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Inflammation aims to restore tissue homeostasis after injury or infection. Age-related

decline of tissue homeostasis causes a physiological low-grade chronic inflammatory

phenotype known as inflammaging that is involved in many age-related diseases.

Activation of tryptophan (Trp) metabolism along the kynurenine (Kyn) pathway prevents

hyperinflammation and induces long-term immune tolerance. Systemic Trp and Kyn

levels change upon aging and in age-related diseases. Moreover, modulation of Trp

metabolism can either aggravate or prevent inflammaging-related diseases. In this review,

we discuss how age-related Kyn/Trp activation is necessary to control inflammaging

and alters the functioning of other metabolic faiths of Trp including Kyn metabolites,

microbiota-derived indoles and nicotinamide adenine dinucleotide (NAD+). We explore

the potential of the Kyn/Trp ratio as a biomarker of inflammaging and discuss how

intervening in Trp metabolism might extend health- and lifespan.

Keywords: tryptophan, aging, inflammation, kynurenine, inflammaging, tryptophan 2,3-dioxygenase (TDO),

indoleamine 2,3 dioxygenases (IDO)

INFLAMMAGING: CHRONIC INFLAMMATION THAT DRIVES THE
AGING PROCESS

Inflammation is initiated by the innate immune system in response to mechanical, infectious, or
metabolic tissue stress and aims to restore homeostasis by eliminating damaged cells (1). Aging
is characterized by progressive decline of tissue homeostasis resulting from damaged cellular
components and aberrant functioning of damage-response mechanisms (2).

Age-related changes of the innate immune system are common and include shifts in the
composition of immune cell populations, altered secretory phenotypes and impaired signaling
transduction (3). These changes are paralleled by the development of a chronic inflammatory
state referred to as inflammaging. This is characterized by an imbalance between pro- and
anti-inflammatory responses and fluctuations of inflammatory cytokines, such as interleukin-6
(IL-6), high-sensitive C reactive protein (hsCRP), IL-10 and tissue growth factor beta (TGF-β)
(4, 5). The rate of inflammaging, quantified by measuring these markers, is strongly associated
with age-related disability, disease and mortality (6). It is theorized that inflammaging is driven by
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endogenous ligands released upon age-related tissue damage and
can be aggravated by food excess and attenuated by caloric
restriction, suggesting relevant cross-talk between metabolic and
immune functioning (7).

Understanding how inflammaging is controlled could aid
in the development of diagnostic and therapeutic tools for
many age-related diseases associated with inflammation such
as cancer, atherosclerosis, diabetes mellitus, and Alzheimer’s
disease. Tryptophan (Trp) metabolism is associated with aging
and produces metabolites that control inflammation, regulate
energy homeostasis and modulate behavior (8). We discuss how
activation of Trp metabolism could be involved in the control of
inflammaging and how this can alter the Trp metabolite milieu.
We hypothesize on how this could impact health- and lifespan
and how interfering with Trp metabolism could be used in the
treatment of neurodegenerative diseases.

ACTIVATION OF TRYPTOPHAN
METABOLISM REGULATES
INFLAMMATION

Inflammation Activates Tryptophan
Metabolism
The essential amino acid Trp fuels the synthesis of kynurenine
(Kyn), serotonin (5-HT) and indoles (9, 10). The Kyn pathway of
Trp is the most active pathway of Trp metabolism and produces
metabolites including kynurenic acid and nicotinamide adenine
dinucleotide (NAD+). The Kyn pathway is initiated by the
enzymes tryptophan 2,3-dioxygenase (TDO) and indoleamine
2,3-dioxygenase (IDO and IDO2). In this review, we focus on
the role of IDO1, which we refer to as IDO. Expression of TDO
and IDO (and other enzymes in the Kyn pathway) is species-, cell
type-, and context-specific (11–13).

While IDO plays a minor role in Trp metabolism under
normal circumstances, IDO-dependent Trp metabolism is
strongly activated in response to interferons and other cytokines
that are released upon inflammation (14). Interferon gamma
(IFN-γ) is considered the most potent IDO-activating cytokine
and induces expression in a variety of cell types after it binds
to the IDO promotor-region. The effect of IFN-γ on IDO
activation is best-characterized in macrophages and dendritic
cells (DCs) but is also evident in connective (e.g., fibroblast)
and epithelial tissue (e.g., pulmonary, renal, gastro-intestinal, and
vascular) (15–19).

