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High-throughput T cell receptor (TCR) sequencing allows the characterization of an

individual’s TCR repertoire and directly queries their immune state. However, it remains

a non-trivial task to couple these sequenced TCRs to their antigenic targets. In this

paper, we present a novel strategy to annotate full TCR sequence repertoires with

their epitope specificities. The strategy is based on a machine learning algorithm to

learn the TCR patterns common to the recognition of a specific epitope. These results

are then combined with a statistical analysis to evaluate the occurrence of specific

epitope-reactive TCR sequences per epitope in repertoire data. In this manner, we

can directly study the capacity of full TCR repertoires to target specific epitopes of

the relevant vaccines or pathogens. We demonstrate the usability of this approach

on three independent datasets related to vaccine monitoring and infectious disease

diagnostics by independently identifying the epitopes that are targeted by the TCR

repertoire. The developed method is freely available as a web tool for academic use

at tcrex.biodatamining.be.

Keywords: TCR repertoire analysis, epitope specificity, enrichment analysis, immunoinformatics, vaccines,

infectious disease, cytomegalovirus (CMV), yellow fever virus (YFV)

INTRODUCTION

T cells form an important part of the adaptive immune system as they can recognize
potentially pathogen-derived or aberrant peptides (epitopes), which are presented by major
histocompatibility complex (MHC) molecules on the cell surface of nucleated host cells or
professional antigen-presenting cells, and induce an immune response. The T cell receptor (TCR)
molecule is responsible for the recognition of the MHC presented epitope. Each TCR protein
is encoded by a genomic region that undergoes non-homologous recombination during T cell
maturation, a process termed VDJ recombination. The randomness of the recombination process
ensures the production of many different TCR proteins, with each T cell clone expressing a
particular TCR, and allows the recognition of different epitopes. Epitope binding by the TCR is
a critical step for the activation of targeted immune responses.
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As high-throughput sequencing of TCR repertoires becomes
more common, the need for more advanced analysis methods
is increasing. A major challenge involves the functional
identification of activated T cells from TCR repertoire data.
To date, considerable efforts have been made to address this
problem either by the detection of proliferated T cell clones,
through the comparison of the abundance of TCR clonotypes
between different time points (1, 2), or by the identification
of enriched groups of similar T cell clones using VDJ
recombination probabilities (3). Along with these identification
methods, several strategies have been used to compare the TCR
repertoires of pathology-associated tissues with healthy tissues
or peripheral blood, for example in cancer (4, 5). However, the
current identification methods lack the ability to discriminate
disease-reactive T cells from other T cells that play a role
in concurrent, non-related immune responses, thus requiring
additional experiments. Different experimental strategies are
currently available to determine epitope-specific TCRs, i.e., TCRs
that recognize the epitope of interest, such as epitope-MHC
multimer assays and peptide stimulation experiments. However,
these techniques are not error-free as they can miss important
epitope-specific TCRs (6, 7) or falsely report non-binding TCRs
to be epitope specific (8). Nevertheless, these methods have been
extensively used to generate a large amount of epitope-specific
TCR data which has been collected in public databases such as
the VDJdb (9) and McPAS-TCR (10).

Here, we present a new strategy to study T cell responses
based on the direct identification of epitope-specific TCRs from
TCR repertoire data. To determine the epitope specificity of
TCRs, machine learning models have been developed to analyze
TCR sequences and predict the probability that they recognize
and bind specific epitopes. These methods are based on the
principle that similar TCR sequences often target the same
epitope (11) and that machine learning techniques can be used
to learn the molecular underpinnings that are shared by these
epitope-specific TCR sequences (12–14). While these methods
have been shown to be performant on small targeted datasets,
their application on full repertoire datasets remains challenging.

In this paper, we specifically address two issues that currently
limit the use of prediction methods on full TCR repertoires.
The first is the uncertainty on where to place the cut-off for
a correct prediction. In other words, how confident must the
prediction be before we accept it as the truth. If the cut-off is
chosen too strictly, we may miss many epitope-specific T cells.
Conversely, if it is chosen too low, we increase the number
of TCRs that are mistakenly identified as epitope-binding. To
address this first issue, the strategy proposed here includes the
estimation of a model-specific baseline prediction rate, which can
be used to set the prediction cut-off in an informed manner.
The second issue is that the presence of epitope-specific TCRs
is not restricted to TCR repertoires that have been stimulated
by an epitope, since they can also occur in small numbers in
naïve, healthy TCR repertoires. Therefore, the identification of
single epitope-specific TCR sequences by itself does not provide
sufficient information on the capacity of the full TCR repertoire
to target specific epitopes. Current prediction strategies do not
evaluate whether a TCR repertoire as a whole contains more

TCRs against a specific epitope than expected in a healthy TCR
repertoire that is not enriched for these TCRs. To address this
second issue, we introduce an enrichment analysis strategy to
identify those specific epitopes that are being targeted within a
given TCR repertoire.

We built upon the epitope-specific TCR classifier described
in De Neuter et al. (12) and developed an approach designed
for the identification of various epitope-specific TCRs in full
repertoire datasets. We have applied this new approach to
three independent datasets (1, 2, 15), which have previously
been analyzed with the traditional TCR repertoire data analyses
described above. In this manner, we show that by adding this
layer of epitope information, we are able to link T cell data
to broader immune repertoire targets. The described method is
available as a web tool at tcrex.biodatamining.be.

