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Chikungunya virus (CHIKV) infections can cause severe and debilitating joint and

muscular pain that can be long lasting. Current CHIKV vaccines under development

rely on the generation of neutralizing antibodies for protection; however, the role of T

cells in controlling CHIKV infection and disease is still unclear. Using an overlapping

peptide library, we identified the CHIKV-specific T cell receptor epitopes recognized in

C57BL/6 infected mice at 7 and 14 days post-infection. A fusion protein containing

peptides 451, 416, a small region of nsP4, peptide 47, and an HA tag (CHKVf5) was

expressed using adenovirus and cytomegalovirus-vectored vaccines. Mice vaccinated

with CHKVf5 elicited robust T cell responses to higher levels than normally observed

following CHIKV infection, but the vaccine vectors did not elicit neutralizing antibodies.

CHKVf5-vaccinated mice had significantly reduced infectious viral load when challenged

by intramuscular CHIKV injection. Depletion of both CD4+ and CD8+ T cells in vaccinated

mice rendered them fully susceptible to intramuscular CHIKV challenge. Depletion of

CD8+ T cells alone reduced vaccine efficacy, albeit to a lesser extent, but depletion of

only CD4+ T cells did not reverse the protective phenotype. These data demonstrated

a protective role for CD8+ T cells in CHIKV infection. However, CHKVf5-vaccinated

mice that were challenged by footpad inoculation demonstrated equal viral loads and

increased footpad swelling at 3 dpi, which we attributed to the presence of CD4T

cell receptor epitopes present in the vaccine. Indeed, vaccination of mice with vectors

expressing only CHIKV-specific CD8+ T cell epitopes followed by CHIKV challenge

in the footpad prevented footpad swelling and reduced proinflammatory cytokine and

chemokines associated with disease, indicating that CHIKV-specific CD8+ T cells

prevent CHIKV disease. These results also indicate that a T cell-biased prophylactic

vaccination approach is effective against CHIKV challenge and reduces CHIKV-induced

disease in mice.

Keywords: Chikungunya virus (CHIKV), vaccine, T cell, pathogenesis, cytokine

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02563
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02563&domain=pdf&date_stamp=2019-10-31
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:streblow@ohsu.edu
https://doi.org/10.3389/fimmu.2019.02563
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02563/full
http://loop.frontiersin.org/people/805902/overview
http://loop.frontiersin.org/people/820053/overview
http://loop.frontiersin.org/people/441908/overview
http://loop.frontiersin.org/people/469289/overview
http://loop.frontiersin.org/people/758543/overview


Broeckel et al. CHIKV T Cell Vaccine

INTRODUCTION

Chikungunya virus (CHIKV) is a mosquito-transmitted virus
that causes fever, rash, and debilitating joint and muscle pain in
humans. Though the fever and rash resolve, joint and muscle
pain can be long lasting. According to some studies, up to
75% of CHIKV-infected patients experience chronic arthritic and
muscle pain for months to years following resolution of the
acute disease (1–3). The consequences of chronic joint pain are
significant, with patients reporting limited mobility, depression,
and decreased quality of life (4). CHIKV can rapidly spread and
cause disease in millions of people in a short period of time,
as illustrated by recent epidemics in the Indian Ocean region
(2004–2011) and the Americas (2013–2015) (5–7). Since no
FDA-approved vaccines or antivirals exist for CHIKV, research
into prophylactic and therapeutic interventions are highly
warranted. The protective role for anti-CHIKV neutralizing
antibodies has been well-established in both mouse and non-
human primate models (8–11). Potent neutralizing antibodies
can provide sterilizing immunity if administered prophylactically
or if derived through vaccination. However, after the first few
days of infection, neutralizing antibodies may have limited
efficacy to clear virus from infected tissues (9), suggesting other
immune components, such as T cells, could be involved in viral
clearance of persistent joint-localized CHIKV.

CHIKV vaccine candidates under development elicit both
humoral and cellular responses to CHIKV antigens. CHIKV
vaccines currently being pursued in clinical trials cover a wide
range of platforms including virus-like particle (VLP), live-
attenuated, viral-vectored, and mRNA-based vaccines (12–16).
Vaccine-elicited neutralizing antibodies are the key to protection
against CHIKV, but the direct contribution of vaccine-induced T
cells in protection against CHIKV is rarely characterized. Two
preclinical vaccines, the live-attenuated CHIKV/IRES vaccine
and the modified vaccinia virus Ankara (MVA) vectored
vaccine, assessed the impact of vaccine-induced T cells (17–
20). Both vaccines elicited humoral and cellular responses
against CHIKV antigens. However, in the context of vaccine-
induced neutralizing antibodies, the roll of cellular immunity
appears minimal. In fact, T cell depletion of CHIKV/IRES-
vaccinated A129 mice or adoptive transfer of immune CD4+

or CD8+ T cells did not protect A129 mice from CHIKV (18).
However, a modified vaccinia virus ankara (MVA) vaccine vector
that expresses E3/E2 was shown to require CD4+ T cells for
protection since CD4+ T cell depletion increased susceptibility
to CHIKV challenge (20). While low levels of E2 neutralizing
antibodies were identified following vaccination that may have

Abbreviations: CHIKV, Chikungunya virus; RRV, Ross River virus; SINV,

Sindbis virus; VEEV, Venezquelan equine encephalitis virus; MCMV, mouse

cytomegalovirus; AdV, Adenovirus 5; ELISA, enzyme-linked immunosorbent

assay; ELISpot, enzyme-linked immune adsorben spot; MIP-1α, macrophage

inflammatory protein-1alpha; MIP-2, macrophage inflammatory protein-2; MCP-

1, monocyte chemoattractant protein-1; M-CSF, macrophage colony stimulating

factor; IL-12, interleukin 12; RANTES, regulated upon activation, normal T

cell expressed, and secreted; CNS, central nervous system; CTLA4, cytotoxic T-

lymphocyte-associated protein 4; MHC, major histocompatibility antigen; HLA-

DR, human leukocyte antigen DR isotype.

contributed to the protection seen in A129 mice, a role for direct
cellular immunity or CD8+ T cells was not shown.