Other inflammatory signals that activate IDO include lipid
mediators such as prostaglandin E2 (PGE2) and pathogen
particles such as lipopolysaccharides (LPS) (20). In addition,
while the regulation of IDO is often transcriptional, specific
mediators of inflammation induce post-transcriptional and post-
translational modifications that either promote ubiquitination
and proteasomal degradation of IDO or sustain its activity
through phosphorylation (21, 22).

Inflammation-related IDO activity is often measured by the
Kyn/Trp ratio in blood in diseases characterized by excessive
or chronic inflammation including infections, auto-immune
disorders, cardiovascular disease, and cancer (23).

Activation of Tryptophan Metabolism Has
Anti-inflammatory and Immunosuppressive
Effects
Trp metabolism controls hyperinflammation and induces long
term immune tolerance. These effects pivot on the ability of IDO
to alter the local and systemic Kyn/Trp balance (Figure 1A).
This balance directly affects metabolic and immune signaling
pathways that drive an anti-inflammatory response in IDO-
competent cells (e.g., antigen-presenting cells and epithelial
cells). In addition, it changes the function of neighboring cells
(e.g., T cells) by creating a local (and sometimes systemic)
environment high in Kyn and low in Trp. Several molecular
pathways mediate immune and non-immune responses to
changes in intracellular Trp and Kyn levels (Figure 1B).

Trp Depletion in the Metabolic Regulation of

Inflammation and Tolerance
Trp levels influence nutrient sensing systems such as the
general control non-derepressable 2 (GCN2) stress kinase
and mechanistic target of rapamycin complex 1 (mTORC1).
The kinase GCN2 is activated during amino acid depletion
(or imbalance) and causes phosphorylation of eukaryotic
initiation factor (eIF)2α that has cell-type specific effects on
translation. mTORC1 is active during amino acid sufficiency
and governs anabolic metabolism and energy expenditure.
GCN2 and mTORC1 are implicated in the metabolic control of
inflammation by immune and non-immune cells (24).

Trp depletion activates GCN2 in IDO-expressing dendritic
cells and macrophages causing them to produce anti-
inflammatory cytokines including interleukin-10 (IL-10) and
TGF-β instead of immunogenic cytokines (25, 26). Additionally,
Trp depletion can alter the secretory phenotype of neighboring
IDO-incompetent dendritic cells, cause GCN2-dependent
differentiation and recruitment of regulatory T cells (Treg)
(27, 28) and prevent T cell activation and proliferation (25).
These concepts seem to be involved in providing tolerance
to apoptotic cells in the spleen (26, 29). However, the role of
IDO/GCN2-signaling is not limited to immune cells. In an
antibody-induced model for glomerulonephritis in mice, which
is lethal in mice lacking IDO expression, IDO/GCN2 signaling
limited inflammatory tissue damage by inducing autophagy in
renal epithelial cells (15). Taken together, these studies indicate
that IDO can prevent inflammation and promote tolerance in a
context-specific manner by regulating GCN2 activity in immune
and non-immune cells.

mTORC1 is a central regulator of cellular function. Cells
of the innate immune system largely depend on mTORC1
to enable the metabolic transition that is required for their
activation (30). mTORC1 orchestrates the cellular immune
behavior in response to extracellular and intracellular factors
such as inflammatory stimuli, glucose availability and amino
acid sufficiency. In vitro studies showed that IFN-γ inhibited
mTORC1 by depleting cellular Trp levels in IDO-expressing
cells (31) causing suppression of mTORC1 co-localization to
the lysosome and altering the metabolic functioning of human
primary macrophages (32). The relevance of IDO/mTORC1
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FIGURE 1 | Mechanisms involved the regulation of inflammation by Trp metabolism. Inflammation activates Trp metabolism and causes systemic and intra- and

extra-cellular changes in the Kyn/Trp ratio that suppress the inflammatory response (A). The molecular steps involved in the immunomodulatory effect of activation of

Trp metabolism (B): An inflammatory stimulus activates IDO (and in specific instances TDO) in immune and non-immune cells causing reduced Trp systemic and local

Trp levels and increased intra- and extracellular Kyn content (1); inflammation induces increased expression of AhR (2) that is activated by its ligand Kyn and results in

the secretion of anti-inflammatory cytokines such as IL-10 (3); AhR ligand-activation causes phosphorylation of IDO and results in sustained IDO activity and the

secretion of TGF-β, which is involved in a feedback loop by inducing IDO phosphorylation (4); inflammatory cytokines such as TGF-β and IL-10 induce the amino acid

transporter SLC7A5 on the plasma membrane of naïve T-cells causing transport of Kyn into the T cell (5); activation of GCN2 by Trp depletion and AhR

ligand-activation by Kyn cause the differentiation of naïve T cells toward regulatory T cells (6). Solid arrows indicate regulatory (transcriptional or translational) and

enzymatic effects, dashed arrows indicate active or passive cross-cellular and cross-compartmental transport of Trp and Kyn. Trp, Tryptophan; Kyn, Kynurenine, IDO,

indoleamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; AhR, aryl hydrocarbon receptor; TGF-β, tissue growth factor beta; IL-10, interleukin 10; SLC7A5,

solute carrier family 7 member 5; GCN2, general control non-derepressable 2 stress kinase.

signaling in controlling inflammation in vivo is yet to
be established.

