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Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary

immunodeficiency and comprises a group of disorders with similar antibody deficiency

but a myriad of different etiologies, most of which remain undefined. The variable

aspect of CVID refers to the approximately half of patients who develop non-infectious

complications in addition to heightened susceptibility to infection. The pathogenesis of

these complications is poorly understood and somewhat counterintuitive because these

patients that are defined by their immune futility simultaneously have elevated propensity

for autoimmune disease. There are numerous aspects of immune dysregulation

associated with autoimmunity in CVID that have only begun to be studied. These

findings include elevations of T helper type 1 and follicular helper T cells and B cells

expressing low levels of CD21 as well as reciprocal decreases in regulatory T cells

and isotype-switched memory B cells. Recently, advances in genomics have furthered

our understanding of the fundamental biology underlying autoimmunity in CVID and

led to precision therapeutic approaches. However, these genetic etiologies are also

associated with clinical heterogeneity and incomplete penetrance, highlighting the fact

that continued research efforts remain necessary to optimize treatment. Additional

factors, such as commensal microbial dysbiosis, remain to be better elucidated. Thus,

while recent advances in our understanding of CVID-associated autoimmunity have been

exciting and substantial, these current scientific advances must now serve as building

blocks for the next stages of discovery.

Keywords: primary immunodeficieny, common variable immunodeficiency, autoimmunity, cytopenia, genetics,

microbiome, precision therapy

INTRODUCTION

The diagnosis common variable immunodeficiency (CVID) is used to denote a group of
disorders that, together, account for more than 50% of symptomatic primary immune deficiencies
(PID) (1) with an estimated incidence of 1:50,000–1:25,000 (2). The term common variable
immunodeficiency was originally used to describe patients with a primary antibody deficiency
who did not meet criteria for the more well-defined PIDs such as Burton’s agammaglobulinemia
(3). We have come to appreciate that CVID is best understood to constitute a group of
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hypogammaglobulinemic disorders with heterogeneous
phenotypic presentations, rather than a single entity (4).
The application of genomics has only furthered the evidence of
heterogeneity within CVID.

Diagnostic criteria for CVID have evolved since it was first
made a diagnosis of exclusion in 1971 by the World Health
Organization. The International Consensus Document on CVID
put forward in 2016 agreed on a definition requiring IgG levels
two standard deviations below the age-appropriate reference
as well as either low IgA or IgM levels, and poor antibody
response to vaccination in an individual that is at least 4 years
old with no secondary cause of hypogammaglobulinemia (1).
The European Society of Immune Deficiencies (ESID) diagnostic
criteria differ slightly from these criteria in that they require
the presence of symptoms such as infections or autoimmune
manifestations, in addition to the laboratory abnormalities cited
above, to make the diagnosis of CVID (5). Notably, non-
infectious presentations are an under-recognized feature of
CVID and often the predominant clinical presentation, resulting
in diagnostic delays of several years in many cases (6). While
historically the clinical presentation of CVID was focused on the
susceptibility to infections, the decision to include autoimmune
and inflammatory conditions as primary clinical presentations
reflects the heterogeneity of CVID and highlights the importance
of recognizing these non-infectious entities as a feature of this
immune deficiency.

Immunoglobulin replacement therapy is the standard of care
for CVID. Since the widespread adoption of this treatment,
mortality of patients with CVID has decreased from 30% in the
early 1990s (7) to 15% in the early 2000s (8), in a cohort of 240
patients in the United Kingdom and 334 patients from the ESID
registry, respectively, all followed for approximately two decades.
The improved survival in CVID patients has been attributed
to the reduction of infectious complications thanks to the
widespread use of immunoglobulin replacement and improved
anti-microbial therapies (9–12). While overall survival has
improved, patients with CVID continue to have reduced survival
compared to age-matched controls (13). When comparing
mortality within CVID patients, subjects with at least one
non-infectious complication had significantly higher mortality
compared to patients with only infectious complications (13,
14). These non-infectious complications including autoimmune,
gastrointestinal, pulmonary, lymphoproliferative, and malignant
complications (1), are not ameliorated by immunoglobulin
replacement therapy alone. The clear necessity to address
non-infectious complications of CVID has led to attempts
at categorizing these heterogeneous disorders into distinct
phenotypes, with the hopes of elucidating endotypes. The
ultimate goal of such stratification of CVID is to identify targeted
treatments that will improve outcomes in CVID patients with
non-infectious complications (14–16).

