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Microparticles (MPs, ∼size between 0.1 and 1mm) are lipid encased containers

derived from intact cells which contain antigen from the parent cells. MPs are

involved in intercellular communication and regulate inflammation. Stroke increases

secretion of brain derived MP (BDMP) which activate macrophages/microglia and

induce neuroinflammation. Lactadherin (Milk fat globule–EGF factor-8) binds to anionic

phospholipids and extracellular matrices, promotes apoptotic cell clearance and limits

pathogenic antigen cross presentation. In this study, we investigate whether BDMP

affects stroke-induced neuroinflammation and whether Lactadherin treatment reduces

stroke initiated BDMP-induced neuroinflammation, thereby improving functional outcome

after stroke. Middle aged (8–9 months old) male C57BL/6J mice were subjected to

distal middle cerebral artery occlusion (dMCAo) stroke, and BDMPs were extracted

from ischemic brain 24 h after dMCAo by ultracentrifugation. Adult male C57BL/6J mice

were subjected to dMCAo and treated via tail vein injection at 3 h after stroke with: (A)

+PBS (n = 5/group); (B) +BDMPs (1.5 × 108, n = 6/group); (C) +Lactadherin (400

µg/kg, n = 5/group); (D) +BDMP+Lactadherin (n = 6/group). A battery of neurological

function tests were performed and mice sacrificed for immunostaining at 14 days after

stroke. Blood plasma was used for Western blot assay. Our data indicate: (1) treatment

of Stroke with BDMP significantly increases lesion volume, neurological deficits, blood

brain barrier (BBB) leakage, microglial activation, inflammatory cell infiltration (CD45,

microglia/macrophages, and neutrophils) into brain, inflammatory factor (TNFα, IL6,

and IL1β) expression in brain, increases axon/white matter (WM) damage identified by

decreased axon and myelin density, and increases inflammatory factor expression in the

plasma when compared to PBS treated stroke mice; (2) when compared to PBS and
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BDMP treated stroke mice, Lactadherin and BDMP+Lactadherin treatment significantly

improves neurological outcome, and decreases lesion volume, BBB leakage, axon/WM

injury, inflammatory cell infiltration and inflammatory factor expression in the ischemic

brain, respectively. Lactadherin treatment significantly increases anti-inflammatory factor

(IL10) expression in ischemic brain and decreases IL1β expression in plasma compared

to PBS and BDMP treated stroke mice, respectively. BDMP increases neuroinflammation

and aggravates ischemic brain damage after stroke. Thus, Lactadherin exerts

anti-inflammatory effects and improves the clearance of MPs to reduce stroke and BDMP

induced neurological deficits.

Keywords: brain-derived microparticles, stroke, neuroinflammation, Lactadherin, therapy

INTRODUCTION

Stroke is a leading cause of mortality and severe long-term
disability worldwide (1). In addition to the challenges of day-
to-day activities due to neurological deficits, stroke is also a
huge economic burden to patients and caregivers (2). Despite
extensive research in the past few decades, there are few treatment
options for stroke and stroke remains a global health concern (3).

Therefore, there is an urgent need to identify effective treatments

for stroke.
Microparticles (MPs, size between 0.1 and 1mm) are a class

of small membrane-bound vesicles that are shed from the cell

membrane (4). MPs can be released into the blood and body

fluids by cells during activation, necrosis or apoptosis (5). A
massive amount of MPs are released into the circulation after

acute brain injury (6–9). These MPs are broadly classified into:
(1) circulating MPs that are derived from endothelial cells,
platelets, leukocytes, and (2) brain derived MPs (BDMPs) (10,
11). Both types of MPs may be involved in disease development.

Circulating MPs have been investigated as potential biomarkers
for a variety of neurological disorders including ischemic
cerebrovascular accidents, transient ischemic attacks, multiple
sclerosis, and cerebral malaria (12). MPs play a key role in

peripheral inflammatory progression, thrombosis, endothelial
dysfunction, and angiogenesis (13–15). Microglial/macrophage-
derived MPs and BDMPs can increase brain inflammation in
normal mice (16, 17). MPs increase the permeability of blood-

brain barrier (BBB) (18) and BDMPs can migrate through the
disrupted endothelial barrier (19). These observations led us to

hypothesize that BDMPs contribute to neuroinflammation after
stroke, and thereby increased BDMP clearance would improve
neurological recovery.