MATERIALS AND METHODS

Collection of Training Data and Assembly
of the Background TCR Dataset
A positive training dataset was constructed containing human
epitope-specific TCR beta chain sequences collected from
the manually curated catalog of pathology-associated T cell
receptor sequences [McPAS-TCR (10)] (11 339 TCR-pathology
combinations) and the VDJ database [VDJdb (9)] (17 792 TCR-
epitope combinations) on November 18, 2018. To train the
prediction models, both the CDR3 beta amino acid sequence
and the V/J genes were gathered. The following quality filtering
steps were applied for the McPAS-TCR dataset: (1) retaining
epitope-specific TCRs determined with peptide-MHC tetramers
or peptide stimulation and (2) removal of TCRs with missing
information (i.e., CDR3 beta sequence, V/J genes or the specific
epitope), reconstructed J genes, V/J genes with special characters
that could not be matched to known V/J genes, CDR3 beta
sequences with lower case amino acids or non-amino acid
characters, TCRs with additional quality remarks and TCRs from
studies using mouse strains. The dataset was further extended
with 550 TCR-epitope combinations found in the published
literature (13, 16–18). Standard TCRex filtering steps were
carried out (Supplemental Material S1). Furthermore, entries
withmultiple V genes were split into separate entries, each having
one of the V genes. For the retained TCR beta sequences, we
checked whether their V/J genes were present in the IMGT
format as formulated by the IMGT database (19). The latter was
necessary due to possible inconsistencies in the way V/J genes
were reported across studies. All V/J genes not reported in the
IMGT format were corrected using our in-house IMGT parser.
Finally, duplicate TCR-epitope combinations across different
sources were removed. Only beta chain TCR sequence data for
epitopes having at least 30 unique epitope-specific TCRs was
retained in order to ensure the presence of an adequate number
of TCRs to train and validate the classifiers. The final dataset
contained 18 679 unique TCR-epitope combinations.

The control training dataset was designed to contain non-
binding TCRs for each epitope. As one epitope can be presented
by more than one MHC-molecule, and one TCR sequence might
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interact with different MHC molecules (20), we did not take the
epitopes’ MHC background into account. Instead, we assembled
one control dataset for all epitope-specific models by collecting
TCR beta chain sequences from healthy TCR repertoires from the
study by Dean et al. (21). When considering a certain epitope,
the vast majority of TCRs in healthy TCR repertoires will not
target it. However, it is not unlikely that these repertoires contain
a few TCRs that do target this specific epitope. The presence
of these TCRs in our control dataset and their effect on the
performance of the prediction models is expected to be negligible
due to the low probability of their inclusion. In total, bulk
TCR beta chain repertoire data from 587 healthy individuals
was available. We randomly selected 1500 TCR beta sequences
from the repertoire of each of these individuals. Subsequently
standard TCRex filtering steps (Supplemental Material S1) were
applied and the V/J genes of the remaining TCR beta chain
sequences were transformed to the IMGT format. From this
final dataset, 250 000 unique TCR beta chain sequences were
randomly selected to make up the negative training dataset
and 100 000 unique TCR beta chain sequences were randomly
selected to represent the background dataset needed for the
calculation of the baseline prediction rate. We ensured that the
negative training and background dataset contained TCRs with
different CDR3 beta sequences.

Collection of TCR Datasets From
Infectious-Disease Studies
To evaluate the use of our epitope-specific models for the
functional annotation of TCR repertoires, we collected TCR
data from two independent yellow fever virus (YFV) vaccination
studies (1, 2) and one cytomegalovirus (CMV) study (15). From
the first YFV study (1), pre- (day 0) and post-vaccination (day
14) bulk TCR beta repertoire data (i.e., derived from peripheral
blood mononuclear cells or PBMC) was collected from nine
volunteers in the immunoSEQ Analyzer format. This study also
reported TCRs from activated T cells in the post-vaccination
repertoires for each of the volunteers [“CD3+CD8+CD14−

CD19−CD38+HLA-DR+ Ag-experienced, activated effector T
cells” (1)]. From the second YFV study (2), pre- (day 0) and
post-vaccination (day 15) bulk TCR repertoire data (i.e., derived
from PBMC) was collected from three pairs of twins1 In case
biological replicates were present for a volunteer at a given time
point, these were merged. As the TCR repertoires from this study
were reported in a MiXCR file format that did not follow the
standard TCRex input requirements (i.e., two additional columns
reporting the best V gene and the best J gene, respectively, for
each TCR sequence), we parsed these files and selected the most
likely V/J gene for every TCR sequence based on the provided
alignment score. For those TCRs with several V/J genes tied for
the highest score, only the first one was retained. The second
YFV study (2) also reported a list of vaccine-associated TCR
beta sequences that were identified in the volunteers using a
statistical analysis based on clonal expansion. This list was used
to compare the number of identified TCRs between TCRex and
the YFV study. From the CMV study (15), we gathered a dataset

1https://github.com/mptouzel/pogorelyy_et_al_2018

of 164 TCRs that were reported to be CMV-associated following a
statistical analysis of a large group (>600) of healthy CMV+ and
CMV- volunteers.

Model Training and Performance
Evaluation
For each epitope present in the collected training dataset, we
trained a random forest model to identify epitope-binding
TCRs in a TCR repertoire dataset. These machine learning
models have the ability to identify TCRs from multiple
epitope-specific clusters (Supplemental Material S2). Training
of epitope-specific prediction models was based on the method
established in De Neuter et al. (12). This method was shown
to perform comparably to other state-of-the-art classifiers in a
recent independent study (22). In brief, the amino acid sequences
of the CDR3 regions of the TCR beta chains were converted
into physicochemical features and the beta chain’s V/J genes
and families were one-hot encoded. For each epitope in the
collected training data, a random forest classifier was trained
with 100 individual decision trees using the scikit-learn library
(23). We sampled 10 times more negative training data than
positive training data from the negative control set of 250 000
sequences, in order to mimic the natural imbalance of epitope-
specific T cells in full TCR repertoires. TCR beta chain sequences
that occurred in both the positive training and negative training
dataset were removed from the negative training dataset to avoid
ambiguously labeled TCR beta chain sequences. Given a TCR
beta chain sequence, each model returns the confidence value
of binding a specific epitope. All models were evaluated using
a stratified 5-fold cross-validation strategy. With this validation
strategy we obtained the receiver operating characteristic (ROC)
curve, precision-recall (PR) curve, the balanced accuracy, the
area under the ROC curve (AUC) value and the average precision
value for each classifier as implemented in the scikit-learn library
(23). Models that had poor AUC (<0.7) or poor average precision
(<0.35) values were excluded from the model collection.