CD4+ T cells have been implicated as a major contributor to
joint inflammation during CHIKV infection of mice. Footpad
injection of C57BL/6 mice with CHIKV results in edema,
arthritis, and tenosynovitis in the ankle joint, as well as necrosis
in the musculoskeletal tissues (21). Infiltrating cells in the ankle
include CD4+ and CD8+ T cells, macrophages, neutrophils, and
natural killer cells (21). Mice lacking CD4+ T cells have reduced
inflammation of the footpad after infection, but viral levels in
the blood and ankle are similar to control mice (22). Adoptive
transfer of CHIKV-specific CD4+ T cells into TCR−/− mice also
resulted in increased footpad swelling and joint vascular leakage
compared to controls after CHIKV infection, while viral load
in the blood remained the same as controls (23). Furthermore,
therapeutic administration of mice with CTLA4-Ig after CHIKV
infection inhibited T cell recruitment to the ankle and decreased
footpad swelling (24). In contrast to CD4+ T cells, depletion of
CD8+ T cells fails to reduce footpad swelling (22). This data
supports a pathogenic role for CD4+ T cells but the role for
CD8+ T cells remains unclear. Some evidence suggest T cells
promote viral clearance during CHIKV infection. Mice lacking B
and T cells (Rag1−/− or Rag2−/−) developmore severe persistent
infections characterized by chronic viremia and persistence of
infectious virus in a number of tissues (9, 25). Passive transfer of
neutralizing antibodies into Rag1−/− mice fails to clear CHIKV
in tissues of persistently infected animals (9). In addition, mice
lackingmature B cells (µMTmice) vaccinated with an inactivated
CHIKV vaccine have decreased levels of virus in the serum
compared to control-vaccinated mice after CHIKV challenge,
although the vaccinated mice also had increased footpad swelling
(25). This suggests that vaccine-elicited T cells can provide
limited protection, but this was not directly tested. Combined,
these data are suggestive of a role of cellular immunity in
protection against CHIKV infection.

Antiviral CD8+ T cells have been shown to be important for
reducing viral loads and disease for other alphavirus infections.
Depletion of CD8+ T cells in Ross River virus (RRV) infected
mice at 7 and 12 dpi increased levels of RRV RNA in the
quadriceps at 14 dpi (26). Similarly, infection of CD8α−/−

mice with RRV results in increased levels of RRV RNA in
the quadriceps at 14 and 21 dpi, but equal levels of virus is
detected in the ankle, compared to wild type mice. T cells have
also been implicated in protection against Sindbis virus (SINV)
infiltration into the CNS (27), and CD4+ T cells may protect
against Venezuelan Equine Encephalitis virus (VEEV) -induced
encephalitis in mice (28).

In the current study, we utilized murine cytomegalovirus
(MCMV) and adenovirus (AdV) vaccine vectors as tools to
investigate the role for antiviral CD4+ and CD8+ T cells during
CHIKV infection. We profiled T cell epitopes recognized in
CHIKV mice using a complete CHIKV (22) overlapping peptide
library. Based upon the results from this screen, we generated
a CHIKV fusion gene called CHIKVf5 that encodes several
peptides that elicited T cell IFNγ responses. The fusion gene
was recombined into MCMV and AdV vaccine vectors to elicit
CD4+ and CD8+ T cell responses in mice. After vaccination,
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we observed earlier joint inflammation in mice challenged in
the footpad. However, mice challenged intramuscularly had
significant reduction of viral loads in leg muscle tissue. T cell
depletion experiments demonstrated that CD8+ T cells were
essential for protection in the muscle tissue. Mice vaccinated with
CD8+ T cell epitopes showed decreased CHIKV-induced joint
swelling after footpad challenge. This study describes a protective
role for CD8+ T cells in CHIKV infection and disease.

MATERIALS AND METHODS

Cells
Vero cells, mouse embryonic fibroblasts (NIH/3T3), and 293-
IQ cells [HEK293 cells expressing the lac repressor (29)] were
propagated at 37◦C with 5% CO2 in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 5 or 10% Fetal Bovine
Serum (FBS) and Penicillin-Streptomycin-L-Glutamine (PSG).
Aedes albopictus cells (C6/36s) were propagated at 28◦C with 5%
CO2 in DMEM supplemented with 10% FBS and PSG.

Viruses
CHIKV SL15649 and CHIKV 181/25 was generated from the
infectious clones. Briefly, the infectious clone was digested with
NotI, and DNAwas purified with the QIAquick PCR purification
kit (Qiagen) according to the manufacturer’s instructions. Viral
mRNA was generated with the mMESSAGE mMACHINE
SP6 Transcription Kit (ThermoFisher), and the mRNA was
purified using the RNeasy Mini Kit (Qiagen). Roughly 3 µg
RNA was transfected into Vero cells using Lipofectamine
2000 (ThermoFisher). CHIKV virus stocks were passaged
once C6/36 cells for 72 h, and viral stocks were prepared by
ultracentrifugation over a 15% sucrose cushion (SW 32 Ti Rotor,
1 h 10min, 76,755× g). The virus pellets were resuspended in PBS
and aliquots were stored at−80◦C. For CHIKV limiting dilution
plaque assays, 10-fold serial dilutions of virus stocks or tissue
homogenates were plated on Vero cells. The cells were placed
on a rocker in an incubator at 37◦C with 5% CO2 for 2 h, and
DMEM containing 0.3% high viscosity carboxymethyl cellulose
(CMC) (Sigma) and 0.3% low viscosity CMC (Sigma) was added
to the cells. After 2 days, cells were fixed with 3.7% formaldehyde
(Fisher), stained with 0.5% methylene blue (Fisher), and dried.
Plaques were enumerated under a light microscope.

MCMV Vectors
The Smith strain MCMV bacterial artificial chromosome (BAC)
pSMfr3 (30) was utilized for generating infectious MCMV
vaccines. The gene of interest was inserted in-frame onto the
C-terminus of the MCMV IE2 gene so that the insertion is
co-expressed with IE2 (31). Generation of the MCMV constructs
was performed via a two-step galactokinase/kanamycin
(GalK/Kan) cassette insertion and replacement (32, 33). The
GalK/Kan cassette was generated by PCR with primers that
overlapped ie2 by 50 bp. The PCR product was electroporated
into electrocompetent SW105 cells containing pSMfr3, and
bacteria were selected on Kan-containing agarose plates. The
fusion gene CHKVf5 was generated by overlapping PCR. A PCR
product containing 50 bp homology with ie2 was generated (F

primer: GGTTCTTTCTCTTGACCAGAGACCTGGTGACCG
TCAGGAAGAAGATTCAGTGTGCGGTGCATTCGATGAC,
R primer: AACCTCTTTATTTATTGATTAAAAACCATGACA
TACCTCGTGTCCTCTCAGGCGTAGTCGGGCACATC) and
electroporated into SW105 cells containing the IE2-GalK/Kan
MCMV BAC. Resulting bacteria were selected on 2-deoxy-
galactose (DOG) minimal plates, and the presence of the insert
was confirmed by PCR and sequencing. Virus was reconstituted
by electroporation into NIH/3T3 cells, and passaged five times
to eliminate the BAC cassette prior to ultracentrifugation.
Constructs were screened by PCR and sequenced to confirm the
presence of the insert. MCMVs were titered by plaque assays
on NIH/3T3s. Dilutions of virus was plated on NIH/3T3s, and
cells were placed in an incubator on a rocker. At 2 hpi, a CMC
overlay was added to the cells, and the cells were incubated for
5–7 days, until plaques were formed, prior to fixing and staining
with methylene blue.