The first attempt at phenotyping CVID patients was done
by Chapel et al. (14) by categorizing the various associated
complications and looking at the independence of one from the
other. They identified five distinct phenotypes: no complications,
autoimmunity, polyclonal lymphocytic infiltration, enteropathy,
and lymphoid malignancy (14). Studies that followed have

confirmed categorization of CVID based upon the presence
of complications, with certain features like autoimmunity,
lymphocytic interstitial lung disease, and lymphoid hyperplasia
typically occurring together (6, 17). Assuming that CVID
endotypes present within these phenotypic clusters, the
pathogenesis and genetic mechanisms underlying the disease
may be related. Autoimmunity and immune deficiency have been
shown to have genetic overlap and occur together beyond CVID
(18–20), suggesting a common pathophysiologic mechanism
underlying both forms of immune dysregulation. In this
review, we focus on one aspect of immune dysregulation, the
autoimmune manifestations of CVID, providing an overview
of these complications as well as an update on research and
treatment advances.

OVERVIEW OF AUTOIMMUNE DISEASE IN
COMMON VARIABLE
IMMUNODEFICIENCY

The initial clustering of CVID patients with autoimmunity
included organ specific autoimmune disease (e.g., Grave’s
thyroiditis, insulin dependent diabetes mellitus), systemic
autoimmune disease (e.g., rheumatoid arthritis, systemic
lupus erythematosus), and autoimmune cytopenias (e.g.,
immune thrombocytopenia, autoimmune hemolytic anemia)
(14). Further analysis on two other cohorts showed that
within the autoimmune cluster, only autoimmune cytopenias
had decreased survival and that organ-specific and systemic
autoimmune disease showed no association with cytopenias
or the other clinical phenotypes (16). This led to a revision of
the clinical phenotypes with more emphasis being placed on
autoimmune cytopenias as opposed to autoimmunity in general
(16). Unbiased network clustering in a separate CVID cohort
yielded similar phenotypes, with systemic and organ-specific
autoimmune diseases clustering separately from autoimmune
cytopenias (21). While this distinction likely carries implications
regarding underlying pathophysiology, many studies continue
to combine autoimmune cytopenias with other autoimmunity
as they compare CVID patients. For this reason, we will make
distinctions between autoimmune cytopenias and organ specific
or systemic autoimmunity in this review.

Autoimmune diseases are one of the most common non-
infectious complications, occurring in∼20–30% of patients with
CVID, with autoimmune cytopenias being the most common
(9, 22, 23). In a European cohort of 2700 CVID patients taken
from the ESID registry, autoimmune cytopenias were found
to be 700 times more prevalent in CVID patients compared
to the general population (9). Among autoimmune cytopenias,
autoimmune thrombocytopenia and autoimmune hemolytic
anemia occur most frequently, either separately or concurrently
as Evan’s syndrome. Autoimmune neutropenia also occurs in
CVID, although more rarely than thrombocytopenia or anemia
(9, 24). Importantly, the diagnosis of cytopenia precedes that of
CVID by several years in up to 60% of patients (22).

Autoimmune cytopenias are often associated with other
non-infectious complications in CVID. Compared with other
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CVID patients, those with ILD are more likely to have had
autoimmune cytopenias (6, 25). Conversely, CVID patients
with autoimmune cytopenias had a higher frequency of
CVID-associated non-infectious complications, including
granulomatous and lymphoproliferative disease, as well as
organ-specific autoimmune disease, but interestingly, not
systemic autoimmunity (26). In a recent study of a 295 patient
CVID cohort in the Czech Republic, immune thrombocytopenic
purpura (ITP) was identified as a risk factor for malignancy,
with over a 3-fold increase compared to those without ITP
(27). Splenomegaly was also more common in patients
with autoimmune cytopenias and was found to share some
immunophenotypic characteristics, but the pathophysiology of
this link is still not clearly understood (28).

Though autoimmune cytopenias are highly associated with
CVID, other forms of autoimmunity have also been frequently
reported. In a recent study of 870 CVID patients from the
USIDNET registry, 5% were found to have rheumatologic
disease, which accounted for 40% of the autoimmune
complications of this cohort. Although the male-to-female
ratio was almost equal for overall autoimmune complications,
there was a clear female predominance for the rheumatologic
manifestations (24). Several other studies have shown a similar
female predominance for systemic autoimmune complications in
CVID (29, 30). The most common rheumatologic manifestation
reported in CVID is inflammatory arthritis (juvenile and
adult), occurring in ∼3% of patients (13, 24, 31, 32).
Other rheumatologic manifestations include systemic lupus
erythematosus, Sjogren’s disease, Behcet’s disease, and psoriasis
(24, 32). Among organ specific autoimmune manifestations,
hypothyroidism was the most prevalent at 3.5%, followed by
alopecia areata and vitiligo at 2.7%, and type 1 diabetes at 1.6% in
an ESID registry of 2700 CVID patients (9). Autoimmunity may
also underlie gastrointestinal complications of CVID, including
inflammatory bowel disease, autoimmune enteropathy, and
autoimmune gastritis (33).

