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Viral encephalitis is a rare but clinically serious consequence of viral invasion of the

brain and insight into its pathogenesis is urgently needed. Important research questions

concern the involvement of the host innate immune response in pathogenesis, key to

which is the role played by microglia, resident macrophages of the brain parenchyma.

Do microglia have a protective function, by coordinating the innate immune response to

viral infection, or do they drive pathogenic neuroinflammation? Here we synthesize recent

data from mouse models of acute viral encephalitis, which reveal an unambiguously

protective role for microglia. Depletion of microglia, via blockade of colony-stimulating

factor 1 receptor (CSF1R) signaling, led to increased viral replication accompanied

by more severe neurological disease and heightened mortality. Whilst the underlying

mechanism(s) remain to be defined, microglial interactions with T cells and phagocytosis

of infected neurones appear to play a role. Paradoxically, the production of inflammatory

cytokines was increased in several instances following viral infection in microglia-depleted

brains, suggesting that: (i) cells other than microglia mediate inflammatory responses

and/or (ii) microglia may exert a regulatory function. Under certain circumstances the

microglial antiviral response might contribute negatively to longer-term neurological

sequelae, although fewer studies have focused on this aspect in encephalitis models.

Understanding regulation of the microglial response, and how it contributes to disease

is therefore a priority for future studies. Collectively, these findings demonstrate the

central role of microglia in pathogenesis, suggesting the exciting possibility that defects

of microglial function might contribute to encephalitis susceptibility and/or outcome

in humans.

Keywords: viral immunity, microglial depletion, CSF1R, PLX5622, IL34, interferon, neuroimmunology, central

nervous system

INTRODUCTION

Viral encephalitis is defined as pathological inflammation of the brain parenchyma secondary to
viral infection (1). This syndrome is a rare but clinically serious outcome of infection with a
range of DNA and RNA viruses. Encephalitis is associated with appreciable mortality and high
rates of permanent neurological impairment in survivors, and in most cases there is no available
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antiviral therapy (1). Annual healthcare expenditure associated
with the acute care of patients with encephalitis was estimated
in the region of $2 billion (2), although indirect costs are likely
much higher. Furthermore, several emerging causes of viral
encephalitis are considered by WHO to be a significant threat to
global public health (3). Fundamental to addressing this unmet
medical need is research to better understand the pathogenesis of
viral encephalitis (4).

HOST INNATE IMMUNITY: PROTECTIVE
OR PATHOGENIC IN VIRAL
ENCEPHALITIS?

Whilst some viruses are highly neurovirulent (e.g., rabies
virus), most people infected with neurotropic viruses do
not go on to develop encephalitis, suggesting that rare host
and/or viral factors underlie susceptibility. Defining these
factors is a major challenge for the field. Despite decades of
investigation, there is limited evidence of viral determinants
of neurovirulence (1, 5), implicating the host response in
pathogenesis. However, it remains unclear whether immunity
plays a predominantly beneficial or deleterious role. In
other words, do patients develop encephalitis because their
response to viral infection is inadequate, impairing antiviral
resistance, or excessive, resulting in immunopathology? There
is evidence from human studies to support both hypotheses.
Although not necessarily mutually exclusive, they imply
opposite therapeutic approaches (i.e., cytokine supplementation
vs. immunosuppression).

The hypothesis that encephalitis arises through a failure of
host resistance is supported by very rare genetic errors of innate
antiviral immunity, which confer heightened susceptibility to
encephalitis secondary to wild-type (6–14) or attenuated vaccine
strain viruses (15, 16). These disorders provide compelling
evidence that under normal circumstances innate immunity
provides a critical layer of protection against viral encephalitis.
The extent to which inborn errors of innate immunity underlie
encephalitis more generally, including in adults, remains to
be determined.