Future studies are needed to determine how the cellular Trp
content is regulated in response to exogenous and endogenous
inflammatory stimuli and how Trp levels affect GCN2 and
mTORC1 signaling to determine the metabolic control of
inflammation in vivo.

Kyn Activates the Aryl Hydrocarbon Receptor
Activated Trp metabolism results in increased Kyn production.
The role of Kyn in the regulation of inflammation is largely
mediated through its function as a ligand of the aryl hydrocarbon
receptor (AhR), a transcription factor that controls local and

systemic immune responses. Recent studies are suggesting that
Kyn/AhR signaling is involved in the generation of Treg cells and
the modulation of the immune phenotype of DCs.

Treg cells are derived from naïve T cells and are involved
in maintenance of immunological tolerance but also aid
macrophages during the resolution of inflammation by
stimulating them to secrete anti-inflammatory cytokines (33) and
aging is associated with increased Treg populations in immune
and non-immune tissue (34). Kyn supplementation can activate
AhR in naïve T cells in the presence of specific inflammatory
cytokines and directly drive Treg differentiation (35). Although
Kyn passes relatively easily across the cell membrane of most cell
types, recent data suggest that Kyn-dependent AhR activation in
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T cells requires Kyn transport across the amino acid transporter
SLC7A5, which is expressed upon T cell activation (36). DCs
play an essential role in creating the microenvironment that is
required for Treg differentiation. To do so, DCs take on a specific
secretory phenotype that is also driven by Kyn-dependent AhR
activation by Nguyen et al. (37). Interestingly, AhR activation can
also induce the expression of IDO, suggesting a Kyn/AhR/IDO
feedback loop that is possibly involved in the maintenance of an
immunosuppressive phenotype in DCs (38).

IDO function in DCs seems to be sustained by
phosphorylation caused either by a chaperone of AhR that
is released upon Kyn binding (39) or through autocrine TGF-β
and NF-κB dependent signaling (22). In the latter study, IDO
seemed to act through a non-catalytic mechanism. In both
studies, IDO phosphorylation sustained the immunomodulatory
phenotype of DCs necessary for long-term tolerance to
inflammatory stimuli. As this type of tolerance could be required
to dampen age-related inflammation, it would be of great interest
to study IDO phosphorylation in aged immune tissue.

To conclude, IDO/Kyn/AhR signaling can modulate
the innate immune system to create an anti-inflammatory
microenvironment that is favorable for the generation
of Treg cells and critical for the maintenance of
long-term immunosuppression.

Tryptophan Metabolism Controls
Inflammation in vivo
The important role of Trp metabolism in controlling
inflammation is highlighted by studies in IDO deficient mice.
These mice show no apparent inflammatory phenotype or auto-
immune disorders (within controlled, pathogen-free laboratory
facilities). Yet, when confronted with an inflammatory stimulus
they develop severe inflammatory diseases. These include
pulmonary infections in response to stem cell transplantation
(40), antibody-induced renal inflammation (15), auto-immunity
in response to chronic exposure to apoptotic cells (29), severe
colitis in response to 2,4,6-trinitrobenzene sulfonic acid (17),
aggravation of hepatic inflammation in response to a high-fat
diet (41) and aggravation of hypercholesterolemia-related
atherosclerosis (42). Of note, IDO-deficiency protected from
inflammation in a mouse model of chronic gastric inflammation
by modulating B cell immunity and suppressing cytotoxicity
of natural killer cells (43). The fact that IDO seems to control
inflammation in response to so many non-infectious stimuli
including metabolic stress, underlines its function as a general
regulator of inflammation and suggests that it could be involved
in the regulation of inflammaging.

Other Tryptophan Metabolites Involved in
Inflammation
Other Trp metabolites are also involved in the control of
inflammation and tissue damage. Examples of this include
serotonin, implicated in intestinal inflammation (44); kynurenic
acid, which exerts anti-inflammatory changes in adipose tissue
(45); 3-hydroxyanthranilic acid and cinnabarinic acid (two other
Kyn metabolites) that are, respectively, connected to vascular

inflammation (46) and autoimmune encephalomyelitis (47);
NAD+, which prevents renal kidney injury (48, 49) and regulates
macrophage immune responses (50); and indoles, crucially
involved in gastro-intestinal and neuronal inflammation (51).