IMMUNOPHENOTYPIC MARKERS
ASSOCIATED WITH AUTOIMMUNITY IN
CVID AND IMPLICATIONS ON
PATHOGENESIS

T Cell Dysregulation in CVID Autoimmune
Disease
While PIDs in general are associated with a higher risk of
autoimmune manifestations, when comparing across all PIDs,
the greatest risk of autoimmune cytopenia and rheumatologic
disease was seen in two specific subsets of PID: CVID and
PID with T-cell deficiencies (34). This finding highlights the
importance of T cell dysfunction in CVID autoimmunity and
demonstrates that pathogenesis of this immune disorder extends
beyond defects of B cells exclusively. Indeed, CVID patients
with autoimmunity have been found to have lower total T cells
compared to those without autoimmunity (30). Such T cell
deficiency is not necessarily profound, as a CD4+ T cell count
<200 or significantly impaired lymphocyte proliferation may

result in categorization as a combined immunodeficiency rather
than CVID (35). When Chapel et al. classified CVID patients
into specific phenotypes, they found that low proportions of
CD8+ T cells were predictive of autoimmunity; in fact, in
this cohort, each additional 10% increase in CD8+ T cells
reduced the odds of autoimmunity by 18% (14). Later studies
found that autoimmunity in CVID is associated with lower
naïve CD8+ T cells specifically, with terminally differentiated
CD8+ T cells actually increased, suggesting a hyperactivated
T cell phenotype as the defining feature (36). While several
studies have shown reduced CD4+ cells in CVID (29, 37), those
with autoimmune cytopenias and organ specific autoimmunity
had the most significantly reduced CD4+ T cells (36, 38, 39).
Within CD4+ T cells, autoimmunity in CVID was particularly
associated with reduced number of regulatory T cells (TR)
compared to CVID patients without autoimmunity (39, 40).
Expression of the canonical TR transcription factor forkhead box
P3 (FOXP3) was reduced in CVID patients with autoimmunity
compared to those without (39), and the suppressive activity of
TR cells in CVID with autoimmunity was also reduced, with
the degree of dysfunction correlating with the extent of FOXP3
downregulation (41). Other findings in CVID patients with
autoimmunity include lower CCR7+ T cells, also considered
to be key mediators in immune tolerance (42). Overall, T cell-
mediated processes that help promote immune tolerance appear
to break down in a subset of CVID patients, contributing to the
development of autoimmunity.

In addition to loss of naïve and regulatory T cells, an increase
in T helper type 1 (TH1) and T follicular helper (TFH) CD4+
T cells have been described in association with autoimmunity
in CVID. TFH cells provide help to activate and diversify B
cell responses within secondary and tertiary lymphoid tissues
(43). TFH are elevated in CVID patients with autoimmunity,
particularly those producing type 1 cytokines or otherwise
known as TFH1 (44). While TFH provide most of their function
within germinal centers, it is notable that their increase is
associated with germinal center enlargement and disorganization
in CVID patients with autoimmunity (45). This increased TFH

development has been linked with greater IgA deficiency and
resultant endotoxemia, presumably due to bacterial translocation
from mucosal surfaces in the absence of IgA (46). Expansion of
TH17 cells has also been associated with autoimmunity in patients
with CVID (47, 48). Thus, it is clear that T cell dysregulation,
particularly loss of regulatory subsets with concurrent increase in
proinflammatory lymphocytes, is a fundamental feature of CVID
patients with autoimmunity. Continued efforts toward improved
understanding of this form of immune dysregulation will be vital
to improving treatment of CVID associated autoimmune disease.