The alternative hypothesis, that pathogenesis is governed not
by a failure to resist viral replication, but rather due to excessive
innate immune-mediated damage, is supported by: (i) a lack of
correlation between viral loads in cerebrospinal fluid and disease
outcome (17–20), suggesting that the extent of viral replication
does not alone dictate pathology; and (ii) correlations between
biomarkers of innate immune activation and poor outcome (21–
23). In addition, phenotypic overlaps are recognized between
congenital viral diseases such as cytomegalovirus (CMV) and the
genetic disease Aicardi-Goutières syndrome (24), in which the
aberrant induction of antiviral innate immunity is considered
central to pathogenesis (25); the implication of this shared
phenotype is that much of the neurological damage arising
from congenital viral infection may be host-derived (26).
Nevertheless, there remains no conclusive proof of a causal
link between immune activation and neurological outcome,
since it is impossible in clinical studies to separate the

effects of viral cytopathicity and immunopathology. Insight
into this question may come from an ongoing clinical trial
of anti-inflammatory corticosteroids in patients with herpes
simplex virus encephalitis (https://clinicaltrials.gov/ct2/show/
NCT03084783) (27).

Mouse models of viral encephalitis provide an alternative
means to resolve these issues. Whilst there are caveats to the use
of mice to understand human disease (28, 29), key pathological
features of encephalitis are reproduced in these models (30,
31), which have the advantage of being amenable to controlled
experimental perturbation. A key theme to emerge from recent
studies is the critical role of antiviral immunity within the
brain itself.

A BRAIN INTRINSIC ANTIVIRAL
INTERFERON NETWORK COMBATS VIRAL
SPREAD IN THE BRAIN

Contrary to the long-held view of the brain as an immune-
privileged organ, it is now clear that the brain parenchyma
poses an intrinsic antiviral network, in which the antiviral
cytokines known as type I interferons (IFNs) play a central role
(32, 33). Detje et al. were the first to show that the response
of neuroectodermal cells (including neurones, astrocytes,
and oligodendrocytes) to type I IFNs was essential for the
protection of mice against vesicular stomatitis virus (VSV)
encephalitis (34). These findings were subsequently reproduced
in a model of herpes simplex virus (HSV1) encephalitis
(35). All cell types of the central nervous system (CNS) are
capable of mounting a type I IFN response, although the
relative efficiency of this process appears to vary substantially
(33, 36). In VSV models, interferon alpha/beta receptor
(IFNAR) signaling within olfactory neurones (37) and
astrocytes (38) was necessary to limit viral dissemination
throughout the CNS, suggesting that type I IFNs act on
viral target cells to control permissiveness and/or onward
transmission. However, the cell type(s) responsible for
initiating the production of type I IFNs, and the precise
intercellular signaling events that underpin protection, remain
to be determined. Astrocytes were reported to be the main
producers of IFNβ upon infection with model neurotropic
RNA viruses (39, 40). Simultaneously, data generated in other
encephalitis models have rekindled interest in the role of
microglia (32, 41, 42).

MICROGLIA: AT THE HUB OF THE BRAIN’S
ANTIVIRAL NETWORK?

It has long been suspected that microglia—the sole brain-
resident immune cells—play an essential role in antiviral defense
of the brain (43). However, the tools were not previously
available to formally test this hypothesis. Microglia are the “third
element” of the CNS, initially described by Ramón y Cajal
and further characterized by Del Río-Hortega. These cells are
parenchymal resident macrophages of the brain parenchyma,
arising from embryonic yolk sac precursors (44, 45) which seed
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the developing brain around embryonic day 9.5. This period
coincides with neuronal birth and is before the formation of
the blood-brain barrier and the development of astrocytes or
oligodendrocytes (46). Thus, microglia fundamentally shape
the developing brain by supporting neurogenesis (47, 48) and
synaptic remodeling (49, 50). The essential role of microglia
in normal brain development is revealed by humans (51, 52)
and mice (44, 53) with genetic deficiencies of microglia due
to homozygous deficiency of the colony-stimulating factor 1
receptor (CSF1R).