Controlling the Baseline Prediction Rate
The class probability score for a TCR beta chain sequence
is specific for each epitope model and does not take false
positive predictions into account. To control the number of
false positives, we provide each TCR sequence with a baseline
prediction rate (BPR) value along with its class probability
score. This BPR value represents the fraction of epitope-specific
TCRs that can be detected in a background dataset (i.e., a
control dataset representing a normal, healthy TCR repertoire)
at a certain confidence cut-off. Since background datasets are
expected to contain only a limited number of epitope-specific
TCRs, this BPR can also be used as an estimate for the false
positive rate (FPR). For every TCR sequence, its class probability
score is compared to the class probability scores of the 100 000
unique background TCR beta chain sequences. A BPR value
is then calculated for each TCR sequence as the fraction of
randomly selected background sequences with a class probability
score greater than or equal to the score of the TCR sequence.
Thus, for a desired BPR threshold, a confidence cut-off c can be
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calculated so that:

arg min
0≤c≤1

∣

∣p (B) ≥ c
∣

∣

|B|
≤ BPR

Where p is the prediction function and B is the background
dataset. This allows us to filter the prediction results with a
custom threshold across different epitope models, by using a
calculated cut-off c that is specific for each model. Furthermore,
this allows a direct interpretation of the cut-off with regards
to the expected number of false positive hits for a typical TCR
sequence dataset.

Epitope Specificity Enrichment Analysis
In addition to the detection of epitope-specific TCR beta chain
sequences, we implemented a method to identify those epitopes
for which we find a significantly higher number of unique TCR
sequences in a target repertoire than expected in a representative
control TCR repertoire. This analysis is performed by comparing
the abundance of the epitope-specific TCR sequences in the TCR
repertoire to a hypothetical dataset of randomly selected TCRs,
i.e., the background dataset. TCRex does not use any information
on the frequency of the TCR clonotypes in this comparison:
only the number of unique predicted epitope-specific TCRs are
considered. This enrichment analysis strategy uses a BPR-based
enrichment threshold that represents the percentage of unique
epitope-specific TCRs identified in the background repertoire at
the chosen BPR threshold. For each epitope of interest, a one-
sided exact binomial test is used to compare the number of TCR

FIGURE 1 | Overview of the number of trained prediction models for each

virus and cancer type (TCRex version 0.3.0). The bars show the number of

epitopes for which a prediction model with sufficient performance (i.e., AUC ≥

0.7 and average precision ≥0.35) was trained.

sequences with a BPR score smaller or equal to the specified
enrichment threshold. More specifically, we test whether we can
reject the null hypothesis that the observed number of identified
TCRs follows the binomial distribution X ∼ B

(

n, p
)

and thus
accept the alternative hypothesis that the abundance of TCRs
specific for the epitope in the studied TCR repertoire exceeds
the chosen enrichment threshold. Here, X is the number of
unique identified TCRs specific for the studied epitope at a
chosen enrichment threshold, n the size of the TCR repertoire
and p the chosen enrichment threshold. The latter represents
the percentage of epitope-specific TCRs that can be identified in
a hypothetical background dataset at a specific BPR threshold.
Since one false positive hit (i.e., a TCR sequence with a BPR score
below the BPR threshold that does not recognize the epitope) is
possible at every BPR threshold, we restrict the statistical analysis
to those epitopes for which at least two epitope-specific TCR
sequences are found.

Web Tool
The trained prediction models were collected and made available
as a web application, called TCRex, which is accessible at
tcrex.biodatamining.be. This web tool was built using the Django
web framework (24) and makes use of several Python libraries
including scikit-learn (23), SciPy (25), Pyteomics (26), Altair
(27), NumPy (28), Pandas (29), and Dask (30). It provides a user-
friendly web interface to predict epitope binding for human TCR
beta chain sequences and perform epitope specificity enrichment
analyses for various viral and cancer epitopes. It is compatible
with several common TCR sequence data formats, namely the
immunoSEQ Analyzer formats2 and MiXCR (31) format, and
the TCRex tab-delimited format which contains the V/J genes
and CDR3 beta amino acid sequences for each TCR. More
information concerning the use of the web tool is provided
in Supplemental Material S3. In this paper, the TCRex web
tool was used with the default BPR threshold of 0.01% for all
analyses. This value is based on the assumption that roughly 1–
100 epitope-specific TCRs can be found for every million TCRs
in a healthy CD8+ TCR repertoire (32, 33).

RESULTS

Overview of the Epitope-Specific Models
The following performance metrics were calculated for
each epitope-specific model using a 5-fold stratified cross-
validation approach: the balanced accuracy, the area under
the ROC curve (AUC) value and the average precision.
These are shown in Supplemental Material S4. Only models
with an AUC of at least 0.7 and an average precision of
at least 0.35 were included in the final model collection,
and thus in the current version (version 0.3.0) of the
TCRex web tool. Forty nine out of 54 prediction models
passed these inclusion criteria. Out of these 49 models, 44
were trained for viral epitopes and 5 for cancer epitopes
(Figure 1). The MHC background for the epitopes is shown
in Supplemental Material S5. It is worth to note that the

2https://www.adaptivebiotech.com/immunoseq
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TABLE 1 | Validation of three epitope-specific models with the leave-one-study-out validation approach.

Epitope Size training

dataset

Size test

datasets

Identified TCRs in

epitope-specific test

dataset

Identified TCRs

containing

training CDR3

beta sequences

Identified

TCRs in cancer

dataset

Performance metrics

Accuracy Sensitivity Specificity Precision

NLVPMVATV 4,723 89 10 3 2 0.54 0.11 0.98 0.83

GILGFVFTL 2,983 124 3 0 0 0.51 0.02 1 1

GLCTLVAML 1,142 66 12 3 0 0.59 0.18 1 1

For each epitope, the size of the training dataset, the size of the test datasets (i.e. the holdout validation dataset and the additional cancer dataset) and the number of identified epitope-

specific TCRs in the test datasets is given together with the associated performance metrics for a BPR threshold of 0.01%. In addition, the number of identified TCRs in the holdout

validation set having a training CDR3 beta sequence is shown. They, however, do not share their V and/or J genes with the training TCRs that match the CDR3 beta sequences, as

these were filtered out the holdout dataset.