Lactadherin (milk fat globule-epidermal growth factor
8, Lactadherin) is a multifunctional glycoprotein originally

identified as part of the milk fat globule membrane. Lactadherin

couples apoptotic cells with monocytes/macrophages to facilitate
phagocytosis (20–22) and clearance of apoptotic cells, and

regulates immune response after stroke (23–26). In this study,

we are the first to investigate that BDMPs contribute to
neuroinflammation after stroke, while Lactadherin promotes the
clearance of BDMPs and reduces inflammation and thereby

improves ischemic stroke outcome.

MATERIALS AND METHODS

All experiments were conducted in accordance with the standard
and procedures of the American Council on Animal Care and
Institutional Animal Care and Use Committee of Henry Ford
Health System.

Experimental Groups
Middle aged (8–9 months) male C57/BL6 mice (Jackson
Laboratory) were subjected to distal middle cerebral artery
occlusion (dMCAo) and randomly divided into the following
treatment groups: (1) PBS (n = 5); (2) +BDMPs (1.5×108,
n = 6); (3) +Lactadherin (400 µg/kg, tail vein injection,
Hematologic Technologies, Essex Junction, VT, n = 5); (4)
+BDMP+Lactadherin (n = 6); (5) Sham control (n = 6); (6)
Sham+BDMP (n = 5). Treatments were administered via tail
vein injection at 3 h after stroke.

Photothrombotic Stroke Model
To generate a consistent infarct volume, focal cortical ischemia
was induced by photothrombosis of the cortical microvessels, as
previously described (27). Briefly, mice were anesthetized with
chloral hydrate (0.3 mg/kg, i.p). A light sensitive dye, Rose Bengal
(100 µl/ <25 g, 150 µl /25–40 g, 10 mg/ml solution in saline;
SigmaAldrich, St Louis, MO) was administered i.p. A midline
incision of the scalp was performed to expose the skull. The
skull was covered by a roundabout black rubber to expose the
area of 0.7–2.7mm right to the midline, −2.5–1mm rostral to
the bregma. The brain was illuminated for 15min through the
exposed skull with a fiber-optic bundle of a cold light source (KL
1600 LED; Schott, Mainz, Germany) filtered with a green filter.
The scalp incision was sutured and mice returned to home cages
to awaken. Sham control mice were subjected to the same surgical
protocol as above, but without injection of Rose Bengal.

Neurological Function Test
To assess neurological functional outcome, a battery of functional
tests including amodified neurological severity score (mNSS) test
(28) and foot-fault test (29) were performed before dMCAo and
after dMCAo on days 1, 3, 7 and 14 by an investigator who was
blinded to the experimental groups.
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BDMP Isolation
BDMP isolation was performed following previously published
methods (7, 9, 19). Briefly, the ischemic brain was harvested
24 h after stroke and quickly frozen in liquid nitrogen. To
isolate BDMPs, brain was rapidly thawed at room temperature
and homogenized in 1ml of PBS using a glass Dounce
homogenizer (Fisher Scientific Co., Federal Way, WA). The
homogenate was centrifuged at 1,500 g for 20min at 4◦C
to remove intact cells. The supernatant was centrifuged at
13,000 g for 2min at 4◦C to remove large cellular debris,
and then centrifuged twice at 100,000 g for 1 h at 4◦C,
using a TLA-100.4 rotor (Beckman Coulter, Miami, FL).
The pellet was resuspended in 500 µl of PBS. MPs were
quantified by flow cytometry in a time fixed mode in the
presence of counting beads (Spherotech, Lake Forest, IL).
Megamix microbeads [0.5, 0.9 and 3µm (Biocytex, Marseille,
France)] were used to gate microparticles based on the
particle size.