Adenovirus Vectors
Replication-defective human Ad5 adenoviruses (del E1, E3) were
generated using the AdMax HiIQ system (Microbix). Genes of
interest were cloned into the shuttle plasmid pDC316(io) and co-
transfected with pBHGlox1E1,3Cre plasmid into 293 IQ cells to
reconstitute virus as previously described (29, 34). Transfections
were performed using the PureFection kit (System Biosciences)
according to themanufacturer’s protocol, and adenovirus plaques
were observed after 10–14 days in cell culture. Viruses were
passaged four times in 293 IQ cells prior to ultracentrifugation.
Constructs were screened by PCR and sequenced to confirm the
presence of the insert. Adenovirus titers were calculated using
limiting dilution assays on 293 IQs in 96-well plates.

Mouse Experiments
All mouse experiments were performed at OHSU in ABSL3
laboratories in compliance with OHSU IACUC protocols. The
small lab animal unit at OHSU is accredited by the Association
for the Accreditation and Assessment of Laboratory Animal Care
(AALAC) International. Animals were housed in ventilated racks
and monitored daily by veterinary staff. C57BL/6J mice were
vaccinated as indicated with MCMV delivered intraperitoneally
(106 PFU, i.p.), and/or AdV injected intramuscularly in the thigh
(108 PFU, i.m.). Mice were challenged with 103 PFU CHIKV in
a 20 µl volume in the footpad (f.p.), or they were challenged
(i.m.) with 103 or 104 PFU in a 20 µl volume in the calf muscle.
Footpad measurements were taken with calipers. For T cell
depletion experiments, mice were administered T cell depleting
antibodies diluted in PBS in a 100 µl volume (i.p.). Vaccinated
groups were injected with 300 µg anti-CD4 (GK1.5, BioXCell),
300 µg anti-CD8 (2.43, BioXCell), 300 µg Rat IgG2b Isotype
Control (LTF-2, BioXCell), or a combination of 300 µg anti-CD4
and 300 µg anti-CD8. T cell depletions were confirmed by flow
cytometry. To confirm T cell depletions, splenocytes were stained
with fluorophore-conjugated antibodies specific for mouse CD3,
CD4, CD8, and CD19. Fluorescent markers were detected on
an LSRII instrument (BD Pharminogen) and data was analyzed
using FlowJo (TreeStar).
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Western Blot Analysis
NIH/3T3 cells were left uninfected or infected with MCMV
CHKVf5 or AdVCHKVf5. Cells were lysed in 1×Cell Lysis buffer
(Cell Signaling) supplemented with 1mM Phenylmethylsulfonyl
fluride (PMSF) (Fisher), scraped, and incubated on ice for
15min. Lysates were centrifuged (4◦C, 10min, 16,000× g), and
supernatants were transferred to a new tube containing Laemmli
buffer. Samples were boiled 10min and loaded onto 4–12% Bis-
Tris SDS-PAGE gels (Thermo/Fisher). Samples were transferred
onto Immobilon-P Transfer Membranes (Fisher). Membranes
were blocked in 5% milk powder in Tris-buffered saline
supplemented with 0.1% Tween 20 (TBST), andmembranes were
probed with anti-HA antibody (Roche, clone 3F10) at 1:1,000
dilution followed by rabbit anti-Rat HRP-conjugated secondary
antibody or anti-GAPDH-HRP (Cell Signaling) for a loading
control. Blots were washed with TBST, and the membrane
was incubated with chemiluminescent substrate to visualize the
bands. The membrane was exposed with X-ray film.

Neutralization Assays
Blood samples were collected and left at room temperature
for 30min to allow for clotting. Blood was centrifuged (5min,
3,000× g) and sera was transferred to a new tube. Sera was heat-
inactivated at 56◦C for 30min. Following heat-inactivation, sera
was serially diluted in DMEM supplemented with 5% FBS and
PSG. Roughly 100 plaque forming units of CHIKV 181/25 were
added to serum dilutions, and the complexes were incubated
at 37◦C for 2 h. Following incubation, complexes were added
to Vero cells and placed on a rocker for 2 h at 37◦C. CMC-
containing media was added to the cells, and cells were placed
in a 37◦C incubator for 2 days prior to fixing and staining.

ELISpot Assays
ELISpot assays were performed as previously described (35).
Briefly, a single cell splenocyte suspension was prepared by
pushing whole spleen through a 70µm cell strainer and rinsing
with 15ml RMPI complete media (10% FBS, PSG). Cells were
pelleted (10min at 650× g), and red blood cells were lysed
with 1× Red Blood Cell Lysis Buffer (Bioleged) for 3min.
Splenocytes were replenished with 10ml RMPI complete and
pelleted as before. Cells were resuspended into 5ml RPMI
complete, counted, and samples were normalized to cell count.
Splenocytes were added to prewashed Mouse IFNγ ELISpot
plates (MabTech) with 1 µl peptide (10 µg/well), 1 µl DMSO,
or 1 µl of phorbol 12-myristate 13-acetate/Ionomycin stock as a
positive control. Splenocytes were incubated on ELISpot plates
for 24–48 h. Plates were washed and incubated with anti-mouse
IFNγ biotin antibody for 2 h and streptavidin-ALP antibody
for 1 h according to the manufacturer’s protocol. Spots were
visualized using BCIP/NPT-plus substrate, and plates were rinsed
with water and dried prior to counting with an AID ELISPot
plate reader.