FIGURE 2 | Percentage of unique identified LLWNGPMAV-specific TCRs pre-

and post-vaccination. The boxplots show the proportion of unique

LLWNGPMAV-specific T cells in pre- and post-vaccination PBMC samples for

the nine volunteers from Dewitt et al. (1) (A) and the six volunteers from

Pogorelyy et al. (2) (B). Epitope-specific T cells were identified with TCRex

using a 0.01% BPR threshold. An increase in the number of unique

epitope-specific cells was found for both studies.

detection of epitope-specific TCRs in this paper solely relies on
these prediction models without any additional experimental
validation. Therefore, all identified epitope-specific TCRs
should be interpreted as TCRs predicted to bind a specific
epitope. However, some of these TCRs might also be present
in the training dataset, which is a collection of experimentally
identified TCRs.

Evaluation of the Prediction Models Using
a Leave-One-Study-Out Validation
Approach
To evaluate how our epitope-specific models handle data from
new studies, we designed a validation approach wherein all

data of one study was left out during the training of the
models and served as a holdout validation set. We selected
viral epitopes with a large set of epitope-specific training data
(at least 1,000 unique TCRs) from various studies. For each of
these epitopes, one study was removed from the training dataset
(Supplemental Material S6). We ensured that this holdout
dataset did not contain any of the training TCRs (i.e., TCRs
with the same V/J genes and CDR3 beta sequence as training
TCRs). After training the epitope-specific models, predictions on
the holdout dataset were made using a strict BPR threshold of
0.01%. For each epitope-specific model, we expected a maximum
of one false positive when analyzing these small datasets with a
0.01% BPR threshold, as these datasets varied in size from 66 to
124 TCRs. To verify this assumption, the same models were used
on a negative control dataset, i.e., a dataset lacking TCRs specific
for the epitope of interest. For this purpose, we randomly selected
TCRs from the training dataset of the heteroclitic cancer epitope
ELAGIGILTV up to the size of the holdout validation datasets.
We also ensured that this negative test set did not contain any
training TCRs (i.e., TCRs sharing both their V/J genes and
CDR3 beta sequence with a TCR from the training dataset),
as this might be the case for putative cross-reactive TCRs.
Standard performance metrics including accuracy, sensitivity,
specificity and precision were calculated for each of the models
(Supplemental Material S7). A summary of the results is shown
in Table 1. The majority of the identified TCRs did not match
any of the training CDR3 beta sequences, which demonstrates
the ability to find TCRs with unseen CDR3 beta sequences.
Because of the strict BPR threshold, we achieved a very high
specificity and precision, but a limited sensitivity. For both
the GILGFVFTL and GLCTLVAML models, the specificity and
precision reached the maximum score of 1 which corresponds
to zero false positives. For the NLVPMVATV model, two false
positives were detected, which does not align with the chosen
BPR threshold. One of these TCRs, however, shares its CDR3 beta
sequence and J gene with a NLVPMVATV-specific training TCR.
This may indicate the presence of cross-reactive TCR recognition
patterns for both the cancer and the CMV epitope. If this is the
case, the TCR could be considered a true positive. The presence of
epitope-specific TCRs in background datasets is a potential issue,
as epitope-specificity studies mainly report TCRs binding to the
epitope of interest and not the non-binding TCRs. Since there
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is no public information available on non-binding TCRs, our
control datasets might contain a small number of epitope-specific
TCRs. This could have led to an overestimation of the number of
false positives in this analysis. Overall, the models performed well
and did not seem to be subject to any study specific biases.

The Number of Unique Epitope-Specific
TCRs Increases Post-vaccination
Previous studies have already demonstrated the feasibility
of identifying T cell clones that have proliferated between
time points in TCR repertoire data (1, 2). However, such
methods do not provide insight into the targeted epitopes.
Considering the fact that T cells proliferate upon binding
with vaccine-associated epitopes, we hypothesized that post-
vaccination repertoires contain an elevated level of unique
epitope-specific TCRs compared to pre-vaccination repertoires.
To evaluate the difference in the number of unique epitope-
specific TCRs (i.e., each TCR clonotype is considered once)
captured within the sequenced repertoire before and after
vaccination, we reanalyzed published TCR repertoires from two
independent YFV vaccination studies. In the first study, nine
healthy volunteers with unknown HLA types received the YF-
17D vaccine (1). In the second study, the YF-17D vaccine was
used to vaccinate three pairs of HLA-A∗02:01 positive twins
(2). For each of the participants, TCR beta repertoire data from
PBMC samples taken before and 2 weeks after vaccination were
available. At the time of analysis, TCRex featured one YFV
epitope prediction model: the immunodominant LLWNGPMAV
peptide. We used this model to identify unique LLWNGPMAV-
specific TCRs in both pre- and post-vaccination repertoires. To
control the number of false positives, a strict BPR threshold of
0.01% was applied. As can be seen in Figure 2, the percentage
of unique predicted LLWNGPMAV-specific TCR sequences
increased post vaccination for the majority of the volunteers
[one-sided Wilcoxon signed-rank test, p = 0.03711 for (1) and
p= 0.01563 for (2)].

Comparison of the Identification Level With
Techniques Relying on Clonal Expansion
The detection of vaccine-associated T cells with our new method
is restricted to the recognition of epitope-specific T cells for

which trained prediction models are available. Because only one
YFV epitope model passed the quality filters at the time of
analysis, we expected to detect a considerably smaller number
of vaccine-associated TCRs in comparison with a differential
analysis between time points. To evaluate the identification
level of our new strategy, we compared our results from the
post-vaccination repertoires to the outcome of the original

FIGURE 3 | Public vs. TCRex-identified unique LLWNGPMAV-specific TCRs in

the post-vaccination samples of Dewitt et al. (1) and Pogorelyy et al. (2). (A)

Overview of the number of unique LLWNGPMAV-specific TCRs that were

identified with TCRex in the post-vaccination PBMC samples for all nine

volunteers (V1–V9) of Dewitt et al. (1) (dark blue) and the total number of public

LLWNGPMAV-specific TCRs that were present in these repertoires (light blue).

