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An imbalance in the correct protein folding milieu of the endoplasmic reticulum (ER) can

cause ER stress, which leads to the activation of the unfolded protein response (UPR).

The UPR constitutes a highly conserved and intricately regulated group of pathways that

serve to restore ER homeostasis through adaptation or apoptosis. Numerous studies

over the last decade have shown that the UPR plays a critical role in shaping immunity

and inflammation, resulting in the recognition of the UPR as a key player in pathological

processes including complex inflammatory, autoimmune and neoplastic diseases. The

intestinal epithelium, with its many highly secretory cells, forms an important barrier and

messenger between the luminal environment and the host immune system. It is not

surprising, that numerous studies have associated ER stress and the UPR with intestinal

diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). In this

review, we discuss our current understanding of the roles of ER stress and the UPR in

shaping immune responses and maintaining tissue homeostasis. Furthermore, the role

played by the UPR in disease, with emphasis on IBD and CRC, is described here. As

a key player in immunity and inflammation, the UPR has been increasingly recognized

as an important pharmacological target in the development of therapeutic strategies for

immune-mediated pathologies. We summarize available strategies targeting the UPR

and their therapeutic implications. Understanding the balance between homeostasis and

pathophysiology, as well as means of manipulating this balance, provides an important

avenue for future research.
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THE ENDOPLASMIC RETICULUM AND ITS INTRICATELY
REGULATED UNFOLDED PROTEIN RESPONSE

In mammalian cells, the extensive tubular-reticular network known as the endoplasmic reticulum
(ER) forms a crucial site for maintaining calcium homeostasis, cholesterol production and lipid
synthesis, and most importantly acts as a gatekeeper for synthesizing and folding secreted and
transmembrane proteins (1). ER protein-folding can be disrupted by envrionmental, physiological
and pathological factors, resulting in ER stress. Changes in calcium homeostasis, an altered redox
status, energy deficiency, lipid overload or the accumulation of unfolded or misfolded proteins are
examples of conditions that can disrupt the ER protein-folding environment (2, 3). Furthermore,
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perturbations in membrane fluidity through cellular lipid
composition can cause lipotoxic ER stress (4, 5). The correct
folding and post-translational modifications of proteins are
necessary in order to maintain proteostasis within a cell, making
it essential for the ER to have a rigorous quality control system
should the ER environment become compromised. To this end,
ER-associated degradation (ERAD) removes and subsequently
degrades unfolded ormisfolded proteins (6), and the ER unfolded
protein response (UPR) serves to restore normal functioning of
the cell (adaptation) or gears toward cell death (apoptosis) in case
of irreversible disruption (2).

The UPR forms a conserved group of intracellular signaling
pathways that primarily aim to restore ER homeostasis in
response to ER stress caused by the accumulation of unfolded
or misfolded proteins (7). The UPR consist of three membrane-
bound signal transducers, namely PKR-like ER kinase (PERK),
inositol-requiring enzyme 1 (IRE1) and Activating transcription
factor 6 (ATF6) (8, 9). Under conditions of homeostasis, the
luminal domains of these three signal transducers are bound
to the chaperone Glucose regulated protein 78 (Grp78; also
known as BiP and HSPA5) (10). Upon ER stress, Grp78 is
translocated to the unfolded or misfolded proteins in the ER
and thereby allows activation of the UPR signal transducers
and subsequent downstream signaling (2, 11). Dissociation of
Grp78 from the type-I transmembrane protein PERK activates its
oligomerization and autophosphorylation in the cytosolic kinase
domain, to allow PERK to phosphorylate the alpha subunit of
translation initiation factor 2 (eIF2α) to indirectly inactivate
the latter and inhibit mRNA translation (2). This leads to the
inhibition of global protein synthesis, but specifically favors
translation of mRNAs with short open reading frames such
asactivating transcription factor 4 (ATF4), whose translation
is induced (12). IRE1 is also a type-I transmembrane protein,
which oligomerizes and subsequently autophosphorylates in the
kinase domain to trigger its ribonuclease activity. This leads to
unconventional splicing of Xbox-binding protein 1 (Xbp1) that
binds to the UPR element (UPRE) to induce the transcription of
UPR-related genes (13, 14). Upon release fromGrp78, the type-II
transmembrane protein ATF6 is transported to the Golgi where
it is proteolytically cleaved via the site 1 and site 2 proteases
(S1P and S2P) (15–17). Subsequently, the amino-terminal of
ATF6 (nATF6) is translocated to the nucleus to bind to the ER
stress response element (ERSE) for the transcription of genes
encoding XBP1, ERAD components, and ER chaperones (13, 14,
18). Mechanistically, and unlike PERK and IRE1α, ATF6 is not
dimerized and may perhaps be less affected by ER membrane
changes such as reduced membrane fluidity.