Mouse Cytokine Multiplex Assay
A Milliplex MAP Mouse Cytokine Magnetic Bead Panel
multiplex assay (Millipore Sigma) was used to quantify the
protein levels for 26 cytokines, chemokines, and growth factors

in ankle tissues from vaccinated and control mice at 8 days
post footpad challenge with CHIKV. Entire ankle samples were
homogenized in PBS with 2mm beads (Propper Manufacturing
Co., Inc.) using a Precellys 24 homogenizer (Precellys Bertin
Technologies). Cellular debris was pelleted by centrifugation at
5,000× g for 2min, and the supernatants were transferred to
a new 1.7ml tube. For the assay, washed antibody-conjugated
polystyrene magnetic beads were incubated with a seven-point
standard curve or 25 µl of ankle tissue homogenate plus 25 µl
of blocking buffer. Samples were incubated at room temperature
in the dark for 2 h, washed and then labeled with biotinylated
detector antibody for 1 h. Following washing with blocking
buffer, the beads were incubated with Phycoerythrin-conjugated
streptavidin for 30min and then washed. Cytokines were
quantified using a Luminex 200TM Detection system (Luminex),
and the data was analyzed and graphed using GraphPad Prism
v6 software.

RESULTS

Identification of CHIKV T Cell Epitopes in
C57BL/6 Mice
Few dominant CHIKV T cell epitopes have been experimentally
described in C57BL/6 mice (23, 36). To identify T cell epitopes
recognized during CHIKV infection of C57BL/6 mice, we
screened T cell responses by IFNγ ELISpot using a CHIKV
18mer peptide library with 10 amino acid overlap. For this
assay, splenocytes were isolated and pooled from three mice
infected with CHIKV for 7 or 14 days (Figure 1A) and cultured
on 96-well ELISpot plates for 2 days in the presence of
peptides, negative control peptides, or PMA/ionomycin (positive
control). Plates were washed and stained for IFNγ. The stained
wells were scanned and spots were enumerated. We identified
several CHIKV peptides that elicited an IFNγ response that
mapped to nsP1, E2, and E1. In addition, we observed a
wider breadth of T cell IFNγ responses at 7 dpi (26 peptides
recognized) that became more refined at 14 dpi (15 peptides).
The screen was repeated (Figure 1B), validating the peptides
eliciting the strongest responses as peptides 47, 256, 350, 439,
and 451. Peptides 451 (CAVHSMTNAVTIREAEIE) and 350
(DNFNVYKATRPYLAHCPD) were previously shown to elicit T
cell responses, providing further validation of our assay (23, 36).
Table 1 lists all of the peptides that consistently elicited an IFNγ

response above background.

Generation of MCMV and AdV-Vectored
Vaccines Directed Against CHIKV
A fusion polypeptide (CHKVf5) was constructed containing two
peptides that elicited strong IFNγ responses (peptide 47 and 451)
with a small region of nsP4 (aa 167–475) that was predicted in
silico to contain several H2-Db restricted T cell epitopes (37).
We identified a dominant epitope in peptide 256 in this region
of nsP4. Peptide 416 (E1), a peptide that consistently failed to
induce IFNγ response by ELISPOT in splenocytes from CHIKV-
infected mice, was included as a control peptide (Figure 2A). The
CHIKVf5 fusion protein also contained an in-frame C′ terminal
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FIGURE 1 | IFNγ responses in C57BL/6 mice at 7 and 14 days post CHIKV infection. Mice were infected with 1,000 PFU CHIKV SL15649 in the footpad. At 7 or 14

dpi, mouse splenocytes were isolated and incubated with individual CHIKV 18-mer peptides overlapping by 10 amino acids and 1e5 cells were incubated on IFNγ

ELISpot plates. At 48 h post incubation, ELISpot plates were washed and analyzed for spot formation. (A) Splenocytes from three mice were pooled and incubated

with each individual CHIKV 18-mer in the CHIKV peptidome. Peptide numbers for reactive samples are indicated. (B) IFNγ- eliciting peptides from (A) were repeated

by ELISpot for two additional animals infected for 7 or 14 days. “LOD” indicates limit of detection.

HA tag for detection. The fusion construct was generated by
overlapping PCR and cloned into shuttle plasmids that allowed
recombineering into a MCMV Smith strain bacterial artificial

chromosome and recombination into an E1A/E3 deleted AdV
genome (Figure 2B). MCMV and AdV were reconstituted, and
the insert was confirmed by sequencing. Western blotting for the
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TABLE 1 | CHIKV-specific immunoreactive peptides in C57BL/6 mice.

18-mer peptide sequence Peptide # CHIKV protein

MSDRKYHCVCPMRSAEDP 10 nsP1

VYAVHAPTSLYHQAIKGV 20 nsP1

HLKGKLSFTCRCDTVVSC 34 nsP1

TCRCDTVVSCEGYVVKRI 35 nsP1

SCEGYVVKRITMSPGLYG 36 nsP1

LNQRIVVNGRTQRNTNTM 46 nsP1

GRTQRNTNTMKNYLLPVV 47 nsP1

TMKNYLLPVVAQAFSKWA 48 nsP1

CCLWAFKKQKTHTVYKRP 53 nsP1

QKTHTVYKRPDTQSIQKV 54 nsP1

RTTNEYNKPIVVDTTGST 109 nsP2

VTWVAPLGVRGADYTYNL 149 nsP2

CVLGRKFRSSRALKPPCV 160 nsP2

PGGVCKAVYKKWPESFKN 171 nsP3

KQHAYHAPSIRSAVPSPF 255 nsP4

SIRSAVPSPFQNTLQNVL 256 nsP4

ELPTLDSAVFNVECFKKF 260 nsP4

GYYNWHHGAVQYSGGRFT 332 Capsid

KPGDSGRPIFDNKGRVVA 335 Capsid

DNFNVYKATRPYLAHCPD 350 E2

GETLTVGFTDSRKISHSC 363 E2

VPKARNPTVTYGKNQVIM 383 E2

MCMCARRRCITPYELTPG 398 E2

PYSQAPSGFKYWLKERGA 439 E1

CAVHSMTNAVTIREAEIE 451 E1

KDHIVNYPASHTTLGVQD 458 E1

Splenocytes fromC57BL/6mice infected with CHIKVwere stimulated with CHIKV-specific

18-mer overlapping peptides, and IFNγ production was measured by ELISpot assays.

Consistent immunoreactive peptides are reported, and peptides that elicited the strongest

IFNγ responses are in bold lettering.

HA tag in lysates from mouse fibroblasts infected with each of
the vaccine vectors confirmed the presence of the fusion protein
expression for both constructs (Figure 2C). CHKVf5 was the
expected size in AdV CHKVf5-infected cells (about 42 kDa). In
the case ofMCMV-CHKVf5, CHKVf5 is expressed as an in-frame
C-terminal fusion onto IE2, and the IE2-CHKVf5 protein was
detected at about 85 kDa.