(B) Overview of the number of unique LLWNGPMAV-specific TCRs that were

identified with TCRex in the post-vaccination PBMC samples for all six

volunteers (P1–S2) of Pogorelyy et al. (2) (dark orange) and the total number of

public LLWNGPMAV-specific TCRs that were present in these repertoires (light

orange).

TABLE 2 | Comparison of the epitope-specific TCR sequences identified with TCRex to the results from Pogorelyy et al. (2).

Volunteer Vaccine-associated

TCR clones reported by

Pogorelyy et al. (2)

Unique canonical vaccine-associated

TCRs identified by

Pogorelyy et al. (2)

Epitope-specific

TCRs identified by TCRex

Overlapping

TCRs

P1 1,151 1090 92 2

P2 800 763 110 3

Q1 576 547 79 7

Q2 1,685 1589 92 8

S1 773 747 170 19

S2 983 948 273 11

For each volunteer from Pogorelyy et al. (2) are given: the number of YFV-specific clones (DNA level) reported by the YFV vaccine study, the number of unique canonical YFV-specific

TCRs (i.e., TCRs starting with cysteine and ending with phenylalanine) (protein level with CDR3 beta sequences not containing any non-amino acid characters) identified in the YFV

vaccine study, the number of epitope-specific sequences in the post-vaccination repertoire identified by TCRex and the number of TCRs identified by both the YFV vaccine study

and TCRex.
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YFV vaccine study from Pogorelyy et al. (2) which reported
a list of the significantly expanded TCR clones 2 weeks after
vaccination. Two important findings resulted from this analysis.
First, considerably more YFV-associated TCRs were picked
up by the method from study (2) than by TCRex. Second,
the overlap between the epitope-specific TCRs identified by
TCRex and the proliferated TCRs identified by Pogorelyy
et al. (2) is rather limited, with an overlap ranging from
2 to 19 TCRs (Table 2). These results could indicate that
our approach might be able to detect epitope-specific TCRs
that might be missed by other techniques. However, it is
important to point out that the list of epitope-specific TCRs
reported by TCRex may contain a small number of non-specific
TCRs due to the presence of false positive predictions. The
lower identification rate of TCRex can be explained by its
limited sensitivity at strict BPR thresholds, as demonstrated by
the leave-one-study-out validation, and its restriction to one
YFV epitope. Thus, any T cells reacting with other vaccine-
related epitopes that were detected as expanded TCR clones
in Pogorelyy et al. (2), would be missed by TCRex. On the
other hand, as clonal expansion techniques do not take into
account the epitope specificity of the TCRs, they might also
falsely report bystander TCRs or TCRs associated with other
non-vaccine related immune responses. Indeed, in the original
YFV vaccine study three different experimental assays (i.e., a
multimer assay using the LLWNGPMAV epitope, evaluation of

the interferon gamma production following vaccine-stimulation
and identification of activated CD8+CD38+HLA–DR+ T cells)

were carried out to assess whether the identified expanded

T cell clones for one of the volunteers (S1) were vaccine-
associated (2). About half of the expanded 773 TCR clones

were experimentally validated, of which 68 clonotypes were
found to be LLWNGPMAV-specific. This is less than the
170 epitope-specific TCRs identified with TCRex. Although
tetramer assays are known to miss epitope-specific TCRs (6,
7), this low identification rate might also be a consequence
of the fact that the multimer assay was performed 2 years
after vaccination.

The Majority of the Identified
LLWNGPMAV-Specific T Cells Are Not
Present in Public Databases
Since the detection of epitope-specific T cells relies on
a prediction model trained on previously identified TCRs
recognizing the epitope, we assessed to what extent our models
are able to identify new epitope-specific TCRs. For this, we
compared the number of TCRex-identified LLWNGPMAV-
specific T cells in the post-vaccination repertoires from the two
YFV vaccine studies (1, 2) with the number of public TCRs
(i.e., known LLWNGPMAV-specific TCR sequences present in
the training data) in these repertoires. For both YFV studies,
TCRex achieved a higher identification rate in comparison
with the database search technique (Figure 3). The number
of TCRs identified by both techniques is rather limited
(Supplemental Material S8). TCRex does find some training
TCRs in the repertoires, however, we can deduce that the bulk
of the TCRs identified by TCRex were not present in our training
data and thus not publicly known.

Identification of Enriched
Vaccine-Associated TCR Repertoire
Targets
In addition to the identification of epitope-specific TCRs in
whole TCR repertoires, our newly developed strategy can also
be used to detect enriched TCR repertoire targets. In essence,
we detect epitopes for which more specific TCRs are present
than expected based on the epitope-specific TCR occurrence in
a healthy, non-vaccinated TCR repertoire. Here, we demonstrate
the feasibility of this enrichment analysis by comparing the levels
of LLWNGPMAV-specific TCRs before and after vaccination
for the volunteers from the two YFV studies. For each of the
volunteers, we evaluated whether their pre- and post-vaccination
TCR repertoires contained more LLWNGPMAV-specific TCRs
than expected in a background TCR repertoire, i.e., a TCR dataset
representing a healthy, non-vaccinated TCR repertoire. As all
the LLWNGPMAV-specific prediction analyses were performed

TABLE 3 | LLWNGPMAV-specific enrichment analysis results for all volunteers from Pogorelyy et al. (2).