In addition to the UPR being a response system that restores
proteostasis, it fulfills an important signaling function that plays
an anticipatory role in cells that have a higher protein folding
demand and require an increased protein-folding capacity, in
the absence of ER stress (12). Triggers that can activate this
signaling response of the UPR include differentiating cells, such
as maturing immune cells (19, 20), and hormones, such as
epidermal groth factor (EGF) and vascular endothelial growth
factor (VEGF) (21, 22). Thus, while the primary purpose of the
UPR is to enhance protein degradation, reduce protein synthesis,

increase ER protein folding capacity and upregulate chaperones
required for protein folding, it has become increasingly clear
that the UPR plays a crucial role in tissue homeostasis. The
context-dependent functionality of the UPR, which tailors the
output according to the cellular stimulus, render it an important
gatekeeper of cellular physiology.

ER stress occurs under both physiological and pathological
conditions, and has been associated with immune and
inflammatory diseases (23), viral infection (24), cardiovascular
diseases (25), diabetes (26), cancer (27), cerebral ischemia (28),
neurodegenerative diseases (29), as well as mental disorders
(30, 31). What remains to be elucidated, however, is whether the
UPR plays a causal role in these pathologies or merely presents
a consequence of the respective disease. Experimental models
of the UPR provide a useful tool for unraveling the timely and
mechanistic involvement of the UPR in disease development
of the host. Indeed, to date there are a number of UPR-related
mouse models that display disease phenotypes and provide
insights into the role of this complex signaling pathway in
physiology and pathology. Table 1 provides an overview of UPR-
related mouse models and their associated disease phenotypes.
From this group of mouse models, with targeted UPR pathway
proteins, it is evident that the UPR plays a critical role in a
diverse range of pathologies. Findings from such mouse models
will be discussed in more detail in the following sections. In light
of the complexity of the canonical UPR and its regulation, many
of the in vitro cell culture studies on ER stress are difficult to
translate into the in vivo situation. UPR-related mouse models
are therefore indispensable to gain mechanistic insights into the
role of the UPR in human disease.

UPR IN IMMUNE CELLS AND IMMUNE
BARRIER FUNCTION

The UPR plays a critical role in the development of immune
cells, with numerous studies highlighting its involvement in
physiological immune processes (57). Discussed here, and
summarized in Figure 1, is our understanding of the roles of ER
stress and the UPR in immune responses that lead to immune
activation, differentiation, and cytokine expression in immune
cells. The UPR regulates cytokine production on multiple levels,
extending from pattern recognition receptor (PRR) sensing
to inflammatory signaling and cytokine transcription factor
activation. UPR-PRR synergy that strengthens the immune
response has been described by several groups and summarized
in Claudio et al. (58) and Smith (59).

UPR in Immune Cells
An essential role for the UPR in B cells was first described
in studies that showed UPR activation in the differentiation of
B cells into plasma cells, and a requirement for the induction
of Xbp1 for this process (38, 60–63). Further work revealed
that the induction of XBP1is a differentiation-dependent event
rather a response to increased immunoglobulin secretion (19,
20). XBP1 induces ER expansion in plasma cells, allowing for
high immunoglobulin synthesis, and its deficiency abrogates
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TABLE 1 | UPR-related mouse models and their associated disease phenotypes.

UPR mouse

model

Phenotype References

Perk−/− Type I diabetes, bone abnormalities (early

onset death)

(32)

Ire1α−/− Embryonically lethal due to liver

hypoplasia; liver deletion: hypolipidemia

(33, 34)

nATF6IECtg/tg Colonic adenomas (35)

Atf6α−/−;

p58−/−

Embryonically lethal (36)

Atf6α−/−;

Atf6β−/−

Embryonically lethal (37)

Xbp1−/− Embryonically lethal due to liver

hypoplasia; liver deletion: hypolipidemia;

IEC deletion: enteritis; pancreatic acinar

cell deletion: extensive pancreas

regeneration; pancreatic β cell deletion;

hyperglycemia.