B Cell Dysfunction in CVID Autoimmune
Disease
Low frequency of TR cells in CVID patients with autoimmunity
is associated with expansion of a particular B cell type, CD21low

B cell (37), linking T and B cell pathology in CVID. Early
studies have shown that reduced switched memory B cell
(CD19+CD27+IgD–) percentage correlates more strongly with
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autoimmunity in patients with CVID compared to serum IgG
levels (49). Indeed, patients with reduced numbers of switched
memory B cells (≤0.55% of B-cells) had greater than a 3-fold
increase in their risk of autoimmune cytopenias and systemic
autoimmune disease (50). Subsequent studies found increased
proportions of CD21low B cells in patients with CVID (37,
51, 52), with clustering of these low levels in patients with
autoimmunity (28, 53). Interestingly, non-CVID patients with
autoimmune disease have also been found to have expansion of
CD21low B cells (54). These cells were found to have preferential
homing to peripheral tissues such as the synovial fluid of
rheumatoid arthritis patients and the bronchoalveolar space
of CVID patients (55). Further analysis found that CD21low

B cells from both rheumatoid arthritis and CVID patients
expressed germline autoreactive antibodies which recognized
nuclear and cytoplasmic structures (56). Authors concluded
that CD21low B cells are a “distinct, polyclonal, pre-activated,
partially autoreactive, functionally attenuated B cell population
with preferential enrichment in peripheral tissues” thus offering
another possible mechanism of autoimmunity in patients with
CVID (55).

Notably, CD21low B cells were found to produce significantly
more IgM than naïve B cells after stimulation with CD40L,
IL-2, and IL-10 (55). Along these lines, CVID patients with
autoimmunity have been found to have higher levels of IgM
compared with non-autoimmune phenotypes (31, 57). High
levels of IgM have also been associated with autoimmunity in
other PIDs, such as Wiskott-Aldrich syndrome (58). While this
may be a marker for increased risk of autoimmune disease, and
may be related to the aforementioned CD21low B cells, there
may be a pathogenic role for IgM autoantibodies, as IgM may
underlie the autoimmune cytopenias that are the predominant
autoimmune manifestation of CVID (57).

B cell receptor diversity is diminished in CVID patients
with autoimmunity (59). As a consequence of this diminished
B cell repertoire, the presence of certain B cell receptors with
autoreactive proclivity, such as those that express the VH4-
34 heavy chain, may be more prominent in CVID patients as
has been demonstrated in other forms of PID associated with
autoimmunity (60, 61). Thus, B cell developmental defects that
impair immunity may also contribute to the propensity for
autoimmunity in some CVID patients.

B cell-activating factor (BAFF), a cytokine that promotes
both maturation and survival of B cells, has long been linked
with autoimmunity when its levels are elevated (62–64). BAFF
also stimulates T cells via the BAFF receptor (BAFF-R) and
skews the inflammatory response by augmenting TH1 cytokine
production (65). Though BAFF levels were found to be elevated
in CVID, an association with autoimmunity was not found
(66). One possible explanation for this discrepancy is that the
sample size of this cohort did not provide enough power to
reach significance (only 17 of 77 patients had autoimmunity).
In a separate study, BAFF levels were elevated in CVID patients
with active interstitial lung disease, an inflammatory pulmonary
disease linked with autoimmune cytopenias (17, 25). On the
other hand, BAFF levels were not elevated in those with quiescent
stable disease, suggesting that increases of this cytokine might be

closely tied to disease activity (67) thus offering another possible
explanation for the lack of association in the aforementioned
cohort. While shedding of BAFF receptors has been postulated
to regulate BAFF-driven inflammation, there was no relationship
of serum levels of the BAFF receptor B cell maturation antigen
(BCMA) and the development of autoimmunity in CVID (68,
69). Yet, elevated BAFF levels have been shown to inhibit negative
selection of autoreactive B cells, in CVID autoimmunity as in
other diseases, which apparently contributes to the increased
autoimmunity seen in CVID patients withmutations in the BAFF
receptor transmembrane activator and calcium-modulator and
cyclophilin ligand interactor (TACI) (70–72). Further studies are
needed to refine our understanding of the complex relationship
between BAFF and autoimmunity in CVID.

Other biomarkers of immune dysregulation have been
linked with autoimmunity, as well as other non-infectious
complications, in CVID. Importantly, an elevated TH1

signature has been found in the peripheral blood of these
patients (73). This signature includes the prototypical TH1

cytokine interferon-γ (IFN-γ) and its downstream effects. This
heightened TH1 signature in the blood is consistent with the
heighted TH1 cellular response previously mentioned to be
increased in CVID patients with autoimmune complications
and elevated CD21low B cells. Elevated IFN-γ producing
innate lymphoid cells have also been found to distinguish
CVID patients with non-infectious complications (74).
Thus, systemic immune dysregulation favoring TH1 cytokine
production appears to be an important feature of CVID
patients with non-infectious complications, yet the pathological
basis of this skewed cytokine response remains unclear.
Likewise, the therapeutic benefit of trying to neutralize this
heightened TH1 response remains inadequately explored
(Figure 1).