Immunohistochemistry
All animals were euthanized 14 days after stroke and
transcardially perfused with cold 0.9% saline. Brains were
isolated and immersion fixed in 4% paraformaldehyde before
being embedded in paraffin. A series brain coronal sections
(6µm thick) were cut from the center of the lesion (bregma
−2.5 mm∼+1mm). Hematoxylin & eosin (H&E) stain was
used to identify the lesion volume. All immunostainings were
performed at 14 days after stroke. Antibodies against CD45 (a
marker for lymphocytes, 1:500, Abcam), IBA-1 (a marker for
microglia/macrophages, 1:1,000, Abcam), myelin basic protein
(MBP, a marker for myelin, 1:300, Dako), CD31 (a marker
for vessel, 1:200, Dako), Antibody against albumin (Albumin-
FITC, 1:500, Abcam), NeuN (a marker for neuronal,1:50,
Millepore), Myelo-peroxidase (MPO, a marker for neutrophil,
1:200, Dako), Interleukin 1β (IL1β,1:200, Abcam), Interleukin
6 (IL6,1:200, Abcam), Tumor necrosis factor (TNFα,1;200,
Abcam), and Interleukin 10 (IL10, 1:200, Abcam) were employed.
Bielschowsky silver (BS) staining was used to demonstrate axons
and luxol fast blue (LFB) staining was used to demonstrate
myelin. Three slides from each brain, with each slide containing
five fields from cortex and striatum of the ischemic border zone
(IBZ) were digitized under 20× objective (Olympus BX40) using
a microscope (Sony DXC-970MD). The number of positive cells
of neuronal, CD31, CD45, IBA-1, neutrophils, IL6, IL1β, TNFα,
IL10, and the positive areas of Albumin, BS, LFB and MBP
were calculated by Image Pro Plus 6.0. Immunohistochemical
analysis was performed by an investigator who was blinded to the
experimental groups.

Lesion Volume Measurement
Seven coronal sections of tissue were stained with hematoxylin
and eosin (H&E) for lesion volume calculation. Data are
presented as a percentage of lesion compared with the
contralateral hemisphere (30). Measurements were performed by
an investigator who was blinded to the experimental groups.

Western Blot
Equal amounts of plasma samples were subjected to Western
blot analysis, as previously described (31). Protein concentration
was measured using BCA Protein Assay Kit (Thermo Fisher
Scientific, USA). Forty micrograms of protein/lane in a 10%
SDS PAGE precast gel (Invitrogen). Gel was transferred
using an iBlot transfer system (Invitrogen) following standard
protocol. Nitrocellulose membrane was blocked in 2% I-Block
(Applied Biosystems) in 1× TBS-T for 1 h. Primary antibody
against IL1β (1:1,000, Abcam, Cambridge, MA, USA) was
employed. Anti-β-actin (1:10,000, Abcam, Cambridge, MA,
USA) was employed for control measurements. Secondary
antibody was added at 1:5,000 dilution in 2% I-Block in
1× TBS-T on a room temperature shaker for 1 h. The
membranes were then developed using a FluorChem E
Imager system (ProteinSimple) exposing them for 1–30min
depending on the intensity of the band. Bands were analyzed
using ImageJ.

Statistical Analysis
Repeated measure analysis of variance (ANCOVA) was used to
study the group differences in mNSS and foot-fault function
tests over time (time points: 1, 3, 7, and 14 days). The
one-way analysis of variance (ANOVA) was used to evaluate
immunostaining and Western blot. All data are presented as
mean± SE.

RESULTS

BDMPs Do Not Induce Neurological Deficit
and Brain Damage in Wild Type Control
Mice
First, we tested whether BDMPs induce brain damage and
neurological function deficit in non-stroke sham control mice.
We found that (Supplementary Figure 1) injection of BDMPs
into sham non-stroke (Sham+BDMP) mice did not induce
neurological functional deficits (Supplementary Figures 1A,B),
and no axon/white matter damage was evident in the brain
tissue identified by BS and LFB staining when compared to
sham control mice (Supplementary Figures 1C,D). Injection
of BDMP into sham non-stroke (Sham+BDMP) mice did
not induce leukocyte (CD45, Supplementary Figure 1E)
infiltration or increase microglial activation (IBA-1,
Supplementary Figure 1F) in brain when compared to sham
control mice.