In the current paradigm, microglia self-renew under
homeostatic conditions with minimal contribution from
circulating monocytes (44, 54). Like other tissue-resident
macrophages, microglia respond rapidly to environmental
cues with a broad spectrum of activation states (55). They
express relevant endosomal and cytosolic pathogen pattern
recognition receptors for detection of viral molecules and are
capable of efficiently sensing viral pathogens in vitro (56).
Reactive microgliosis, defined an increase in microglial numbers
and a change from ramified to amoeboid morphology, is
observed in both patients and mice with viral encephalitis
(56, 57), and appears to be dependent to some extent on
IFNAR signaling (42, 58). Whether microglial reactivity is an
appropriate response to viral invasion, or contributes negatively
to disease, continues to provoke debate (56, 59). Prior to the
availability of efficient methods of microglial depletion, studies
reported both protective (41, 60) and pathogenic (61, 62) effects
of microglia in encephalitis models. Since then, considerable
progress has been made in resolving this controversy through
the use of targeted depletion of microglia in mouse models
of encephalitis. Methods of microglial depletion have been
comprehensively reviewed elsewhere (63, 64) and are briefly
summarized below.

METHODS OF MICROGLIAL DEPLETION

The original approach, developed in the 1980s, was an
infusion of clodronate-encapsulated liposomes, which
are toxic to macrophages (65). Since liposomes are not
capable of penetrating the blood-brain barrier, intracranial or
intraventricular administration is necessary to deplete microglia
(66, 67). However, even under these circumstances, depletion
is incomplete. Various genetic methods were subsequently
developed that permitted more efficient targeting of microglia
(63), however these have not been used in encephalitis models.
By contrast, blockade of CSF1R signaling has been more
widely adopted.

As alluded to above, microglia are dependent on signaling
through the CSF1R for development and survival (33, 44,
51, 53). Csf1r−/− mice lack microglia as well as all tissue
macrophage populations (44, 53). However, these mice also
exhibit profound developmental defects and significant perinatal
mortality, making them unsuitable for studies of encephalitis.
The ligands for CSF1R are CSF1 and IL34. Deletion of either
does not lead to complete loss of microglia in the brain, reflecting
a degree of redundancy (63). Il34LacZ/LacZ reporter mice (which

are effectively IL34 deficient) have been used in a limited number
of studies of viral encephalitis (68, 69). Blockade of CSF1R [e.g.,
with the small molecules such as PLX5622 (70, 71)] efficiently
depletes microglia from the brain of intact rodents (72) and has
been more frequently employed, presumably due to its technical
ease. Collectively, the results of these studies provide a coherent
set of data that supports a protective role for microglia in the
acute phase of viral encephalitis (Figure 1).

MICROGLIA ARE PROTECTIVE IN
ENCEPHALITIS DISEASE MODELS

A range of neurotropic viruses from several families have
been studied in microglial depletion models (Table 1). Despite
the diversity of viruses investigated, consistent findings have
emerged. In virtually all cases, the replication of neurotropic
viruses was enhanced by depletion of microglia (58, 73–79),
indicating that microglia are essential for viral resistance in the
CNS. The only exception was Il34LacZ/LacZ mice, in which viral
replication was unaffected (68). In this model, microglia numbers
were only modestly reduced in the cerebral cortex (3-fold), and
unchanged in the cerebellum (68).

Importantly, microglial depletion was associated with a
negative impact on clinically relevant endpoints such as
neurological disease and/or death (58, 73–79)—even in the
Il34LacZ/LacZ model (68)—implying that microglia are critical
to survival in encephalitis. In a study using a nonlethal
pseudorabies virus (PRV) model (74), microglial depletion led to
the development of overt neurological disease, which correlated
with viral burden in the brain (74). Similarly, in other studies
where neurological disease was reported, microglia-depleted
mice showed increased disease severity prior to death (Table 1).
Collectively, these studies establish clear links between viral
resistance and negative disease outcomes, consistent with a
protective function of microglia.

DEPLETION OF MICROGLIA IMPAIRS THE
ANTIVIRAL FUNCTION OF RECRUITED
T CELLS

The mechanism(s) underlying these protective properties remain
uncertain. Preliminary data suggest that the T cell response
induced by microglia is involved, however the impact on the
quality and magnitude of the antiviral T cell response was
inconsistent across different models (76–78), and no impact on
T cell immunophenotype was observed in others (74), meaning
it is not yet possible to draw definitive conclusions.