(38–40)

XBP1flox/floxVCre

(XBP1−/−)

Spontaneous intestinal inflammation (39)

Xbp1+/− Insulin resistance and type II diabetes on

high fat diet

(38, 40)

eIF2αS51A Perinatal death with diabetes and

pancreatic β cell deficiency

(41)

wfs1-mutant Diabetes and growth retardation (42)

CHOP−/− Protected from induced ER stress and

type II diabetes

(43, 44)

ChopIECTg/Tg Imparied mucosal repair (45)

Grp78 Emryonically lethal; liver deletion: liver

damage and hepatic steatosis

(46, 47)

Grp94 Embyonically lethal; B cell deletion:

reduced antibody production; Bone

marrow deletion: haematopoietic stem cell

expansion

(48)

Atf4−/− Embrionically or preinatally lethal (49)

Nrf2−/− Regenerative immune-mediated hemolytic

anemia

(50, 51)

P58IPK−/− Type I diabetes (52)

Cnx−/− Postnatal death (53)

Crt−/− Embrionically lethal (54)

Casp12−/− Resistant to ER-stress induced apoptosis (55)

Agr2−/− Terminal ileitis and colitis (56)

immunoglobulin secretion by activated B cells through IRE1α
hyperactivation (60, 62, 64, 65). Plasma cell differentiation is
in part regulated by the transcription factor B lymphocyte-
induced maturation protein 1 (Blimp-1) (62). Blimp-1 deficient
B cells cannot activate transcription of plasma cell-related genes,
including XBP1 (62). XBP1 is downstream of Blimp-1, as
demonstrated in XBP1-deficient mice that resulted in normal
Blimp-1 induction (62). Furthermore, Blimp-1 was shown to
transcriptionally regulate ATF6 and IRE1 (66). XBP1 and also
IRE1 are required during the pre-B cell stage during which
immunoglobulin heavy chains are expressed for the first time,
and XBP1 provides a survival benefit for tumor cells in pre-B
acute lymphoblastic leukemia (33, 67).

In T cells, the UPR seems to play a role during cell
differentiation. For example, the PERK-eIF2α-ATF4 axis has

been implicated in Th2 cell differentiation, resulting in the
upregulation of UPR genes (68). Similarly, XBP1 was shown
to play a role in Th17 cell differentiation in response to
inflammatory and autoimmune diseases (69, 70). Evidence for
the important role played by the ER stress response in T cell
activation was recently shown in a study where the ER molecular
chaperone Grp94 was induced in CD4+ T cells following T cell
receptor-ligationmediated ER stress (71). In turn, Grp94 deletion
resulted in an activation defect. In CD8+T cells, the IRE1α-XBP1
pathway activated upon acute infection was shown to be vital
for effector T cell differentiation through increased expression of
killer cell lectin-like receptor G1 (KLGR1) (72).

Both the development and the survival of antigen-presenting
Dendritic cells (DCs) is driven by XBP1, with XBP1-
deficiency resulting in reduced numbers of conventional and
plasmacytoid DCs and increased apoptosis (73, 74). Interestingly,
a recent study could also show a role for XBP1 in the
suppression of antitumor immunity through the promotion
of lipid accumulation and impaired antigen presentation (75).
Further evidence for an important role of ER stress in DCs
is shown by its ability to induce IFN-β production and IL-
23 expression (74, 76). In DCs stimulated with the toll-like
receptor (TLR) agonist polyinosinic:polycytidylic acid (PolyIC),
silencing of XBP1 was shown to inhibit IFN-β production,
whereas overexpression of XBP1 augmented inflammatory
responses (74). TLR agonist stimulation of DCs under ER stress
enhanced IL-23p19 expression, a target of the ER stress-induced
transcription factor C/EBP homologous protein (CHOP), by
stimulating the enhanced binding of CHOP to its promoter (76).
In line with this, knockdown of CHOP reduced the expression
of IL-23 in vitro (76). In phagocytic macrophages, the IRE1α-
XBP1 ER stress axis is crucially involved in macrophage cytokine
(IL-6, TNF, and IFN-β) responses to toll-like receptor (TLR)
ligation in a pathway that involves TNF receptor-associated
factor 6 (TRAF6) and the NAPDH oxidase-2 (NOX2) (77, 78).
Furthermore, the IRE1α-XBP1 axis has also been implicated in
the regulation of inflammatory cytokine (IL1-β) production via
the activation of glycogen synthase kinase 3β (GSK3β) (79). A
role for ATF6 in macrophages was demonstrated in a study of
liver ischemia perfusion injury by Rao et al. in which prolonged
ischemia activated the ATF6 arm of the UPR and subsequent pro-
inflammatory cytokine production (TNF-α and IL-6) (80). It is
important to note that the context-specific response and control
of the individual UPR pathways is vital for the required immune
response. For example, the survival of macrophages during an
immune response is facilitated through the suppression of CHOP,
downstream of ATF4 in the PERK pathway of the ER stress
response (77, 81).