BDMPs Aggravate and Lactadherin
Treatment Attenuates Neurological
Impairment and Lesion Volume After
Stroke in Mice
To evaluate the effects of BDMPs and Lactadherin treatment
on neurological function after stroke in mice, mNSS, and foot-
fault tests were employed. Figures 1A,B shows that injection
of BDMPs significantly aggravates neurological impairment in
stroke mice when compared to PBS dMCAo control group.
Injection of BDMPs significantly increases ischemic lesion
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FIGURE 1 | BDMPs aggravate and Lactadherin attenuates neurological impairment and lesion volume after stroke in mice. (A) mNSS and (B) Foot-fault tests were

performed at 1, 3, 7, and 14 days after stroke. (C) Stroke lesion volume was calculated by H&E stains. n = 5–6/group. (D) Immunostaining measurement from cortex

and striatum of the selected five fields in the ischemic border zone (IBZ). *P < 0.05 Stroke vs. Stroke+lac; &P < 0.05 Stroke+BDMP vs. Stroke+BDMP+lac; #P <

0.05 Stroke vs. Stroke+BDMP; n = 5–6/group; Data are presented as mean ± SE.

volume in the brain identified by H&E staining (Figure 1C).
Administration of Lactadherin together with PBS or BDMPs
significantly improves neurological function when compared
to stroke mice receiving PBS or BDMPs alone, respectively
(Figures 1A,B). Administration of Lactadherin together with
PBS or BDMPs significantly decreases ischemic lesion volume
when compared to stroke mice receiving PBS or BDMPs alone,
respectively (Figure 1C).

BDMP Aggravates and Lactadherin
Attenuates BBB Leakage and Neuronal
Loss While Increasing Vascular Density in
Stroke Mice
To evaluate the effects of circulating BDMPs and Lactadherin
on BBB integrity, vasculature and neuronal injury, we evaluated
FITC-albumin, neuron and vascular density in the cortex and
striatum of IBZ (Figure 1D). Figure 2 shows that BDMPs
injection significantly increases BBB permeability, decreases
vascular density and results in greater neuronal loss compared
to PBS treated stroke mice. Lactadherin treatment significantly
decreases BBB leakage, increases vascular density and attenuates
neuronal loss compared to stroke mice treated with PBS or
BDMPs, respectively (Figure 2).

BDMPs Significantly Increase Axonal/WM
Damage in Ischemic Brain While
Lactadherin Treatment Significantly
Promotes Axonal/WM Density After Stroke
in Mice
To test whether BDMPs aggravate and Lactadherin treatment
reduces axonal/WM injury after ischemic stroke in mice, we
employed MBP, BS, and LFB staining to quantify WM changes
in the cortex and striatum of IBZ. Figure 3 shows that injection
of BDMPs significantly decreases axon and myelin density
in the IBZ compared to stroke group. Lactadherin treatment
significantly increases axon and myelin density compared to
stroke mice treated with PBS or BDMPs, respectively.

BDMPs Significantly Increase and
Lactadherin Treatment Significantly
Decreases Neuroinflammation After Stroke
in Mice
To evaluate the inflammatory responses of BDMP injection
and Lactadherin treatment in stroke mice, we measured the
expression of leukocytes, microglia/macrophages, neutrophils,
IL1β, IL6, and TNFα in the cortex and striatum of IBZ.
As indicated in Figures 4, 5, injection of BDMPs after
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FIGURE 2 | Lactadherin treatment significantly attenuates BBB leakage and neuronal loss induced by injection of BDMPs in stroke mice, while promoting vascular

density. (A) FITC-Albumin and (B) neuron staining indicate that Lactadherin treatment significantly reduces BDMPs induced BBB leakage and neuronal loss. (C)