Immunogenicity and Efficacy Assessment
of MCMV and AdV CHKVf5 Vaccine Vectors
To evaluate vaccine immunogenicity, mice were vaccinated
once with either MCMV CHKVf5, wild type MCMV lacking
the CHKVf5 insert, or PBS by intraperitoneal injection (n =

10/group). Separate groups of 10 mice per group were vaccinated
i.m. in the left quadriceps muscle with AdV-CHKVf5 or AdV-
control. The vaccine groupings and schedule are depicted in
Figure 3A. MCMV vectored vaccines elicit robust CD8+ T cell
responses by 6–8 weeks post vaccination (31, 38). Adenovirus
vaccine-induced CD8+ T cell responses peak between 10
and 14 days post vaccination (39). At 8 weeks post MCMV
vaccination or 2 weeks post AdV vaccination, splenocytes were

isolated from two mice per group for IFNγ ELISpot assays.
Splenocytes were incubated with peptides encoded by CHKVf5
(peptides 47, 256, 260, 416, and 451), the immunodominant
peptides for the MCMV proteins M45 and IE3, or stimulated
with PMA/Ionomycin (Figure 3B). Splenocytes from animals
receiving MCMV CHKVf5 and AdV CHKVf5 developed IFNγ

responses to stimulation with nsP4 peptide 260 and E1
peptide 451. Splenocytes from mice receiving AdV-CHKVf5 also
developed moderate IFNγ responses to stimulation with nsp4
peptide 255. All MCMV-vaccinated mice, but not those receiving
AdV, responded to MCMV-specific peptides M45 and IE3.

The remaining animals were challenged with 1,000 PFU
CHIKV SL15649 s.c. in the right footpad, and four mice
per group were sacrificed at 3 dpi or 28 dpi to measure
immunogencity and antiviral efficacy. Twenty-eight days after
challenge, IFNγ ELISpots were performed on the splenocytes
from all vaccine groups (Figure 3C). While control mice
challenged with CHIKV developed IFNγ responses to CHIKV
peptides, CHKf5-vaccined mice had a higher frequency of
responding cells.

After CHIKV challenge, footpad swelling was monitored from
3 to 16 dpi. Interestingly, the CHKVf5-vaccinated mice had
significantly increased footpad swelling at 3 dpi compared to
controls (Figure 3D). However, serum viremia and tissue viral
loads were not affected by CHKVf5 vaccination (Figures 3E,F).
Similarly, there were no significant differences in ankle tissue
viral loads at 28 dpi (Figure 3G). These data are largely consistent
with studies that showed that T cells do not reduce viral load in
the CHIKV footpad infection model (22, 23).

CHKVf5 Vaccines Induced Protective
Responses in Mice Challenged
Intramuscularly
In general, s.c. footpad CHIKV infection quickly replicates to
high titers in the ankle, which promotes viral replication and
dissemination in a manner that T cells may not be able to control.
To test whether the route of infection influences T cell vaccine
efficacy, we inoculated mice with 1,000 PFU by three different
infection routes (footpad, intramuscular into the calf muscle, or
subcutaneous in the calf) in unvaccinated mice and monitored
footpad swelling and viral tissue distribution (Figure 4). Only
animals inoculated in the footpad developed swelling in the
ipsilateral footpad and ankle (Figure 4A). Similarly, only animals
inoculated via the footpad route developed measurable viremia
at 3 dpi (Figure 4B). Infectious virus was isolated from
footpad-infected animals in both ipsilateral and contralateral
ankles and calf muscles (Figures 4C–F). Animals inoculated
intramuscularly in the right calf had the most consistent and
highest levels of virus in the ipsilateral calf at 5 dpi and detectable
virus in the ipsilateral ankle, while virus isolation from the
contralateral ankle was highly variable. Animals inoculated s.c.
in the right calf had detectable virus in the ipsilateral ankle, but
levels in the ipsilateral calf and contralateral ankle were variable
with no virus detectable in the contralateral calf muscle.

Since the i.m. infection group had consistent viral titers in
the ipsilateral calf and ankle, we chose to vaccinate mice with
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FIGURE 2 | MCMV and AdV vaccine vector expression of the CHKVf5 fusion gene. (A) Shown is the genomic position of the CHIKV peptides contained in CHIKVf5.

(B) The CHIKVf5 fusion gene contains amino acid sequences for peptide 47, 416, and 451 as well as a 308 amino acid portion of nsp4, separated by 2 Gly residues.

A C′ terminal HA epitope (8 amino acids) was added for detection purposes. The CHKVf5 fusion gene was inserted into MCMV as a C-terminal fusion with IE2 and

into a replication defective adenovirus 5 vector (deleted of E1 and E3). (C) Recombinant MCMV and AdV expressing CHKVf5 vectors were tested for HA expression in

transduced NIH 3T3 cells. Cell lysates were analyzed at 1 dpi for HA and the loading controls actin or GAPDH.

CHKVf5 vaccines and challenge i.m. Mice were vaccinated with
MCMV and AdV CHKVf5 or control vaccines as described
above. A second group of mice received a primary vaccination
with MCMV-CHKVf5 or the MCMV control vaccine, and at
8 weeks post prime these animals were boosted with AdV
CHKVf5 or AdV control vaccine, respectively (Figure 5A). Prior
to challenge with CHIKV, T cell responses were measured in
splenocytes from two animals per group by IFNγ ELISpot assays.
While splenocytes fromAdV-CHKVf5 vaccinatedmice produced
higher levels of IFNγ expressing T cells in response to CHIKV
peptide stimulation compared to the MCMV vaccine platform,
T cell response levels were highest for the prime boost approach
(Figure 5B). Since two of the peptides included in the CHIKVf5
are derived from E1, we measured neutralizing antibody levels
in the serum from mice vaccinated by the different regimens
using standard plaque reduction neutralization titer (PRNT)
assays. Sera from uninfected, unvaccinated animals was used as a
negative control, and immune sera as well as a potent neutralizing
monoclonal antibody (4N12) were used as positive controls
for PRNT assays (11). Serum from all the CHKVf5 vaccine
groups failed to neutralize CHIKV, suggesting that the CHIKVf5

vaccine does not elicit infection neutralizing nor enhancing
antibodies (Figure 5C).

Seven mice from each vaccine group were challenged by
i.m. calf injection with 104 pfu of CHIKV. At 5 dpi, mice
were euthanized and tissues were collected for virological
and immunological assessments. Infectious viral titers in the
ipsilateral ankle and calf muscle were determined by limiting
dilution plaque assays from tissue homogenates (Figures 5D,E).
Though there was no statistically significant reduction in virus
load in the ipsilateral ankle, there was a significant reduction in
infectious virus in the ipsilateral calf from all of the CHIKVf5
vaccine groups (MCMV, AdV, and prime/boost) relative to the
appropriate vaccine controls. This finding indicates that the
vaccine dramatically reduces viral loads in the calf muscle, but
not the ankle tissues.