UPR in Immune Barrier Function
In addition to the traditionally classified immune cells described
above, epithelial cells lining mucosal surfaces, such as intestinal,
gastric, and pulmonary surfaces, are further regulators of innate
and adaptive immune responses. As the largest barrier between
the host and the external environment, the gastrointestinal
tract, with its enteroendocrine, absorptive, Paneth cells, and
goblet cells, is particularly dependent on correct cellular
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FIGURE 1 | The UPR in immune cells and immune barrier function. The UPR plays a critical role in the development, differentiation, activation, and cytokine secretion

of immune cells. Shown here are the effects of different UPR components on the main immune cell types, namely B cells, T cells (CD4+ and CD8+), macrophages

(M8), and dendritic cells (DCs), as well as epithelial cells (ECs). Th2, T helper type 2; Th17, T helper type 17; Grp94, Glucose regulated protein 94; IL-6, Interleukin-6;

IFN-β, Interferon-β; TNF, Tumor necrosis factor; TLR, Toll-like receptor; NFκB, Nuclear factor “kappa-light-chain-enhancer” of activated B-cells; ECs, epithelial cells;

IEC, intestinal epithelial cell; AMP, antimicrobial peptide.

functioning to maintain a state of intestinal homeostasis.
Mucus-producing goblet cells, immunoglobulin-, chemokine-,
and cytokine-secreting absorptive enterocytes, as well as anti-
microbial peptide-producing Paneth cells have been shown to
be particularly dependent on the UPR. For example, specific
deletion of XBP1 in intestinal epithelial cells (IECs) showed
a decreased antimicrobial function in Paneth cells, with loss
of their characteristic granules, a significant reduction in
goblet cells, increased epithelial apoptosis and the development
of intestinal enteritis via IRE1/XBP1 signaling, which was
reversible under germ-free conditions (39, 82). Adolph et
al. showed that the development of intestinal inflammation
is promoted by stressed Paneth cells, as specific deletion of
XBP1 in Paneth cells is sufficient to induce small intestinal
enteritis (83). A study provided first evidence that intestinal
ischemia/reperfusion induces UPR activation in the human
small intestine, particularly in Paneth cells, and demonstrated
subsequent induction of apoptosis in Paneth cells (84). Here,
ER stress-induced Paneth cell apoptosis was shown to contribute
to intesinal ischemia/reperfusion-induced bacterial translocation
and systemic inflammation. With regard to epithelial stem

cells, the UPR causes loss of self-renewal capacity in cells
with ER stress (85, 86). Heijmans et al. showed that an

activated UPR in crypt base columnar cells antagonizes stem
cell properties and proliferation via stem cell-specific depletion
of the ER chaperone Grp78 (87). More recently, they were
able to show that heterozygosity of Grp78 in the intestinal
epithelium compromises epithelial regeneration capacity and
protects against adenoma formation (88). A similar mechanism
to the UPR has been described in mitochondria and is termed
the mitochondrial UPR (mtUPR) (89–91). Our lab showed
that loss of the mitochondrial chaperone HSP60 activates the
mtUPR resulting in mitochondrial dysfunction (92). In these
mice, HSP60-deficiency causes a loss of stemness and cell
proliferation in intestinal crypts. HSP60 deficiency in IECs
triggered the paracrine release of Wnt-related signals associated
with hyperproliferation of residual stem cells that escaped Hsp60
deletion, demonstrating a fundamental role of mitochondrial
function in the control of intestinal stem cell homeostasis. Under
conditions of chronic inflammation, where this homeostasis
is constantly challenged, this mechanism may contribute to
inflammation associated tumorigenesis. In a recent study using
mice in which Apc (Adenomatous polyposis coli; the most
frequent initial gene mutation in CRC) and the ER stress
chaperone Grp78 were deleted in IECs, it could be shown that
ER stress signaling results in a rapid loss of Apc mutated stem
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cells and self-renewal capacity through interfering with Wnt
signaling (93). The ER UPR and its role in intestinal pathologies
will be one focus of this review, and is discussed in detail in
subsequent sections.