Viral clearance and/or disease outcome relies on a functional T
cell response in several mouse models of encephalitis (e.g., West
Nile virus [WNV], mouse hepatitis virus [MHV], or Theiler’s
murine encephalomyelitis virus [TMEV]). In the TMEV model,
strain-specific differences in disease phenotype are linked to the
effectiveness of the CD8+ T cell response, which is subject to
Treg suppression, and consequent clinical disease, in susceptible
mouse genetic backgrounds (76). Although microglia depletion
had no impact on CD8+ T cell recruitment, hippocampal Tregs
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FIGURE 1 | Effects of microglial depletion in mouse models of viral encephalitis and key outstanding questions.

were increased, and the disease phenotype recalled that seen
in susceptible backgrounds (76). In contrast, in a WNV model
where CD8+ T cells are also protective, an increased number of
CD8+ T cells were recruited to the brain of microglia-depleted
mice. However, these CD8+ T cells had a blunted activation
phenotype, with reduced proportions of cells expressing the
activation markers CD69 or CD160 (78). Whilst it is plausible
that this would contribute toward a defect of viral control and/or
clearance, due to the increase in overall CD8+ T cell recruitment
in PLX5622-treated animals, the net effect was to achieve an
equivalent number of activated CD8+T cells in the brains of both
groups (78).

In MHV, both CD8+ and CD4+ T cells are involved in
viral clearance (80, 81), whilst CD4+ T cells also contribute
to pathogenesis (82). In the MHV model, microglia depletion
did not negatively impact CD8+ T cell recruitment, but was
associated with significant reductions in the recruitment of
CD4+ T cells and Tregs, and importantly in IFNγ expression by
CD4+ T cells (77)—in complete contrast to TMEV (76). While
the overall impact of these changes to both “effector” CD4+ T
cell and Treg populations is difficult to reconcile, the authors
concluded that the observed reduction in Treg recruitment
might contribute to T cell immunopathology, thereby worsening
disease outcome.

The collective implication of these studies is that microglia
contribute positively to aspects of T cell recruitment and/or
activation, however the precise nature of the protective T cell
response induced by microglia requires further examination.

CNS INTRINSIC PROTECTION BY
MICROGLIA: ROLE OF PHAGOCYTOSIS

A mechanism by which microglia might mediate protection,
independently of their effects on the T cell response, was
reported in the PRV model. Here microglia were recruited
toward and engulfed virus-infected neurones, a process that
required microglial P2Y12 signaling (74). As stated above, the
depletion of microglia led to the development of overt disease
and increased viral replication. Similarly, in a study using
an attenuated WNV strain, phagocytosis of presynaptic CA3
neurones in the hippocampus was observed, which depended
on deposition of the complement protein C3 (69). Il34LacZ/LacZ

mice were included in this study to show that the attrition
of presynaptic neurones was microglia-dependent. Since these
findings were associated with defects of spatial orientation in
recovered wild-type mice, the authors concluded that microglia
contribute to pathogenesis. However, the outcome of infection
in microglia-depleted Il34LacZ/LacZ mice was not reported (69),
whereas in a previous study using the same model there was
significantly enhanced mortality in Il34LacZ/LacZ (microglia-
depleted) mice (68). Thus, it seems that while microglial
phagocytosis may prevent mortality in the acute phase (68,
74), this might come at later stages at a cost of permanent
neurological damage (69). Microglia respond to insults with
a broad spectrum of activation states, and are implicated in
not just the initiation, but also the resolution of inflammatory
responses (55). As for phagocytosis, other aspects of the
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TABLE 1 | Microglial depletion studies in mouse models of viral encephalitis.

Study Strain Model Sex Prior to

infection

Virus family Virus (route) Mort. Morb. Viral burden Cytokines Protective mechanism(s)

Wang C57/B6 Il34LacZ/LacZ M/F n/a Flaviviridae WNV (i.c.)