GENETICS OF CVID AUTOIMMUNITY

As CVID is a phenotypically heterogeneous disease, the
expansive genetic landscape of these patients is perhaps
unsurprising. While many CVID patients may have polygenic
disease, recent advances in next generation sequencing (NGS)
techniques have increased the discovery of monogenic forms of
CVID to 15–30% of cases (75, 76) from 2–10% in 2016 (77).
The majority of identified monogenic mutations encode proteins
present in immune cells, which may reflect the nature of this
immune disorder or a bias of the genomic analysis that is still
nascent in its sophistication (77, 78). Out of the 12 monogenic
mutations listed on the Online Mendelian Inheritance in Man
(OMIM) database (79) in association with CVID, we will focus
on those associated with autoimmunity. It is worth noting that
while these mutations are associated with a clinical presentation
that fits the diagnosis of CVID, many instances may not
meet the full diagnostic criteria, in particular the extent of
hypogammaglobulinemia typically needed. As these mutations
were described in patients with CVID or CVID-like disorders
and are likely to be encountered in a clinical evaluation of such
patients, we include them in our discussion of CVID-associated
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FIGURE 1 | B-cell and T-cell dysregulation and immunophenotypic characteristics of autoimmunity in CVID. Some features of B-cell dysregulation in CVID patients

with autoimmunity include elevated CD21low B cells and IgM and increased autoreactive B cells in the periphery. On the other hand, memory B-cells, and B-cell

receptor diversity are decreased. Disturbance of T-cell homeostasis, with a decrease in T regulatory cells (TR) and a skew toward type 1 immunity, has been associated

with autoimmunity in CVID. Factors that have been identified in CVID patients which lead to downregulation of TR cells include LRBA and CTLA-4 deficiency, as well

as IgA deficiency. Upregulation of mTOR activity in GOF PIK3CD may also promote this immune dysregulation, while STAT3 GOF leads to expansion of TH17. BAFF

augments TH1 cytokine production via its effects on the BAFF receptor on T cells, and promotes the survival of autoreactive antibodies via its receptor on B cells.

autoimmunity even though there is an emerging trend to
categorize them separately.

Defects in the TACI, a BAFF and APRIL (a proliferation
inducing ligand) receptor encoded by the TNFRSF13B gene,
is one of the first mutations to be linked to CVID (80).
It is also among the most common genetic variants found,
detected in up to 10% of CVID patients who can be
either heterozygous or homozygous for the mutation (81).
Heterozygous TACI mutations may be more appropriately
defined as a risk factor for CVID, as some are not adequately
rare to be considered monogenic etiologies and are frequently
found in unaffected individuals (81). Notably, CVID patients
heterozygous for the TNFRSF13B variant have a higher risk
of developing autoantibody-mediated autoimmunity than those
with homozygous mutations (82). It has been hypothesized
that this difference may be due to the level of dysfunction in
the TACI receptor: by regulating the function of several other
receptors, TACI may be involved in central B cell tolerance and
that reduced function results in loss of tolerance and resultant
autoimmunity. By contrast, in homozygous individuals, the
complete loss of TACI function results in the inability tomaintain
continuous autoantibody production that would otherwise result
in autoimmunity (82).

LRBA (lipopolysaccharide-responsive beige-like anchor)
and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4)
deficiencies are two closely related protein deficiencies that

were detected in patients with CVID and autoimmunity
(83). While mutations in LRBA and CTLA4 have phenotypic
variance thought to be due to incomplete penetrance and
epigenetic changes, a common finding in these patients is
hypogammaglobulinemia and early onset severe autoimmunity
(77). CTLA-4 is an inhibitory T cell receptor that negatively
regulates immunity by inhibiting excessive T cell activation and
maintaining immune tolerance via its effect on TR cells (83).
LRBA, on the other hand, is thought to play a role in CTLA-4 cell
surface expression, hence the phenotypic similarities in the two
deficiencies (84). Deficiencies in both these proteins thus cause
excessive T cell activation and breakdown of immune tolerance,
resulting in autoimmunity. They are both examples of how T cell-
intrinsic genetic defects can lead to hypogammaglobulinemia,
further highlighting how T cell dysfunction is key to the
pathogenesis of at least some cases of CVID.