Taken together, it has become clear that ER stress and
the UPR signaling pathways play a pivotal role in shaping
immune cell development and responses in order to mount
an adequate immune response. Furthermore, IEC secretory
cell function and the UPR play an important role in the
maintenance of homeostasis and the resolution of inflammatory
conditions. It is therefore not surprising that the UPR with
its associated inflammatory pathways is also a key player in
pathologies, including complex inflammatory, autoimmune, and
neoplastic diseases.

UPR AND INTESTINAL DISEASE

ER stress and UPR activation critically impact the regulation
of intestinal epithelial stem cell differentiation (87, 92),
the development of chronic intestinal inflammation (39,
94, 95), and the pathogenesis of intestinal tumorigenesis
(35). Understandably, a dysfunction of IECs, particularly
highly secretory cells such as goblet cells, associates ER
stress and the UPR with numerous gastrointestinal disorders
such as inflammatory bowel disease (IBD), celiac disease, as
well as cancer, including colorectal cancer (CRC) (96–98).
With its multifaceted possibilities of physiological outcomes,
understanding the role of the UPR in IBD and CRC will open
up new avenues for treatments of these debilitating and life-
threatening diseases.

UPR in IBD
IBD refers to a group of multifactorial, immunologically-
mediated chronic inflammatory diseases, of which Crohn’s
disease (CD) and ulcerative colitis (UC) represent the two major
forms of disease. IBD can be debilitating and may lead to
life-threatening complications, and its incidence and prevalence
are increasing worldwide. The onset of IBD is suggested
to result from genetic susceptibility, immune dysregulation,
the intestinal microbiota, and environmental factors such as
diet (99–102). Genome wide association studies (GWAS) over
the past decade have identified numerous susceptibility loci
for CD and UC, the latest of which links 241 susceptibility
loci to IBD (103). Many of these susceptibility loci encode
proteins with important roles in proteostasis. Among the ER-
relevant genes identified here are Orosmucoid-like 3 (ORMDL3)
(104, 105), anterior gradient 2 (AGR2) (106), and XBP1 (39).
ORMDL3 has long been recognized as a key UPR inducer by
disturbing endoplasmic calcium homeostasis (107). ORMDL3
was also shown to selectively activate the ATF6 arm of the
UPR in lung epithelia (108, 109). The precise mechanism
by which genetic abnormalities in ORMDL3 contribute to
IBD is to date not understood, but it was shown to protect
against apoptosis (110). The protein disulfide isomerase AGR2
is highly expressed in secretory cells, and mice deficient in
AGR2 develop terminal ileitis and colitis displaying Paneth
cell hypertrophy and a loss of mucin-filled goblet cells along

with UPR activation (Grp78 increase) (56, 111). Similar to
AGR2 deficiency, XBP1 deletion in IECs particularly affects
secretory cells, with a loss of Paneth cells and mucin-
filled goblet cells (39). IEC-specific XBP1 deletion resulted
in ER stress (IRE1-XBP1 axis), spontaneous inflammation
and an increased susceptibility to dextran-sodium sulfate
(DSS)-induced colitis (39). ATG16L1T300A is a major risk
polymorphism in CD (112). Abnormalities in the secretory
pathway of Paneth cells are a consequence of hypomorphic
ATG16L1 (83, 113), and an IEC-specific deletion in mice
(Atg16l11IEC) demonstrates that the observed spontaneous
transmural ileitis is driven by IRE1α, which accumulates in
Paneth cells (114).

UC is characterized by depleted goblet cells and a reduced
mucus layer (115, 116). Further evidence for a role of the
UPR in goblet cells was provided by two strains of mice with
distinct, non-complementing missense mutations in the major
secreted intestinal mucin Muc2 (Winnie and Eeyore mice),
which develop an UC-like phenotype (117). Goblet cells in these
mice display evidence of ER stress and activation of the UPR,
associating mucin misfolding and ER stress with the initiation
of colitis in mice. Cytokines can either exacerbate or suppress
ER stress and protein production in secretory cells. For example,
IL-10 can act directly on goblet cells in the colon to reduce
protein misfolding and ER stress and promote mucus barrier
function (118). Furthermore, IL-22 was identified as a suppressor
of ER stress, and was shown to reverse high-fat diet-induced
intestinal epithelial stress and loss of mucosal barrier integrity
(119, 120). Immunoglobulin A (IgA) is the major secreted
immunoglobulin isotype found at mucosal surfaces. As discussed
in the previous section, studies in mice with an IEC-specific
deletion in XBP1 have shown that IEC-associated ER stress
can serve as a nidus for spontaneous microbiota-dependent
ileitis (39, 83). It was recently shown that IEC-associated ER
stress induces the expansion and activation of peritoneal B1b
cells, resulting in increased lamina propria and luminal IgA
to induce a barrier-protective T cell-independent IgA response
(121). This mechanism presents a beneficial self-contained host-
derived response that occurs independently of the microbiota
and inflammation.