CD4+ and CD8+ T Cells Mediate Protection
by the CHKVf5 Vaccine
Since neutralizing antibodies were not detected in the vaccinated
animals at the time of challenge, we determined whether
protection elicited by the CHIKVf5 vaccine is mediated by the
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FIGURE 3 | CHKVf5 vaccines did not protect mice against a footpad CHIKV challenge. (A) Mice were administered MCMV-CHKVf5, MCMV WT, or PBS i.p. for 8

weeks and then analyzed by ELISpot for the presence of T cell responses or challenged. Separate groups of mice were vaccinated with AdV-CHKVf5 or AdV-Control

for 2 weeks. (B) Splenocytes from two mice per group were collected and IFNγ ELISpot assays were performed by stimulating the splenocytes with CHIKV peptides

(Continued)
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FIGURE 3 | incorporated in the CHKVf5 fusion gene. (C) IFNγ ELISpot assay performed using splenocytes from mice vaccinated with the indicated vaccine and

challenged with CHIKV SL15649 in the footpad (“#” indicates too numerous to count; “nd” indicates not done). (D) Footpad thickness was measured using calipers

from 3 to 16 dpi. (E) At 3 dpi, mice were bled and their serum was titered by limiting dilution plaque assay on confluent monolayers of Vero cells. (F) At 3 dpi, viral RNA

extracted from ipsilateral and contralateral ankles and ipsilateral quadriceps was quantified by qRT-PCR. (G) At 4 wpi, viral RNA was extracted from ipsilateral and

contralateral ankles and viral RNA levels were measured by qRT-PCR.

FIGURE 4 | C57BL/6 mice were infected with CHIKV by three different routes, and their footpad swelling and tissue viral distributions are compared. C57BL/6 mice

were infected with 1,000 PFU CHIKV SL15649 intramuscularly in the right calf (i.m. R calf), subcutaneously in the skin of the right calf (s.c. right calf), or in the right leg

footpad (f.p.). (A) Footpad swelling measurements were taken at 0, 3, and 5 dpi using calipers. (B) Serum from CHIKV-infected mice was isolated at 3 dpi, and viremia

was measured by limiting dilution plaque assay on confluent monolayers of Vero cells. (C–F) At 5 dpi, mice were sacrificed and whole tissues were dissected and

homogenized in 1ml cell culture media. Infectious viral levels in the ankle and calf muscle tissue homogenate were measured by limiting dilution plaque assay on

confluent monolayers of Vero cells (n = 5).

induction of protective T cell responses by T cell depletion
experiments in CHIKVf5 prime/boost vaccinated animals. At 14
days post boost (2 days before challenge), animals were infused

with depleting antibodies targeting CD4+ and/or CD8+ T cells
(Figure 6A). To confirm effective and specific T cell subset
depletion, at 5 dpi splenocytes isolated from three mice per
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FIGURE 5 | CHKVf5-vaccinated mice do not develop neutralizing antibodies to CHIKV, but their splenocytes produce IFNγ in response to CHIKV peptide stimulation.

(A) Mice were vaccinated with the indicated vaccine, challenged with CHIKV i.m., and harvested at 5 dpi. (B) Prior to CHIKV challenge, IFNγ ELISpot assays were

performed on vaccinated mice (n = 2), and (C) sera from each of the mice were tested for neutralization potential via PRNT assays (n = 9). PRNT assay positive

controls included convalescent mouse sera from a previously CHIKV infected mouse (shown in purple) as well as a potent neutralizing monoclonal antibody (4N12;

shown in green). (D) Infectious virus levels detected in the ipsilateral ankle and (E) ipsilateral calf. Statistics were reported on log-transformed data using Holm-Sidak’s

multiple comparison test (*p < 0.05; **p < 0.005; n = 7).

group were collected and analyzed by flow cytometry. As shown
in Figure S1, depletion of specific T cell subpopulations (CD4
and/or CD8) were appropriately depleted to levels of >95%.
At 5 days post challenge, CHKVf5-vaccinated mice that were
untreated or those receiving control rat IgG or CD4+ T cell
depleting antibodies had significantly reduced levels of infectious
CHIKV present in the calf muscle relative to animals that

received the control vaccine. These groups were not significantly
different from each other suggesting that CD4+ T cells alone do
not play a major role in CHIKVf5-mediated protection. However,
depletion of CD8+ T cells increased levels of infectious CHIKV
present in the calf, which was enhanced in mice depleted for both
CD4+ and CD8+ T cells. This finding indicates that while CD8+

T cells are required for vaccine-mediated protection against
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FIGURE 6 | Combined CD8+ and CD4+ T cell depletion reverses the protective effect of the CHKVf5 vaccine. (A) Mice vaccinated with MCMV-CHKVf5 and boosted

with AdV-CHKVf5, or control vectors were treated with 300 µg rat isotype control, anti-CD4, anti-CD8, or anti-CD4 plus anti-CD8 depleting antibodies at 2 days prior

to challenge. Mice were infected i.m. with 10,000 PFU CHIKV SL15649, and (B) ankle and calf tissue viral loads were measured by limiting dilution plaque assays.

Statistical analysis was performed on log-transformed data using Dunn’s multiple comparison test (**p < 0.005; ****p < 0.0001; n = 9). (C) Neutralization assays were

performed using mouse serum isolated at 5 dpi. (D) Splenocytes from vaccinated mice were collected and stimulated with CHIKV peptides on ELISpot plates. The

results of the ELISpot assay are reported (n = 4).

CHIKV i.m. challenge, CD4+ and CD8+ T cells cooperate to
mediate protection in the calf muscle.