Volunteer Identification level

pre-vaccination

PBMC

Identification level

post-vaccination

PBMC

Identified

TCRs

%

epitope-specific

TCRs

Adjusted p-value

enrichment analysis vs.

background repertoire

Identified

TCRs

%

epitope-specific

TCRs

Adjusted p-value

enrichment analysis vs.

background repertoire

Adjusted p-value enrichment

analysis vs. pre-vaccination

repertoire

P1 77 0.007272 0.999 92 0.010400 0.441 8.17e-04

P2 95 0.008119 0.999 110 0.009614 0.673 0.045

Q1 61 0.008615 0.999 79 0.017915 2.80e-06 1.24e-08

Q2 109 0.008440 0.999 92 0.015455 8.59e-05 1.64e-07

S1 138 0.014311 2.40e-04 170 0.025194 6.06e-25 5.69e-11

S2 180 0.013314 4.09e-04 273 0.017962 2.10e-18 2.03e-06

The table represents the adjusted p-values (Benjamini-Hochberg adjusted p-values for 6 tests) associated with the LLWNGPMAV-specific enrichment analyses for both full (i.e., derived

from PBMC) pre- and post-vaccination TCR repertoires. In addition, the number of identified specific TCRs and the percentage of identified specific TCRs are given.
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with a 0.01% BPR threshold, we expect that the abundance
of LLWNGPMAV-specific TCRs in a background repertoire
will not exceed 0.01%. Therefore, we assessed for each of the
volunteers’ TCR repertoires whether the percentage of epitope-
specific TCRs in the TCR repertoires was significantly higher
than 0.01% and thus were enriched in LLWNGPMAV-specific
TCRs. The number of identified TCRs and the results of the
epitope-specificity enrichment analyses for all volunteers from
Pogorelyy et al. (2) are shown in Table 3. The majority of the
post-vaccination TCR repertoires (4 out of 6) are enriched in
LLWNGPMAV-specific TCRs, as opposed to the pre-vaccination
TCR repertoires (2 out of 6). The enrichment in pre-vaccination
repertoires might be explained by the use of an unrepresentative
background dataset, which is a common problem addressed in
the next section. A similar trend can be seen for the volunteers
fromDewitt et al. (1). Here, the post-vaccination TCR repertoires
from 3 of the 9 volunteers demonstrated an elevated level of
LLWNGPMAV-specific TCRs while no volunteer showed an
enrichment in their pre-vaccination TCR repertoire (Table 4).

For the YFV study from Dewitt et al. (1) we additionally
studied the abundance of LLWNGPMAV-specific TCRs in
experimentally enriched TCR repertoires as Dewitt et al.
reported the activated subset [i.e., “CD3+CD8+CD14−

CD19−CD38+HLA-DR+ Ag-experienced, activated effector T
cells” (1)] of the TCR repertoire for each of the nine volunteers
14 days after vaccination with the YFV-17D vaccine. For each of
these activated TCR repertoires, LLWNGPMAV-specific TCRs
were identified using a BPR threshold of 0.01% and compared
with the abundance of specific TCRs in the unsorted PBMC
samples at the same time point. The number of LLWNGPMAV-
specific TCRs in the activated TCR dataset increased drastically
in comparison to their unsorted PBMC samples for the majority
of the volunteers (one-sided Wilcoxon signed-rank test, p =

0.001953) (Figure 4). The same trend can be seen in the results
of the enrichment analysis, presented in Table 4, with 4 out of 9
of the activated TCR repertoires demonstrating an enrichment
in LLWNGPMAV-specific TCRs whereas this is limited to 3 out
of 9 for the unsorted post-vaccination repertoires.

The Importance of the Background
Dataset in Enrichment Analyses
In the previous section, we showed how an enrichment in
epitope-specificity in TCR repertoires can be detected by
comparing the abundances of epitope-specific TCRs to a general
background dataset with a predefined enrichment threshold.
Here, we demonstrate how the selection of a representative
background dataset can improve these enrichment analyses.
For each of the volunteers from the two YFV studies (1, 2),
we compared the abundance of LLWNGPMAV-specific TCRs
in their post-vaccination repertoire to the abundance in their
pre-vaccination repertoire. For this, we slightly adapted our
general epitope specificity enrichment analysis: (1) the number
of successes in the one-sided exact binomial test was set
equal to the number of epitope-specific TCRs in the post-
vaccination repertoire that was identified with a 0.01% BPR
threshold and (2) the enrichment threshold was set equal to
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FIGURE 4 | Percentage of unique identified LLWNGPMAV-specific TCRs in

the post-vaccination repertoires from Dewitt et al. (1). The box plots show the

log-scaled proportion of unique LLWNGPMAV-specific T cells in

post-vaccination PBMC samples and activated TCR repertoires [i.e., “CD3+

CD8+CD14−CD19−CD38+HLA-DR+ Ag-experienced, activated effector T

cells” (1)] for the nine volunteers from Dewitt et al. (1). Epitope-specific TCRs

were identified with TCRex using a 0.01% BPR threshold. An increase in the

number of unique LLWNGPMAV-specific cells was found in the activated

dataset.

the fraction of the number of identified TCRs in their pre-
vaccination repertoire. A comparison between the two different
enrichment analysis strategies demonstrates the importance of
the use of a representative background dataset (Tables 3, 4).
When the percentage of epitope-specific TCRs in the pre-
vaccination repertoires is much lower than we generally expect
in healthy TCR repertoires, the use of a standard background
dataset might not discover the increase of epitope-specific
TCRs in post-vaccination repertoires. This can be seen for
volunteer P1 and P2 from study (2) (Table 3). Conversely, when
the percentage of epitope-specific TCRs in the pre-vaccination
repertoires exceeds our expectations, the use of a background
dataset could falsely indicate a significant increase of epitope-
specific TCRs in post-vaccination repertoires. This can be seen
for volunteer 2 from study (1) (Table 4). In conclusion, the
selection of the background dataset is an important step when
performing enrichment analyses and depends on the research
question and experimental set-up of the study.