WNV-E218A (i.c.)

↑ ↑ ↔ n/r Immunoregulation

Tsai ICR (neonates) CLD n/r 2 d Flaviviridae DENV (i.c. and

i.p.)

↑ ↑ ↑ ↓ Cytokine production;

CTL recruitment/activation

Vasek C57/B6 Il34LacZ/LacZ M/F n/a Flaviviridae WNV-E218A

(i.c.)

n/r n/r n/r n/r n/a

C3 mediated phagocytosis

Wheeler C57/B6 PLX5622 M 7 d Coronaviridae MHV (i.n.) ↑ ↑ ↑ ↑ CD4+ IFNγ+ T cells

↓ Tregs

Fekete C57/B6 PLX5622 M/F 16 d Herpesviridae PRV (i.p.) - ↑ ↑ ↓ P2Y12 mediated

phagocytosis

Seitz SW PLX5622 F 14 d Flaviviridae WNV (f.p.) ↑ ↔ ↑ ↑ –

SW PLX5622 F 14 d Flaviviridae JEV (f.p.) ↑ ↔ ↑ ↑ –

Waltl C57/B6 PLX5622 F 21 d Picornoviridae TMEV (i.c.) ↑ ↑ ↑ ↑

Chhatbar C57/B6 BLZ945 M/F 8 weeks Rhabdoviridae VSV (i.n.) ↑ n/r ↑ n/r –

Funk C57/B6 PLX5622 M 14 d Flaviviridae WNV (f.p.) ↑ ↑ ↑ n/r ↓CD8+ T cell activation

C57/B6 PLX5622 M 14 d Flaviviridae WNV-E218A

(i.c.)

↑ ↑ ↑ ↓

Sanchez C57/B6 PLX5622 M 7 d Picornoviridae TMEV (i.c.) ↑ ↑ ↑* n/r –

ICR, Institute of Cancer Research; CLD, clodronate liposomes; LCs, Langerhans cells in skin; SW, Swiss Webster; PVM, Perivascular macrophages; Mort., mortality; Morb., morbidity; WNV, West Nile virus; DENV, Dengue virus; MHV,

Mouse hepatitis virus; PRV, pseudorabies virus; JEV, Japanese encephalitis virus; TMEV, Theiler’s murine encephalomyelitis virus; CTL, Cytotoxic T lymphocyte; P2Y12, purinergic receptor P2Y12; i.c., intracranial; i.n., intranasal; i.p.,

intraperitoneal; f.p., footpad. n/a, not applicable; n/r, not reported. *Viral antigen immunostaining.
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microglial response to infection might contribute to tissue
damage in encephalitis models, as they do in models of sterile
neuroinflammation (83, 84). Key questions, yet to be addressed
in viral encephalitis models, are: (i) what is the effect of
microglial depletion in the resolution phase, and (ii) does a
“goldilocks zone” of microglial activity exist, in which just
enough reaction is sufficient for protection without incurring
permanent neurological damage, but where both too little and
too much might contribute adversely to encephalitis outcome.
In this scenario, therapeutic approaches to either boost or
suppress microglial responses, at different stages of disease, might
prove beneficial.

ENHANCED OR REDUCED
INFLAMMATION IN MICROGLIA
DEPLETED BRAINS?

As discussed above, clinical studies have reported associations
between inflammatory cytokine production and adverse
outcomes. Interestingly, despite the suspicion that microglia
are central to pathogenic neuroinflammation, microglial
depletion was unexpectedly associated in some studies with
an increase in the synthesis of cytokines and/or chemokines
in the brain of infected animals (75–77), whereas in other
studies there was a reduction (73, 74, 78). There is no
definitive explanation for these contradictory observations.
One possibility is the increased recruitment of circulating
monocytes to microglia-depleted brains in circumstances
where cytokine/chemokine synthesis was enhanced (76, 77),
which was not observed in other studies (58, 74, 78)—
including ones in which a reduction in cytokine/chemokine
induction was reported (78). However, these factors were
not consistently reported, and furthermore, whether this
apparent association is causal remains uncertain. Other possible
explanations include:

(i) a correlation between increased viral replication and
inflammation–noted in one of these studies (77) and
previously reported elsewhere (85, 86);

(ii) the activation of CNS-resident cell types, such as astrocytes,
which was similarly noted in one study (76), as in other disease
models (87, 88).

