.

Liver-Stage Development
For the sporozoite cell traversal assay, 24-well plates were
seeded with 300,000 human hepatoma cells (Huh7) per well
and inoculated with 35,000 sporozoites in 300 µl of DMEM
complete medium with 0.5 µg/ µl of FITC-dextran (Thermo

Fisher Scientific) (52). After centrifugation for 5min at 3,000
rpm, the plates were incubated for 30min or 1 h at 37◦C with 5%
CO2. Trypsin-treated cells were resuspended in PBS, filtered, and
immediately acquired by MACS Quant Analyzer 10 (Miltenyi
Biotec) and analyzed by FlowJo software (Tree Star) to quantify
dextran-positive, traversed cells.

To monitor successful parasite development, Huh7 cells
were infected with 6,000 sporozoites isolated in DMEM. For
settlement, the wells were centrifuged for 5min at 3,000 rpm
and incubated for 2 h at 37◦C with 5% CO2. To stop cell
invasion, the cells were washed three times with DMEM to
remove extracellular sporozoites. Thereafter, cells were incubated
for 24 or 48 h to permit development of liver-stage parasites. Cells
were fixed with 4% paraformaldehyde for 10min, followed by
immunofluorescent assay with Hoechst 33342 (Thermo Fisher
Scientific) and anti-P. bergheiHSP70 antibody (53).

Quantitative RT-PCR
Five thousand freshly dissected sporozoites were injected
intravenously into C57BL/6 mice. Livers were isolated after
42 h of infection. For organs collected 6 days post-infection,
animals were first perfused with 50ml of PBS via the left
heart ventricle to remove iRBCs in the periphery. Organs were
rinsed and then homogenized in Trizol reagent (Thermo Fisher
Scientific). Total RNA was isolated, and cDNA was synthesized
(RETROscript, Thermo Fisher Scientific). qRT-PCR was
performed with Power SYBR Green PCR master mix (Thermo
Fisher Scientific) as described previously (54, 55) with the ABI
7500 sequence detection system (Thermo Fisher Scientific).
Gene-specific primers for P. berghei 18S rRNA (gi:160641
[forward, 5′ − AAGCATTAAATAAAGCGAATACATCCT
TAC − 3′; reverse, 5′]) and mouse GAPDH (gi:281199965
[forward, 5′ − TGAGGCCGGTGCTGAGTA TGTCG −

3′; reverse, 5′ − CCACAGTCTTCTGGGTGGCAGTG − 3′])
were utilized for the amplification. The relative transcript
abundance was determined using the 2−11Ct method.

Immunization With Irradiated Sporozoites
Freshly dissected sporozoites were irradiated with 12,000 cGy.
A total of 10,000 irradiated sporozoites were intravenously
injected per immunization. Challenge experiments were carried
out with 10,000 wild-type salivary gland sporozoites. Immunized
animals were monitored for the presence of blood-stage parasites
from day 3 onward until day 14 after challenge by daily
microscopic examination of Giemsa-stained blood films. Sterile
protection was defined as the complete absence of blood-
stage parasites.

Statistical Analysis
Statistics were conducted using GraphPad Prism 5 (GraphPad
Software). Statistical significance was calculated using a Mann-
Whitney test (non-parametric test). A P < 0.05 was considered
significant. Survival curves were compared by using the log rank
(Mantel-Cox) test. Kruskal-Wallis test was performed to compare
the significance of dependent data.
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