Identification of Enriched
Disease-Associated TCR Repertoire
Targets
Previously, Emerson et al. introduced a new statistical method
to discover disease-associated TCRs from TCR repertoire data
(15). Briefly, they sequenced the TCR beta repertoires of a large
group (more than 600) healthy CMV+ and CMV− volunteers
and set up a statistical test to identify public TCRs that were

enriched in the healthy CMV+ volunteers. In total, 164 TCRs
were found to be associated with a positive cytomegalovirus
serostatus of which three were matched with a CMV epitope
through an additional validation experiment. Here, we use our
enrichment analysis strategy to identify the CMV epitopes that
are targeted by the TCRs in this dataset. In short, we searched
for epitopes for which an elevated level of specific TCRs are
present in this dataset, i.e., more than expected in a background
TCR repertoire. To see whether we only find an enrichment for
CMV-specific TCR sequences, and not for non-CMV epitopes,
we performed binding predictions for all epitopes present in
TCRex with a strict BPR threshold of 0.01%. In total, 8 out of
164 different TCRs were predicted to bind to one of the CMV
epitopes (Table 5). Two epitopes, both derived from CMV, were
found to be significantly enriched in the dataset: NLVPMVATV
(adjusted p = 7.1e-7, Benjamini-Hochberg adjusted p-value
for two tests) and TPRVTGGGAM (adjusted p = 5.7e-09,
Benjamini-Hochberg adjusted p-value for two tests), compared
to a TCR background dataset where we would expect to identify
0.01% specific TCRs for each epitope with our selected BPR
threshold. Additionally, we also found one YFV-specific TCR in
the list of 164 CMV associated TCR sequences. This might be
a false positive identification, where the LLWNGPMAV-specific
model wrongly classified the TCR as epitope-binding. However,
this TCR sequence shared an identical combination of a CDR3
beta sequence and J gene with TCR sequences linked with the
YFV epitope in public databases and thus the model training
set. It is therefore possible that this TCR is cross-reactive and
recognizes both the immunodominant YFV epitope and a CMV
epitope. It could also be that the identified TCR is not CMV-
reactive as the dataset reported by the original study represents
TCR sequences that were statistically associated with the CMV
seropositive volunteers which does not directly entail CMV-
reactivity. In summary, this analysis indicates the relevance of
using prediction models to identify epitope-specific T cells and
search for enriched T cell epitopes in a TCR beta dataset.

Evaluation of the Impact of MHC Bias in
Epitope-Specific Prediction Models
Considering each epitope-specific model is based on a positive
and negative training dataset, with, respectively, a very
constrained and broadMHC background, the performance of the
prediction models could be hampered by an inherent MHC bias.
More specifically, the models are at risk of being MHC-specific,
and thus predict the MHC binding property of a TCR sequence
in addition to its epitope specificity. This could obstruct the
identification of epitope-specific TCRs that bind MHC proteins
other than those included in the training dataset. To assess
the MHC-specificity of our prediction models, we studied the
influence of the MHC bias on the prediction results. To this end,
we collected epitope-specific TCR sequences from epitopes that
are presented by more than one MHCI molecule. Out of the
49 epitopes available in TCRex, 8 were shown to be presented
by different MHCI proteins (Supplemental Material S5). We
selected the epitopes that were associated with two different HLA
allele groups, i.e., their HLA allele names differ in the first two
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TABLE 5 | Epitope-specific TCRs identified in the enriched CMV-related TCR dataset of Emerson et al. (15) (0.01% BPR threshold).

TRBV gene CDR3 beta sequence TRBJ gene Epitope Virus Class probability

score

BPR score

TRBV07-06 CASSLAPGATNEKLFF TRBJ01-04 NLVPMVATV CMV 0.99 0.0

TRBV30 CAWSVSDLAKNIQYF TRBJ02-04 NLVPMVATV CMV 0.91 0.0

TRBV09 CASSALGGAGTGELFF TRBJ02-02 NLVPMVATV CMV 0.84 0.0

TRBV07-03 CASSRLAGGTDTQYF TRBJ02-03 QIKVRVKMV CMV 0.54 2e-05

TRBV07-09 CASSLIGVSSYNEQFF TRBJ02-01 TPRVTGGGAM CMV 0.97 0.0

TRBV04-03 CASSPSRNTEAFF TRBJ01-01 TPRVTGGGAM CMV 0.92 0.0

TRBV04-03 CASSPQRNTEAFF TRBJ01-01 TPRVTGGGAM CMV 0.85 0.0

TRBV04-03 CASSPHRNTEAFF TRBJ01-01 TPRVTGGGAM CMV 0.85 0.0

TRBV09 CASSGQGAYEQYF TRBJ02-07 LLWNGPMAV YFV 0.98 0.0

TABLE 6 | Evaluation of the MHC-specificity of epitope-specific models.

Epitope Training data Test data

MHC

background

Size MHC

background

Size Number of

identified TCRs

TPGPGVRYPL HLA-B*42:01 63 HLA-B*07:02 23 1

TPQDLNTML HLA-B*42:01 114 HLA-B*81:01 40 7

The table lists the MHC background and size of the training and test datasets for the study on MHC bias and the number of identified TCRs in the test dataset (0.01% BPR threshold).

digits (Table 6): TPGPGVRYPL and TPQDLNTML. For each
of these epitopes, a model was trained on a dataset of epitope-
specific TCRs that recognizes only one of the MHCI proteins.
Hereafter, predictions (0.01% BPR) were made on the remaining
epitope-specific TCRs, which were associated with the other
MHCI protein. TCRs with a different MHC background than the
training dataset were identified for both epitopes (Table 6). This
indicates that these prediction models are MHC-agnostic.

To support this result, we performed an additional analysis
where the HLA-B∗42:01 restricted models for the TPGPGVRYPL
and TPQDLNTML epitopes were used to predict the specificity
of TCRs with the same HLA-B∗42:01 MHC background but
different epitope specificity. In total, TCRex contained 4
epitopes associated with HLA-B∗42:01: LPPIVAKEI (62 TCRs),
IIKDYGKQM (54 TCRs), HPKVSSEVHI (75 TCRs), and
FPRPWLHGL (120 TCRs). Using the HLA-B∗42:01 restricted
models (0.01% BPR), none of the TCRs associated with
these 4 epitopes were predicted to bind TPGPGVRYPL or
TPQDLNTML, which shows that the MHC binding property
of a TCR was not learned by these prediction models. Taken
together, the results of this study suggest that the MHC-bias in
the prediction models does not necessarily have a major impact
on the prediction results.