Although a discussion of the specific roles of these metabolites
in age-related inflammation is outside the scope of this review,
it is important to consider the broad role of Trp metabolism
in inflammation.

TRYPTOPHAN METABOLISM AS A
BIOMARKER AND THERAPEUTIC TARGET
IN INFLAMMAGING

There is limited evidence of a direct, mechanistic, role of
Trp metabolism in inflammaging. Yet, observational studies
have indicated that Trp metabolism could be a biomarker
for inflammaging. In addition, Trp metabolism could provide
therapeutic targets to treat age-related diseases associated with
inflammation and possibly even extend lifespan.

The Kyn/Trp Ratio as a Biomarker for
Inflammaging
The Kyn/Trp ratio, measured in blood, is robustly associated
with aging in humans (Table S1) (52–60). The fact that this
association is already evident in healthy young adults (61) and
persists throughout life (56), implies that the age-dependent
increase in the Kyn/Trp ratio is not secondary to the onset
of disease but rather represents a physiological age-related
change. In addition, markers of immune activation are, already
in young adults, strongly associated with the Kyn/Trp ratio
(62). Taken together, these observational data suggests that the
Kyn/Trp ratio could provide a valuable marker for the rate of
(physiological) inflammaging.

As inflammaging is involved in the onset of age-related
diseases, a marker for inflammaging should also predict the onset
of age-related diseases. This is the case for the Kyn/Trp ratio. For
example, an increased Kyn/Trp ratio was found to be associated
with increased frailty (63), reduced cognitive performance
(64), increased risk of cardiovascular disease (65, 66) and
mortality (56, 66) in aged individuals. Other Kyn metabolites,
including the 3-hydroxyanthranilic acid/anthranilic acid ratio
and kynurenic acid, have also been associated with inflammation
and poor outcome in the context of (age-related) diseases of the
brain (67, 68).

The Kyn/Trp ratio—and potentially other Kyn pathway
metabolites—could thus be valuable readouts of the rate of
physiological inflammaging in healthy individuals and predict
the onset of age-related diseases associated with chronic
inflammation. In addition, the Kyn/Trp ratio meets the criteria
for a biological age biomarker (as opposed to chronological
age) (69). As a single biomarker is seldomly able to predict
complex biological processes, the use of the Kyn/Trp ratio in
the prediction of inflammaging and biological aging should
be validated in concordance with other potential biomarkers
of aging preferably in combination with immune markers for
sustained inflammation [e.g., GlycA (70)]. These studies should
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FIGURE 2 | Implications of inflammaging-dependent shunt of Trp metabolism. Age-related decline of tissue homeostasis causes a physiological low-grade chronic

inflammatory phenotype known as inflammaging. We hypothesize that Trp is metabolized toward the Kyn pathway in order to control age-related inflammation.

Consequent disturbances of Trp and Kyn metabolites could be involved in age-related diseases and reduced lifespan.

ideally address intraindividual variability of such markers by
making use of longitudinal study designs.

Consequences of Kyn/Trp Shunt in
Inflammaging
An inflammaging-related shunt of Trp metabolism toward extra-
hepatic Kyn production could impact the functioning of Trp
metabolites in a range of organs during aging (Figure 2).

Indoles in Gastro-Intestinal and Metabolic

Functioning
The microbiome is increasingly recognized to play an important
role in aging and age-related disease (71). Indoles are
microbiota-derived Trp metabolites that are implicated in
immune regulation and affect gastro-intestinal functioning
(51). A recent paper showed that dietary-induced obesity
increased intestinal IDO activity shifting Trp metabolism toward
the production of Kyn and away from microbiota-derived
metabolites (72). Inhibition of IDO in the gut improved
insulin sensitivity and resulted in reduced chronic inflammation.
In addition, age-related changes to the microbiome were
associated with increased expression of enzymes involved in
microbial Trp metabolism (73). These data highlights the
importance of microbiota-dependent Trp metabolism and
suggest that activation of intestinal IDO and age-related
changes in microbiome composition can deplete the body of
health-promoting indoles while affecting the systemic Kyn/Trp
balance. In addition, it provides relevant evidence that links
metabolic inflammation (metaflammation) to gastro-intestinal
Trp metabolism and metabolic health. In this context, it is
interesting to note that Trp metabolites and indoles are emerging
as modulators of adipose tissue homeostasis and obesity (45,
74, 75). Age-related gastro-intestinal metaflammation could thus
cause metabolic disturbances through altering microbiome and
host Trp metabolism.