Gain-of-function (GOF) mutations in STAT3 have been
identified in CVID as well as those with less profound antibody
defects (75, 78). Patients with STAT3 GOFmutations also present
with early-onset and quite severe manifestations of autoimmune
disease (85, 86). One mechanism through which STAT3 is
thought to lead to autoimmunity is by promoting the activation
and expansion of autoimmunity-associated TH17 cells (47, 48).
While a heightened TH1 response has been linked to CVID
complications, features of these STAT3 GOF patients indicate
that other forms of hyperactivated T cell responses, namely

Frontiers in Immunology | www.frontiersin.org 5 December 2019 | Volume 10 | Article 2753

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gereige and Maglione Current Understanding of CVID Autoimmunity

TABLE 1 | Monogenic defects associated with autoimmunity and CVID.

Genetic defect Protein Immune dysregulation Targeted treatment Non-targeted treatment

TNFRSF13B mutation TACI defect Variable phenotype. Single

mutation considered risk

factor for CVID; also found

in asymptomatic individuals

Steroids, high dose

immunoglobulin, rituximab,

thrombopoeitin receptor

agonist
TNFRSF13C mutation BAFF-R defect

ICOS LOF ICOS deficiency Autoimmune enteropathy,

cytopenias, rheumatic

disease

NFKB1 LOF NF-κB1 deficiency Autoimmune cytopenias and

enteropathy,

lymphoproliferation,

lymphoma

NFKB2 LOF NF-κB2 deficiency Pituitary hormone

deficiencies, autoimmune

disease affecting skin, hair

and nails

LRBA LOF LRBA deficiency Severe early-onset

autoimmune disease

(including autoimmune

cytopenias, IBD, type 1

diabetes),

lymphoproliferation, atopy

(food allergy, dermatitis,

urticaria)

Abatacept

CTLA4 LOF CTLA-4 deficiency

PIK3CD GOF PI3Kδ hyperactivity Autoimmune cytopenias,

primary sclerosing

cholangitis, IBD,

lymphoproliferation,

lymphoma

Rapamycin; Leniolisib*

STAT3 GOF STAT3 hyperactivity Early onset endocrine

autoimmunity (type 1

diabetes, hypothyroidism),

autoimmune cytopenias,

lymphoproliferation,

interstitial lung disease

Tocilizumab; Jakinibs

*Currently in phase 3 clinical trial.

TH17, may also promote an autoimmune CVID phenotype.
Additionally, increased STAT3 activation may impair B cell
differentiation (87) leading to hypogammaglobulinemia and
heightened autoreactivity found in association with CVID or
moremild forms of hypogammaglobulinemia. Thus, STAT3GOF
may have both B cell-extrinsic and -intrinsic effects contributing
to the immunological phenotype of affected patients.

Class IA phosphoinositide 3-kinases (PI3Ks) are
heterodimeric lipid kinases that are involved in regulating
cell growth, survival, and activity. Recently, a GOF mutation
in the gene PIK3CD encoding PI3Kδ has been found in
patients with CVID-like disease and autoimmunity. PI3Kδ is
a PI3K subunit exclusively expressed in leukocytes. Patients
heterozygous for this mutation are now said to have “activated
PI3Kδ syndrome,” or APDS, of which ∼200 patients have
been described to date (88). Activated PI3Kδ syndrome is
characterized by impaired T- and B-cell development and
function, autoimmunity, and lymphoproliferation. One of the
major downstream effectors of PI3K is mTOR, which regulates
cell growth and survival and is critical for TH1 and TFH cell
differentiation (89, 90). While effector cells proliferate, naïve, and
central memory T-cell subsets remain metabolically quiescent,
likely contributing to autoimmunity, lymphoproliferation, and

immunodeficiency seen in this syndrome (91). As is the case
with STAT3 GOF mutations, both B cell-intrinsic and -extrinsic
effects have been described as PI3Kδ is expressed in B cells and
other leukocytes alike.

Nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) is a family of transcription factors that are crucial for B-
cell maturation, survival, differentiation, class switching, as well
as self-tolerance (92). It is also a fundamental transcription factor
for cytokine production by innate immune cells as well as other
vital cell signaling pathways that expand beyond the immune
system (93). NF-κB1 andNF-κB2 deficiencies were first described
in patients of CVID affected families who were found to carry
autosomal dominant mutations in NFKB1 and NFKB2 genes,
respectively (94, 95). Mutations affecting the inducible T-cell
co-stimulator (ICOS) are closely related to NF-κB deficiencies
since NF-κB are activated by ICOS receptors. Because ICOS
activation is essential for terminal B cell differentiation and
immune tolerance (96) both ICOS and NF-κB deficiencies result
in CVID-like immunodeficiency syndromes and autoimmunity
(77). NFKB1 mutation has also been linked with cytokine
dysregulation, namely the elevation of type 1 cytokines
that mirrors the immune profile characterizing the broader
population of genetically-undefined CVID with non-infectious
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complications (97). Some with NFKB1 mutations have antibody
deficiency without associated non-infectious complications (98).
NFKB2 mutations lead to autoimmunity affecting the skin,
hair and nails, such as alopecia and trachyonychia, and less
frequently autoimmune cytopenias, and are characterized by
pituitary hormone deficiencies (99) (Table 1).