DISCUSSION

Traditional methods to identify epitope-specific T cells require
targeted experiments, which are known to fail to identify a
considerable amount of reactive T cells (6, 7). Approaches to
solve this problem computationally have been proposed, but they
are hard to translate to full repertoires due to their inherent
prediction error. To overcome these limitations, we propose a

novel approach built on the identification of epitope-specific
T cells. Our method uses epitope-specific prediction models
trained on publicly available TCR beta sequence data to assess
the probability of binding the epitope of interest and corrects for
prediction errors by using a stringent BPR threshold. As such, it
allows for the easy identification of epitope-specific T cells in full
TCR repertoires and consequently the detection of enriched TCR
repertoire targets. In the current implementation, it is based on
a random forest classifier trained on common physicochemical
properties. The implemented method currently only uses TCR
beta chain information, as this is the bulk of the data that is
currently available. As linked beta-alpha TCR data becomes more
common (34, 35), the approach can be easily extended to include
alpha chain sequence data.

This novel approach was validated on several independent
datasets to address different research questions. Firstly, we
examined whether we could detect a difference in the presence of
epitope-specific TCRs in pre- and post-vaccination repertoires.
Considering that vaccines are expected to activate T cells upon
binding with vaccine-associated epitopes, leading to a targeted

proliferation of these T cells, we expected to find more unique

epitope-specific T cells after vaccination. The analysis of the
two YFV studies (1, 2) seems to support this hypothesis as an
increase in predicted LLWNGPMAV-specific T cells is found in
the post-vaccination repertoires from both studies.

One limitation of our method is the restriction on the number
of epitopes that can be studied as the models rely on the
presence of sufficient epitope-specific TCR data from targeted
experiments. Consequently, it is only possible to inspect the
specificity of TCR repertoires for epitopes which have already
been studied. However, considering our analysis of the two YFV
studies was restricted to one epitope, we achieved a relatively high
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identification rate in comparison with the method of Pogorelyy
et al. (2). This might be a result of the immunodominance of the
studied YFV epitope. The majority of the TCRs identified with
TCRex, however, did not overlap with the results in Pogorelyy
et al. (2). This could indicate that we might be able to find
epitope-specific TCRs that are missed by other methods. For
example, it is possible that some epitope-specific TCRs expanded
less in comparison to others and were therefore not detected
using the technique relying on clonal expansion. Though more
extensive experimental validation would be required, TCRex has
the potential to be used as a complementary technique to existing
TCR data analysis strategies by annotating single TCRs with their
epitope target and/or by discovering epitope response trends in
(activated) TCR repertoires.

Finally, we demonstrated how our approach enables the search
for enriched epitope specificity in TCR repertoire datasets using
our built-in enrichment analysis test. In short, we used an
enrichment test to check whether a TCR repertoire contains
significantly more TCRs recognizing a specific epitope than a
random background TCR dataset. As a proof of concept, we
compared the elevated level of LLWNGPMAV-specific TCRs in
pre- and post-vaccination TCR repertoires and analyzed a dataset
enriched in CMV-associated TCRs. The former analysis shows
the importance of the selection of the right background dataset
when performing enrichment analyses, which we discuss in more
detail in the next section. For the latter, our enrichment analysis
method easily detected a significant increase in epitope-specific
TCRs for two CMV epitopes. No enrichment was found for other
viral epitopes, which illustrates the robustness of our approach.

While this novel approach allows a full repertoire exploration,
several potential sources of bias may still impact the results. A
first problem lies in the diversity of epitope-specific repertoires:
various groups of T cells can be found in these repertoires, each
carrying a specific pattern (11, 13, 14). Patterns that are present
in more T cell clonotypes, will be picked up more efficiently
in TCR repertoire studies. This pattern bias will therefore be
present in the training dataset. Consequently, T cells carrying
common patternsmight be detectedmore easily by the prediction
models while T cells with rare patterns are more likely to be
missed. Although it is unlikely that all specificity patterns can
be discovered with a prediction model, it could still be possible
to detect the general trends following a disease or treatment, as
these might influence the frequency of both TCRs with common
and rare patterns.

Another major concern was the effect of the MHC bias
in the training data on the prediction models. This bias
could lead to an underestimation of the epitope specificity
of TCR repertoires from individuals whose HLA types do
not match the MHC background of the prediction models.
In addition, it could cause an increase of false positive
predictions for individuals with matching HLAs. Our analysis
on the impact of the MHC bias demonstrated that the MHC
background of epitope-specific TCRs is not likely to hamper
the prediction results. This indicates that the epitope-specific
TCR patterns might transcend theMHC background of epitopes,
which is in line with (11). However, caution needs to be
taken when extending this conclusion to all other prediction
models as the relative importance between the epitope-specific

and MHC-specific TCR patterns could vary between the
different models.

Still, even if the epitope-specific models are not MHC-
agnostic, potential biases in the enrichment results can be
avoided by comparing the abundance of epitope-specific TCRs
in a TCR repertoire to a background dataset with a matching
MHC background. In general, we recommend the use of
a representative background dataset (e.g., background data
from the same subject using the same TCR sequencing and
analysis set up) when available as any other biases between
the TCR repertoire and the background dataset might affect
the enrichment results. This is demonstrated in the enrichment
analyses of the YFV studies, where the replacement of the
standard background dataset by the pre-vaccination repertoires
gave better results. Nevertheless, if no suitable background
dataset is available, the enrichment analysis, as implemented in
the TCRex web tool, still provides an easy and fast exploration
of a TCR dataset, since it gives an initial overview of the
possible TCR targets that may be enriched in this dataset. As
bulk sequenced TCR repertoires are commonly not annotated
with their epitope specificities and require laborious additional
experiments to discover these targets, this enrichment analysis
can inform subsequent experimental efforts.

Taken together, we have developed a novel strategy to study
the epitope-specificity of full TCR repertoires. Our approach
relies on the identification of epitope-specific T cell receptor
sequences using epitope-specific prediction models. This enables
the prediction of human epitope-specific TCR sequences and
the identification of enriched TCR repertoire targets. We have
embedded our method into a user-friendly web tool, called
TCRex, which is available at tcrex.biodatamining.be. This tool
will facilitate the study of the epitope specificity of TCR
sequences that underly immune responses in different disease-
associated studies.
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