De novo NAD+ Synthesis in Age-Related Tissue

Decline
The liver metabolizes the majority of Trp in a TDO-dependent
manner producing NAD+ or acetoacetyl-CoA (9). NAD+ is
a coenzyme and cosubstrate for several important regulatory
proteins involved in cellular metabolism and damage such as
sirtuins and Poly(ADP-ribose) polymerases (PARPs). NAD+ can
be generated de novo from Trp or through salvage pathways.
While in vitro the contribution of de novo NAD+ synthesis is
limited, in vivo NAD+ is actively synthesized de novo from Trp,
especially in the liver and the kidney (76).

Declining cellular NAD+ content is a cross-species phenotype
of aging that is associated with a range of age-related diseases
(77). Boosting de novo synthesis of NAD+ from Trp in the liver—
by blocking acetoacetyl-CoA production—improved hepatic
function and inflammation in mice on a high fat diet through
modulation of mitochondrial function (78). Similarly, increasing
de novo synthesis of NAD+ was protective in mouse models
of renal damage (49, 78) and restored age-related functional
decline of macrophages (50). These recent studies underline
the relevance of de novo NAD+ synthesis in modulating
health and lifespan by regulating mitochondrial function in
metabolically active tissue such as immune cells and the liver.
Inflammaging could shunt Trp metabolism toward extrahepatic
tissue and possibly contribute to age-related hepatic NAD+

deficits, providing new evidence for theories that link age-related
inflammation and metabolic dysfunction (7).

Peripheral Trp Metabolism as a Target for

Neurodegenerative Diseases
TDO2 and IDO expression in the brain is low and restricted to
specific brain regions. Trp metabolism in the brain is therefore
largely dependent on transport of Trp and Kyn across the blood-
brain barrier. Modulating peripheral Trp metabolism can thus
alter the functioning of Trp and Trp metabolites in the brain
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(13). In mouse models of Alzheimer’s disease and Huntington’s
disease peripheral inhibition of the Kyn pathway prevented
neurodegeneration and memory-deficits (79, 80). Similarly,
inhibition of TDO was neuroprotective in fly and worm models
of Alzheimer’s and Parkinson’s disease (81–83). Although the
mechanisms that underlie these findings are largely unknown and
are difficult to study due to cell type-specific expression of Kyn
pathway enzymes in the brain, they could involve a direct effect
on protein aggregation, altered immune responses, changed
mitochondrial function, or variations in levels of kynurenic acid–
a modulator of neurotransmission (13). In addition, the long-
term activation of AhR potentially contributes to vascular aging,
which is a known risk factor for neurodegenerative diseases (84).

Trp in the Regulation of Lifespan
Evidence from studies in Caenorhabditis elegans and rodents
suggests that targeting Trp metabolism could extend lifespan.
For example, we showed that knockdown of tdo-2 in C. elegans
increased lifespan with ∼15% (83). This effect was dependent
on daf-16, the C. elegans homolog of the forkhead box protein
O (FOXO) family of transcription factors. Accordingly, TDO
inhibition and Trp feeding extended lifespan in other studies in a
daf-16-dependent manner (85, 86).

In rats Trp content in liver, kidney and brains decreases with
age while Kyn content in these organs increases (87). A study
across 26 mammalian species showed that the Kyn/Trp ratio in
the liver of healthy adult animals was associated with species-
specific maximum lifespan (88); species that showed a higher
Kyn/Trp ratio were shorter lived.

As TDO inhibitors are readily available and TDO knockout
mice are viable, these models could be used to study the
effects of TDO inhibition on lifespan. However, caution
should be warranted as inhibition of Trp metabolism could

aggravate immune responses upon inflammatory stimuli
(not present in a laboratory context) and may lead to an
exacerbated inflammatory environment during inflammaging,
which could have dire consequences on health. In addition,
failure of recent clinical trials with IDO inhibitors in cancer
have underlined that a more thorough understanding of
the physiological functions of the Kyn pathway is needed
to successfully target the Kyn pathway in disease (10).

CONCLUSION

Trp metabolism regulates inflammation, energy homeostasis,
and brain functioning. Age-related chronic inflammation—
inflammaging—shunts Trp metabolism toward its
immunomodulatory catabolite Kyn. Alterations of other Trp
metabolites, as a consequence of this adaptive anti-inflammatory
mechanism, could drive aging and underlie pathophysiology of
age-related diseases. Future studies should address the value of
Trp metabolism as a biomarker for (un)healthy aging and as
drug target for inflammaging-related disease.
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