(iii) the loss of an immunoregulatory function of microglia, as
mentioned above.

Overall, further work is needed to clarify the potential
relationship between microglial depletion and immune
dysregulation in the CNS.

NON-SPECIFIC EFFECTS OF CSF1R
INHIBITION: A CONFOUNDING FACTOR?

There are also outstanding questions regarding the specificity
of CSF1R blockade for microglia. Whilst PLX5622 (71) and
BLZ945 (89) are more specific for CSF1R than earlier inhibitors
(63), PLX5622 has been shown to deplete macrophages
from various tissues, including kidney (90) and peripheral

nervous system (91), leaving open the possibility of non-
specific depletion of macrophages either in the CNS (e.g.,
meningeal or perivascular macrophages) or elsewhere.
In encephalitis models, depletion of CNS macrophages
(CD45hi CD11b+) was reported in some instances (58, 78),
although not in several others (74, 76, 77, 79). Again, this
inconsistency is unexplained, but one possibility is the use
of CD45/CD11b expression to distinguish CNS macrophages
from microglia (84, 92). Increased microglial CD45 expression
has been noted during VSV encephalitis (58), which might
confound assessment of the effect of PLX5622 on CNS
macrophages. Importantly, any depletion observed was minor
compared to the effects on microglia (58, 78). The use of
more specific markers of microglia (e.g., TMEM119) or
perivascular macrophages (e.g., CD206) might help to resolve
this issue (93, 94).

In the studies which quantified effects on systemic myeloid
populations (58, 76–78) there were no reductions in splenic or
bone marrow macrophages (74, 76–78), however variable effects
on circulating monocytes were reported, with reductions in some
studies (76, 78), but no effect in others (58, 74, 77). Any impact
on systemic myeloid populations is especially problematic for
flavivirus models, where systemic viral replication occurs as a
precursor to CNS neuroinvasion (75, 78); systemic depletion of
myeloid cells might (i) enhance systemic viral replication, in turn
enhancing the load of virus reaching the CNS, and/or (ii) cause
CNS-extrinsic disease that might contribute independently to
mortality. Funk et al. reported an enhancement of systemicWNV
replication and clinical disease in association with PLX5622-
induced monocyte depletion (78). To overcome this, they also
challenged mice via the intracranial route, confirming a negative
impact of microglial depletion (78), consistent with previous
findings (68). By contrast, Seitz et al., in the same WNV model,
did not detect systemic viral replication (75). The extent to which
possible “off-target” effects of CSF1R inhibition might confound
data generated in encephalitis models remains uncertain.

CONCLUSION

Through the recent use of microglial depletion systems, it is
evident that microglia play an essential protective function in
mouse models of viral encephalitis. Nevertheless, important
questions remain about the mechanism(s) by which microglia
(and possibly other CNS resident macrophages) mediate
these protective effects (Figure 1). An intriguing observation–
that microglial depletion leads in some circumstances to
enhanced neuroinflammation, hints at a possible regulatory
function of microglia in encephalitis and is an important
area for future investigation. Another priority area is the
possibility that dysregulated microglial responses, whilst
protective against mortality in the early stages of encephalitis,
might contribute at later stages to permanent neurological
sequelae. A key question is whether these various findings
in mouse models translate to human systems; the recent
development of methods of microglial differentiation from
human pluripotent stem cells offers a potential solution
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to this question [reviewed in (46)]. Collectively, these
observations suggest the exciting possibility that (i) defects in the
microglial response might underlie encephalitis susceptibility in
patients, and (ii) that targeting this response may provide new
therapeutic opportunities.
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