As expected, similar viral levels were detected in the ankles
for all groups (Figure 6B). Data in Figure 6C demonstrate

that CHIKV neutralizing antibodies were not present in
the vaccinated mice prior to CHIKV challenge. In addition,
splenocytes from the various groups were analyzed by peptide
ELISpot assay, shown in Figure 6D. These data show that in
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FIGURE 7 | AdV-260 and AdV-451 vaccination elicits T cells responses and protects mice from CHIKV in ipsilateral calf. (A) Mice were vaccinated with AdV-260

and/or AdV-451 or PBS (i.m.). Mice were infected i.m. with 10,000 PFU CHIKV SL15649. (B) Prior to CHIKV challenge, IFNγ ELISpot assays were performed on a

subset of vaccinated mice (n = 2). (C) Virus was measured in the ipsilateral footpad by qRT-PCR at 5 dpi. Statistical analysis was performed on log-transformed data

using Dunnett’s multiple comparison test (ns, not significant; *p < 0.05; ***p < 0.0005; n = 7). (D) At 5 dpi, IFNγ ELISpot assays were performed on splentocytes

from a subset of vaccinated mice (n = 3).

vivo depletion of CD4+ T cells eliminated IFNγ responses for
peptide 255, but responses for peptides 260 and 451 were only
blocked by depletion of CD8+ T cells. These data indicate that
maximum muscle tissue protective immunity elicited by the
CHKVf5 vaccine is mediated by both CD4+ and CD8+ T cells
that act in concert to reduce viral loads in the muscle tissue.

CD8-Specific AdV 260 and AdV 451 Reduce
CHIKV Disease
Since CD8+ T cells were essential for the protective effects of
the CHKVf5 vaccine, we generated adenoviruses individually
expressing the CD8-specific CHIKV peptides 260 and 451.
CHIKV-specific T cell responses in mice vaccinated with AdV-
Control, AdV-260, or AdV-451, demonstrated appropriate IFNγ

responses against peptides 260 and 451 (Figures 7A,B). An
additional cohort of these vaccinated mice were challenged

with CHIKV i.m. AdV 260 vaccination alone resulted in
significantly reduced virus in the ipsilateral calf, but AdV-
451 vaccination, while trending lower than controls, was not
statistically significantly different than mice vaccinated with a
control AdV (Figure 7C). Mice vaccinated with both AdV-260
and AdV-451 had a highly significant decrease in infectious
virus compared to controls. The vaccinated and challenged mice
also showed vaccine-specific T cell responses after 260 and 451
peptide stimulation (Figure 7D). Therefore, the CD8+ T cells
elicited after vaccination with adenovirus-delivered peptides 260
and 451 are protective against i.m. CHIKV challenge.

We next tested efficacy of disease protection for the AdV-
260 and AdV-451 vaccines using the f.p. CHIKV challenge
model as outlined in Figure 8A. Footpad swelling at both of
the biphasic peaks occurring at day 4 and 8 post infection
was significantly reduced in mice vaccinated and boosted with

Frontiers in Immunology | www.frontiersin.org 12 October 2019 | Volume 10 | Article 2563

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Broeckel et al. CHIKV T Cell Vaccine

FIGURE 8 | AdV-260 and AdV-451 vaccination reduces inflammatory cytokine production, protects mice from CHIKV-induced footpad swelling, and increases

survival in Ifnar−/− mice. (A) Mice were vaccinated and boosted with AdV-260, AdV-451, or AdV-Control (i.m.) followed by 1,000 PFU CHIKV challenge in the right

footpad. (B) Footpad swelling was measured for 13 days after CHIKV footpad challenge. Statistics were performed using Dunnett’s multiple comparison test

(*p < 0.05; **p < 0.005; ***p < 0.0005; n = 7) (C) Virus was measured in the ipsilateral footpad by qRT-PCR at 8 and 14 dpi. Statistical analysis was performed on

log-transformed data using Dunnett’s multiple comparison test. (D) Ipsilateral ankle cytokine and chemokines were measured at 4 dpi using a 26-plex mouse cytokine

and chemokine kit. Statistical analysis was performed using Kruskal-Wallis test followed by Dunn’s multiple comparison post-test (*p < 0.05; **p < 0.005; n = 4).

(E) Ifnar−/− mice were vaccinated and boosted with either AdV-Control or both AdV-260 and AdV-451. Mice were challenged with 1,000 PFU CHIKV in the footpad.

(F) Survival of Ifnar−/− mice vaccinated with AdV-Control or AdV-260 and AdV-451 and challenged with CHIKV. Statistics were performed using Log-rank test

(*p < 0.05; n = 10).
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AdV-260 or AdV-451 compared to mice receiving the control
AdV (Figure 8B), despite having no statistically significant effect
on CHIKV viral RNA loads in the ipsilateral ankles at 8 and 14
dpi (Figure 8C). Due to this response, we hypothesized that pre-
existing antiviral CD8+ T cells may be associated with differential
expression of proinflammatory cytokines and chemokines in the
CHIKV-infected ankles. We therefore performed a multiplex
cytokine assay using ipsilateral ankle homogenates harvested
at 4 dpi from mice vaccinated with AdV control, AdV 260,
and AdV 451. From this we observed significantly higher levels
of Eotaxin in challenged AdV Control mice relative to Adv
260, Adv 451, and naïve animals that are unchallenged and
unvaccinated (Figure 8D). Levels of MIP-1α, M-CSF, MIP2,
MCP-1, and RANTES were also elevated in AdV control relative
to naïve but not AdV 260 or AdV 451 groups. Interestingly,
IL-12p70 was significantly increased in the AdV 260 and AdV
451 groups compared to AdV Control, suggesting a positive role
for IL-12p70 in controlling the CHIKV-induced inflammation
after vaccination.

We next tested whether vaccination with AdV-260 and
AdV-451 could improve survival in a lethal CHIKV mouse
model. Mice lacking the type I IFN receptor (Ifnar1−/−)
are extremely susceptible to CHIKV and succumb to virus
infection 3-4 dpi (40), and represent a highly stringent survival
model. Mice receiving AdV-260 and AdV-451 exhibited a
1-day advantage in survival over the AdV-Control group
(Figures 8E,F). Therefore, the CD8+ T cell vaccine could protect
immunocompetent mice from footpad swelling after CHIKV
f.p. challenge, and the vaccine provided significant survival
advantage in Ifnar1−/− mice.

DISCUSSION

While the development of neutralizing antibodies is a clear
immunological correlate of protection for CHIKV, it was
unknown what role T cells play in protection against CHIKV
infection and disease. In the current study, we mapped the T
cell responses to CHIKV in C57BL/6 mice using an overlapping
CHIKV peptide library in order to identify potential CHIKV
targets for development of a T cell vaccine. During this T
cell profiling experiment, we identified 26 unique peptide
sequences that elicited significant IFNγ responses in splenocytes
obtained from CHIKV-infected C57BL/6 mice. Based upon this
information, we constructed a fusion polyprotein that contained
the amino acid sequence for a number of these positive CD4+

and CD8+ restricted peptides. This CHKVf5 fusion gene was
inserted into two different T cell promoting vaccine platforms
including MCMV and AdV. Vaccinated mice developed robust
T cell responses directed against the transgene construct that
were amplified following challenge with CHIKV. Vaccination
prior to footpad inoculation resulted in a dramatic increase
in footpad swelling at 3 dpi. We attribute this to preformed
anti-CHIKV CD4+ T cells. While the CHKVf5 vaccine did not
protect against high ankle viral loads following challenge, it did
significantly reduce viral loads in the calf muscle when i.m.
challenged with CHIKV.