MICROBIOME IN CVID AND
AUTOIMMUNITY

As noted above, monogenic mutations represent a minority
of CVID patients with CVID. The majority of cases may be
polygenic, or perhaps better defined as simply multifactorial,
with environmental, epigenetic, or other factors contributing.
Over the past decade, the microbiome has been implicated in
the manifestation of immune dysregulation (100), and has been
explored in the pathogenesis of CVID complications (46).

It has been hypothesized that impaired immunity results in
increased microbial translocation across the gut barrier. This
in turn drives persistent systemic immune activation leading to
the disruption of the immune homeostasis (46, 101, 102). While
regular immune sampling and microbial translocation occur in
healthy individuals (103), the increased frequency occurring in
CVID patients with diminished barrier functionmay lead to both
local and systemic inflammation and immune dysregulation.
Lipopolysaccharides (LPS) and soluble CD14 and IL-2 are used
as markers for endotoxemia since their presence in systemic
circulation is indicative of increased gut microbial translocation
(46). CVID patients have higher levels of LPS and soluble CD14
and IL-2 compared to healthy controls, and CVID patients
with autoimmune complications have higher levels compared to
CVID without complications (102).

Low IgA levels are thought to play an important role in
microbial dysbiosis seen in CVID since IgA is directly associated
with the gastrointestinal tract immunity. Patients with isolated
IgA deficiency have been found to have lower frequencies of
TR cells, especially in those patients with IgA deficiency and
autoimmune disease (104). They have also been found to have
reduced gut microbial diversity (105). Separately, a feedback loop
has been described whereby healthymicrobiota stimulate TR cells
and leads to the formation of germinal centers and IgA, which
in turn maintains a healthy microbiome (106). The disruption
of this feedback loop by low IgA levels and an unhealthy
microbiome leads to reduction in TR cells and subsequent
immune dysregulation. Importantly, systemic IgG responses
may be significant in preventing inflammation in those with
IgA deficiency as a consequence of microbial dysbiosis (107).
Such protective IgG responses may be significantly impaired in
some CVID patients, thus predisposing to inflammation and,
potentially, autoimmune disease.

Similarly to IgA deficient patients, CVID patients’ gut
microbial diversity was found to be reduced compared to healthy
controls, with again, higher levels of soluble IL-2 and LPS
detected in CVID patients with inflammatory and autoimmune
complications (102). They also found an inverse correlation
between T cell activation and gut microbial diversity, again
suggesting that those with reduced microbial diversity have

higher levels of T cell activation, and thus autoimmunity.
While these findings offer insight into some drivers of immune
dysregulation, further work is needed to unravel the specific
mechanisms by which the microbiome affects the immune
system, and how it is altered in patients with CVID, to best
understand how it should be modulated or otherwise harnessed
to treat complications of this immune deficiency.

TREATMENT OF AUTOIMMUNITY IN CVID

Classically, autoimmunity in CVID has been treated with
broad immunosuppressive agents, including corticosteroids,
methotrexate, and azathioprine among others, which place
already immunodeficient patients at an even higher risk of
infections. For genetically undefined CVID, the use of rituximab
for autoimmune cytopenias in CVID is one of the most
efficacious and safe treatments. Its use was first documented
in 2004 (108), and its efficacy and safety have been well-
established, especially for ITP (109). While ritixumab’s efficacy
with autoimmune cytopenias may be in part due to its B-cell
depleting properties resulting in depletion of autoantibodies, it
is thought that its success in CVID patients is also partially due
to its effect on T cells (110), again highlighting the importance
of T cell abnormalities in CVID. There is the documented
potential risk of persistent B-cell lymphopenia after treatment
with rituximab (111), but this risk is offset by the ongoing
use of immunoglobulin replacement therapy. Other therapies
include thrombopoietin-receptor agonists, such as romiplostim
and eltrombopag which were approved by the FDA in 2008
for the treatment of cirrhosis-associated thrombocytopenia, have
shown success in the treatment of thrombocytopenia in CVID
and other immunodeficiencies (112, 113).