Lactadherin treatment significantly increases vascular density. n = 5–6/group. Scale bar, 50µm. (D–F) Quantification data. *p < 0.05. Data are presented as

mean ± SE.

stroke significantly increases inflammatory cell and pro-
inflammatory factor expression compared to stroke alone group.
Lactadherin treatment significantly decreases inflammatory cell
expression after stroke as well as attenuates BDMP induced
neuroinflammation. In addition, Lactadherin treatment also
significantly increases anti-inflammatory factor IL10 expression
in IBZ compared to stroke mice treated with PBS or BDMPs,
respectively (Figure 5). Figures 5I,J shows that BDMP injection
significantly increases inflammatory factor IL1β expression in the
circulation, while Lactadherin treatment significantly decreases
IL1β expression in the circulation compared to stroke mice
treated with PBS or BDMPs, respectively.

DISCUSSION

In this study, we demonstrate for the first time that BDMPs
aggravate and Lactadherin attenuates stroke induced
neurological deficits, BBB leakage, loss of vascular density,
neuronal loss, axonal/WM injury and neuroinflammation after
stroke in mice. These data suggest that neuroinflammation
mediated by BDMPs may contribute to brain injury after stroke.

Extracellular MPs may play an important role in the
pathological development and prognosis after stroke (8, 11, 32).
MPs can induce neuronal damage and neurotoxicity (33, 34).
Previous studies have reported that the injured brain releases
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FIGURE 3 | Lactadherin treatment significantly attenuates axonal/WM damage induced by BDMPs in stroke mice. (A) MBP, (B) Luxol fast blue, and (C) Bielschowsky

sliver staining data indicate that Lactadherin treatment significantly increases axonal/WM density after injection of BDMPs in stroke mice, while BDMPs significantly

increases axonal/WM damage. n = 5–6/group. Scale bar, 20µm. (D–F) Quantification data. *p < 0.05. Data are presented as mean ± SE.

BDMPs into the circulation (5, 7, 9, 16). CirculatingMPs are lipid
encased containers (sized 0.1–1.0µm) that are shed from the
plasma membrane of eukaryotic cells upon injury, activation, or
apoptosis (35). Microparticles are vulnerable to degradation and
clearance. Charoenviriyakul et al. reported that after intravenous
injection different types of exosomes into mice, all the exosomes
rapidly disappeared from the systemic circulation and were
primarily localized to the liver (36). Exosomes can be taken up
by macrophages and undergo clearance (37).Pharmacokinetic
studies show that intravenously injected exosomes in mice were
10% of the initial injected amount at 4 h post injection (36).
Clearance of all types of exosomes in macrophage-depleted mice
was significantly delayed compared to that in non-macrophage
depleted mice, indicating that macrophages play a key role in
the clearance of exosomes from the blood circulation (36). The

clearance of circulating microparticles involve direct receptor
binding of liver or spleen phagocytes to phosphatidylserine or
to opsonization proteins on the microparticles (38, 39). The
routes of clearance microparticles by cells and organs include
endocytosis (clathrin- and caveolin-dependent and lipid-raft-
mediated), micropinocytosis, phagocytosis andmembrane fusion
(40). In addition, the rates of microparticle degradation and
clearance vary and depend on the ways that cells interact with
their environment (41). The pooled concentrations of total
MP, i.e., BDMPs, platelet-derived MPs, endothelial-derived MPs,
leukocyte-derivedMPs, erythrocyte-derivedMPs, andmonocyte-
derived MPs are significantly increased in ischemic stroke
patients compared to non-cerebrovascular disease controls, all of
which are associated with poor clinical outcome (7, 11, 42, 43).
BDMPs can contribute to the progression of neuroinflammatory
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FIGURE 4 | BDMPs significantly increase and Lactadherin treatment significantly decreases inflammatory cell infiltration after stroke in mice. BDMPs significantly

increase: (A) leukocyte (stained by CD45), (B) microglia/macrophage and, (C) neutrophil infiltration in ischemic brain, while Lactadherin treatment significantly

decreases infiltration of inflammatory cell. n = 5–6/group. Scale bar, 50µm. (D–F) Quantification data. *p < 0.05. Data are presented as mean ± SE.