Two crucial findings indicate that the CHKVf5 vaccine elicits
protection through T cells. First, depletion of CD4+ and CD8+

T cells at 2 days before challenge from vaccinated mice negated
the protective efficacy of the vaccine against i.m. challenge
by restoring viral loads to levels observed in vaccine controls
and non-vaccinated mice. It appears that both T cell subtypes
contribute to immune efficacy since depletion of either CD4+

or CD8+ T cells failed to fully restore CHIKV tissue load to
control levels. However, depletion of CD8+ T cells significantly
reduced the ability of mice to control virus indicating a dominant
role for these cells. We presume that CD4+ T cell help is
required for full efficacy but these cells specifically enhance
CHIKV inflammatory joint disease. Second, the CHKVf5 vaccine
does not contain any known CHIKV neutralizing domains. As
such, we did not detect neutralizing antibodies against CHIKV
in any of the vaccinated mice, and the generation of antibody
responses against CHIKV following challenge developed with
normal kinetics and amplitude when compared to controls
indicating that there was no amnestic-type response. Together,
these data demonstrate that the CHKVf5 vaccine constructs
elicit robust T cell responses that protected against CHIKV
in muscle tissues. Finally, we showed that vaccination with
adenoviruses containing CD8+ T cell epitopes did not decrease
joint tissue viral loads after footpad challenge, but it reduced
footpad swelling and inflammation following CHIKV challenge.
In addition, the CD8+ T cell vaccine provided enhanced survival
for Ifnar1−/− mice.

T cell responses directed against CHIKV have been reported
in humans during both the acute and chronic phases of infection.
During the acute phase, there is a mobilization and amplification
of activated CD8+ T cells, followed by CD4+ T cells (41).
Following the acute phase, patients who recovered from CHIKV
and patients with chronic CHIKV-induced arthritis both had
roughly equal frequencies of CHIKV-specific IFNγ-producing T
cells (42). There is also evidence that T cells can enter CHIKV
infected joint tissues in humans. In a synovial biopsy of a patient
with chronic CHIKV-induced arthritis, activated (HLA-DR+)
CD4+ T cells were identified as a major cellular infiltrate, but
oddly, CD8+ T cells were rarely found (1). CHIKV RNA and
antigen have been detected in joint synovial biopsies and muscle
tissue (1, 43), which is suggestive of viral persistence in the joints
and muscle. Though it is not known whether T cells protect
against CHIKV in humans, our data would suggest that the
presence of effective antiviral CD8+ T cells may promote viral
clearance in the muscle tissue and control joint inflammation.

We showed that vaccinated animals had a significant
reduction of CHIKV titers in the calf muscle. The tissue-specific
protection is reminiscent of the study with RRV, where protection
by CD8+ T cells was observed in the muscle tissue during RRV
infection (26), but CD8+ T cells failed to reduce viral loads in
the ankle tissues. Similarly, we found that CHKVf5-elicited T
cells and peptide 260 and 451-elicited T cells were unable to
significantly reduce viral burden in the ankles. Similar tissue-
type targeting occurs following SINV infection, where T cells
are important for viral clearance in the brain and spinal cord
(27). In addition, CD4+ T cells were important for protection
mediated by a live-attenuated vaccine for VEEV (28). Together
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these studies demonstrate the importance of T cells in alphavirus
clearance from infected tissues.

Interestingly, we found that T cell responses elicited by
CHIKVf5 were more frequent and directed against different
epitopes when compared to those observed following CHIKV
infection. For example, splenocytes from CHIKV infected mice
had high frequencies of IFNγ responses to peptides 47-48, 256,
350, 439, and 451.While T cell responses against peptides 350 and
439 were robust, the CHKVf5 did not contain these because it was
designed prior to us determining whether these were CD4− or
CD8− specific. Future T cell vaccine constructs would most likely
add these epitopes as they may impact protection. Since peptides
47, 256, and 451 were included in the CHKVf5 fusion gene, we
expected that vaccinated mice would primarily induce responses
to those epitopes. However, peptide 260 and 451 elicited the
highest frequency of IFNγ

+ T cells in splenocytes from CHKVf5
vaccinated mice indicating that vaccine-induced responses were
skewed toward infection-associated, non-dominant epitopes.
Thus, one could argue that the protection elicited by the CHKVf5
vaccine may be due to this skewing of the immune response
and higher frequencies of responding T cells. Similarly, while
both MCMV- and AdV-CHKVf5 vaccines elicited strong T cell
responses, the breadth of the responses was vaccine vector-
dependent. The AdV-CHKVf5 vaccine directed responses against
peptides 47, 255, 256, 260, and 451, while MCMV-CHKVf5
mainly directed T cells against 260 and 451. Prime-boost with
both vectors increased the frequency and breadth of responses.
Adenovirus vectors elicit potent effector and central memory
CD8+ T cells (44) whereasMCMV vectors, in general, elicit long-
lasting effector memory T cells to vaccine antigens fused to the
C-terminus of the IE2 gene (31, 38, 45). Together, the MCMV
prime/AdV boost may offer advantages in induction of a diverse
T cell memory response to CHIKV epitopes resulting in a more
protective phenotype.

Neutralizing antibodies are an important correlate of
protection for CHIKV, and it would be essential for a prophylactic
CHIKV vaccine to induce neutralizing antibody responses to
protect from CHIKV acquisition. The data presented here show
that a CD8-directed T cell component in a prophylactic vaccine
would be beneficial. This type of vaccine could also be used

to prophylactically boost existing immunity and/or skew the
responses toward additional epitopes for increased protection
against CHIKV acquisition. This approach could be effective
for eliminating CHIKV-induced myalgia and joint swelling in
infected patients. Therefore, future studies will examine the
effects of therapeutic T cell vaccines against CHIKV persistence
and disease.
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Figure S1 | CD4+ and CD8+ T cell depletions were confirmed in splenocytes of

infected mice. Levels of CD4+ and CD8+ T cells were measured in splenocytes

from mice that received Rat isotype IgG, anti-CD4, or anti-CD8 antibodies by

flow cytometry.
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