In recent years, thanks to the recent molecular and
genetic findings in CVID, more targeted approaches have
led to improved results through precision medicine therapy.
In CTLA-4 deficiency, corticosteroids have been the most
consistently used immunosuppressive agents for autoimmunity,
while other steroid-sparing agents (such as mycophenolate
mofetil, cyclosporine, rituximab, anti-TNF drugs) have had
mixed results (114). Abatacept, a CTLA-4 immunoglobulin
fusion protein, considered as CTLA-4 replacement precision
therapy for these patients, has been used to treat autoimmune
manifestations and shown promising results. Ten patients treated
with abatacept, showed either complete resolution or partial
response with regards to stabilization of their cytopenia and
improvement in gastrointestinal symptoms, with no reports of
adverse outcomes (114, 115). Since LRBA deficiency is related
to CTLA-4 deficiency as described above, it is no surprise
that abatacept has also shown similar results in LRBA-deficient
patients (84). These precision therapy approaches exemplify the
potential of harnessing genomics and fundamental biology to
improve care of patients with PID.

STAT3 activation occurs downstream of IL-6 signaling, a
cytokine implicated in autoimmune disease, such as rheumatoid
arthritis (86). Thus, upon discovery of STAT3 GOF mutations,
IL-6 emerged as a potential target for treatment. Tocilizumab,
an IL-6 receptor antagonist, was trialed successfully in 2015
in a patient with STAT3 GOF mutation who had failed other
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treatments; their TH17 cells which were elevated pre-treatment,
similarly to what has been observed in other patients, normalized
after treatment with tocilizumab (85). More recently, jakinibs,
inhibitors of Janus kinases (JAKs) which are also involved in
the activation cascade of STAT3, have been used adjunctly with
tocilizumab in six patients and have yielded more sustained
results (116). The authors of this latest study suggest that
the combination of IL-6 blockade and a jakinib may be the
most effective treatment strategy for patients with STAT3 GOF
mutations (116).

Targeted therapy in PI3Kδ mutations have focused on
the mTOR pathway and its inhibitor, rapamycin. A cohort
of 26 APDS patients from the ESID registry were treated
with rapamycin which showed excellent effects on the
lymphoproliferative aspect of the disease, but less promising
results on autoimmune cytopenias and enteropathy (117).
Directed targeted inhibition of PI3Kδ is being explored with
the use of leniolisib: early results of the clinical trial published
in 2017 showed improvement in lymphoproliferation as well
as cytopenias (118). Nemiralisib, an inhaled PI3Kδ inhibitor,
has thus far shown safety and tolerability in healthy, asthmatic,
and COPD patients (91) but no data has been published on
APDS patients as of the publication of this review. The field of
CVID has grown by leaps and bounds in recent years, coupling
genomic studies with precision therapeutic approaches that
have significantly improved both the efficacy and tolerability of
immunosuppressive treatment for non-infectious complications.

CONCLUSION

Autoimmunity in CVID is profoundly shaped by the nature
of immune dysregulation that accompanies the immune
deficiency in these patients. For many years CVID patients with
autoimmunity have been set apart from other CVID patients
on the basis of immunophenotypic characteristics, but recent
advances in our understanding of genetic defects associated
with CVID have shed light on the underlying pathophysiology

of autoimmunity. This improved understanding has inspired
treatment of autoimmunity with targeted therapies in patients
who would otherwise be subjected to broad immunosuppression.
Some monogenic defects have now been listed as separate
immunodeficiency syndromes, such as APDS. Importantly, many
of these monogenic defects have variable clinical presentation,
attributed to incomplete penetrance or variable expressivity.
Additional factors, such as microbial dysbiosis, may also
contribute to the pathophysiology of the disease, leading to
greater heterogeneity. Future research that focuses on the
immune dysregulation caused by the alteration of the gut
microbiota may lead to a completely new line of therapies for
these patients, such as probiotics, fecal transplantation, or even
dietary recommendations. Examination of large CVID cohorts
in non-Western countries may shed further light on these
alternative mechanisms that may shape disease manifestations,
especially given profound dietary differences and possible
changes in gut microbiota between globally diverse populations.
Ethnic, racial, gender, and socioeconomic factors are likely

to be important to explore within Western countries. As
we continue to understand the mechanisms underlying the
multifactorial physiology that underlies CVID disorders, we will
move closer to elucidating the fundamental immune changes
that can be targeted with precision therapies to optimize
disease management.
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