diseases and promote inflammatory activities, as well as promote
the development and regeneration of the nervous system after
stroke (44–46). Microglia-derived MPs and astrocyte-derived
MPs contain and release the proinflammatory cytokine IL-
1β, inflammasome components and MHCII proteins (47, 48).
Previous studies have found that enriched MPs from activated
microglia in vitro or from mice brain are sufficient to initiate

neuroinflammation following intracortical injection in naïve
animals (16, 17).

Lactadherin mediates cell-cell interactions and is involved
in various physiological and pathophysiological functions
including angiogenesis (49), fertilization (50), inflammation
(23) and clearance of apoptotic cells (51). Several studies have
confirmed the therapeutic effects of Lactadherin in stroke
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FIGURE 5 | BDMPs significantly increase and Lactadherin treatment significantly decreases inflammatory factor expression in ischemic brain. BDMPs significantly

increase: (A) IL6, (B) IL1β, and (C) TNFα expression in ischemic brain, while Lactadherin treatment significantly decreases inflammatory factor expression. (D)

Lactadherin increases anti-inflammatory factor IL10 expression in brain after stroke. (I,J) The Western blot result shows that BDMPs significantly increase and

Lactadherin treatment significantly decreases IL1β expression in circulation. n = 5–6/group. Scare bar, 50µm. (E–H) Quantification data. *p < 0.05. Data are

presented as mean ± SE.

(23, 24, 26, 52). Lactadherin exerts neuroprotection against
cerebral injury by suppressing inflammation, reducing neuronal
cell death, promoting apoptotic cell clearance (26). Additionally,

Lactadherin improves subarachnoid hemorrhage (SAH)
outcome via anti-oxidation which may be dependent on integrin
β3/ nuclear factor erythroid 2-related factor 2/HO pathway
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(24). MFG-E8 maintains a role in the association between brain
microvessels and surrounding brain parenchyma (53). A recent
study indicates that Lactadherin can couple apoptotic cells
with monocytes/macrophages to facilitate phagocytosis and
promote the clearance of BDMPs (19, 21, 22, 54). We employed
Lactadherin treatment together with BDMP administration
to detect whether Lactadherin can promote neurological
recovery by clearing BDMPs and decrease BDMP-induced
neuroinflammation. Our data indicate that circulating BDMPs
released by injured brain aggravate stroke outcome as evidenced
by worse neurological deficits and exacerbated neuronal loss
and lesion volume, while Lactadherin treatment improves
neurological function, attenuates neuronal loss, and decreases
lesion volume after stroke.

Physiological responses after stroke include BBB break down,
delayed angiogenesis and neuron death (55). Previous studies
have shown that neuronal damage in the central nervous system
(CNS) is correlated with blood-brain barrier (BBB) breakdown
(56–58). BBB is important for maintaining stability of the
brain microenvironment of brain. BBB disruption permits
infiltration of peripheral immune cells into the parenchyma and
increases vascular oxidative stress and neuroinflammation which
play a critical role in neuronal loss (59–61). MPs are known
to increase BBB permeability (18, 62, 63). Our data indicate
that injection of BDMPs increase BBB leakage compared to
the Stroke+PBS group, and Lactadherin treatment decreases
BBB leakage which may contribute to improved neurological
function in stroke mice. Post-ischemic angiogenesis has been
widely associated with the recovery of blood flow in peri-infarct
brain regions (64). The extent of angiogenesis plays a crucial
role in long-term neurological function recovery (65–68).
Our data show that injection of BDMPs reduces angiogenesis
which may partially contribute to worse neurological function
and increased infarction volume. Lactadherin treatment
increases cerebral vascular density in the IBZ in stroke
mice treated with PBS or BDMPs. Previous studies have
demonstrated that MPs can induce neuronal damage and
neurotoxicity (33, 34). Lactadherin can promote angiogenesis
(49). Angiogenic vessels can increase cerebral blood flow
in peri-infarcted brain regions, which may restore cellular
metabolism in surviving neurons and promote neurogenesis
(29). In our study, our data show that BDMPs increase
neuronal loss in the IBZ, and Lactadherin treatment attenuates
neuronal damage.

The white matter (WM) in the brain is highly susceptible
to hypoxia and is injured following ischemic stroke (29).
WM injury impairs neuronal connectivity and induces worse
outcome after stroke (69, 70).WMpromotes communication and
sensory/motor reflex, which helps to restore lost nerve function
and reduce symptoms of paralysis caused by stroke (29). Thus,
WM function such as axonal regeneration and regrowth, axonal
sprouting and remyelination in the peri-infarct region is critical
for long term functional recovery (71). In this study, we found
that injection of BDMPs after ischemic stroke decreases axon
and myelin density in the IBZ while Lactadherin treatment
significantly increases axon and myelin density in the IBZ of
stroke mice treated with PBS and BDMPs, respectively.

Ischemic stroke is known to trigger complex systemic and
local immune responses (72–74). However, the underlying
mechanisms of post-stroke neuroinflammation are largely
unclear (72–74). Neuroinflammation plays a critical role in
WM damage, axonal degeneration and myelin breakdown (75).
Microglia are activated within minutes after stroke onset and
stimulate the production of inflammatory cytokines and promote
leukocyte infiltration which exacerbate brain damage (76). Our
data show that BDMPs increase the infiltration of leukocytes,
microglia/macrophages and neutrophils, and the expression of
immune factors IL1β, IL6, and TNF-α in the IBZ of stroke
mice. The infiltration of immune cells and molecules may
indirectly or directly increase BBB permeability and promote
tissue damage after stroke (77). Infiltrating neutrophils and
microglia/macrophages promote BBB breakdown, WM damage,
vascular damage and contribute to poor stroke outcome (12, 78,
79). Pro-inflammatory cytokines such as TNFα, IL6, and IL1β
induce BBB hyperpermeability (12) as well as induce WM injury
(80–82). Lactadherin treatment significantly reduces systemic
inflammatory response, decreases immune cell infiltration
into the ischemic brain, decreases pro-inflammatory cytokine
expression in the IBZ, and increases anti-inflammatory responses
in stroke and BDMP treated stroke mice. Therefore, BDMPs
may exert their adverse effects on stroke outcome by promoting
inflammatory responses and Lactadherin treatment decreases
BDMPs and regulates anti-inflammatory responses to improve
stroke outcome in mice.

LIMITATIONS

In this study we have demonstrated that BDMPs induce
neuroinflammation and aggravate neurological impairment after
stroke, and Lactadherin treatment improves stroke outcome
by promoting clearance of MPs as well as by exerting anti-
inflammatory effects. In this study, we selected MPs derived
directly from the fresh brain tissue. Future studies are needed
to test the effects of MPs derived from brain and their role
in mediating neuroinflammation after stroke. The mechanisms
of BDMP clearance by Lactadherin warrant investigation.
Ischemic stroke can induce profound vascular, axon/WM
damage. Vascular remodeling is a complex process that involves
changes of structure and architecture of blood vessels via cell
growth, death, migration, and degradation of the extracellular
matrix (ECM) (83). Ischemic stroke induces axon/WM damage
(84). In this study, we demonstrated Lactadherin regulation of
vascular density and BBB leakage and axon/myelin density at
14 days after stroke. Additional studies on the temporal profiles
of Lactadherin on neurovascular remodeling and neurological
outcomes are warranted.

CONCLUSIONS

In this study, we found that BDMPs increase neuroinflammation
and exacerbate brain damage after stroke in adult mice.
Lactadherin exerts anti-inflammatory effects, improves the
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clearance of BDMPs, and may be a therapeutic strategy to reduce
stroke and BDMP induced neurological dysfunction.
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