Numerous models with perturbations in the UPR pathways
(ATF6, p58IPK, IRE-1, CHOP, OASIS, and S1P) do not show
spontaneous phenotypes but display increased susceptibility to
DSS-induced colitis (45, 94, 122–124). Treton et al. reported
that the coordinated expression of all three branches of the
UPR is impaired in UC patient mucosa, and that a defective
integrated stress response in these mucosa samples led to
reduced ATF4 and CHOP transcripts and protein levels (125).
Their findings demonstrate that inappropriate ER stress renders
UC mucosa highly susceptible to pathological changes in the
microenvironment and may present an in vivo signature for
the susceptibility of unaffected UC mucosa to inflammation.
Similarly, we observed a downregulation of CHOP mRNA and
protein expression in mouse models of T-cell-mediated and
bacteria-driven colitis (45). A further study conducted in our own
group provided evidence of UPR activation (increased Grp78
expression) in IECs from IBD patients and a mouse model
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of intestinal colitis (IL-10−/−) (95). The finding that IL-10-
mediated p38 signaling inhibited TNF-induced recruitment of
ATF6 to the Grp78 promoter provides a plausible explanation
for colitis development in IL10−/− mice. Traditionally, Grp78
is regarded as a luminal ER chaperone, however numerous
studies have established that, under cell stress conditions and
in specific cell types, it can be found in other locations
including the cell surface and the cytosol (126–128). This
extends the functions of Grp78 beyond its traditional protein
folding and processing role, to affect cell growth and signaling.
In addition to a role of the UPR in IBD, mtUPR has been
implicated in disease pathogenesis. Our study using double-
stranded-RNA-activated protein kinase (PKR) knockout mice
demonstrated that the highly selective mtUPR pathway employs
PKR to recruit signaling molecules associated with the disease-
relevant UPR signaling cascade, namely eIF2α and transcription
factor activator protein-1 (AP1/cJun) (129). The observed eIF2α
phosphorylation and AP1/cJun activation were dependent on
activities of the mitochondrial protease ClpP and the cytoplasmic
kinase PKR. The induction of mtUPR and PKR expression
could be observed in murine IECs as well as patients with
IBD, indicating that PKR may link mitochondrial stress to
intestinal inflammation.

Taken together, there is substantial evidence from mouse
models, patient data and GWAS studies, which demonstrate a
role of the UPR (and mtUPR) in intestinal inflammation.

UPR in CRC
Several studies suggest a complex relationship between ER stress
and tumorigenesis due to the multifaceted outcomes of UPR
activation, either by promoting pro-oncogenic adaptation and
cellular survival or by acquiring pro-apoptotic tumor suppression
(130, 131). Both cell extrinsic [hypoxia (132, 133), nutrient
deprivation (134, 135), and acidosis (136, 137)] and cell intrinsic
[oncogene activation (138–142), loss of tumor suppressor genes
(143), chromosomal abnormalities (144)] factors can influence
the tumor environment and therefore UPR signaling, to either
mount a tumor-survival response (facilitating tumorigenesis) or
an anti-tumor response (suppressing tumorigenesis). Sublethal
tolerable levels of UPR activation allow adaptation to cell
stress and sustain mechanisms of tumor progression, mostly
through links between the ER stress response and fundamental
biological processes, such as autophagy and ER-mitochondrial
crosstalk (145).

Colorectal cancer (CRC) is one of the leading causes of
death in the western society, being ranked third most lethal
neoplasia in the United States in both men and women (146).
As a key regulator of all UPR pathways, GRP78 constitutes a
major marker for UPR signaling, and its enhanced expression
correlates with the growth, invasion, and metastasis of tumors
(147). Elevated levels of GRP78 could be observed in CRC
cell lines and CRC patient tissue, with inhibition of GRP78
evoking enhanced sensitivity of CRC cells to chemotherapeutic
agents (148). The selective contribution of the IRE1 pathway
to an anticancer immune response in mice was demonstrated
in three independent mouse cancer models fed a low-protein
diet (149). Interestingly, an Xbp1-deficient epithelium results

in an over-activation of IRE1α which drives the regenerative
intestinal stem cell (ISC) expansion upon pathological ER
stress, but is not involved in homeostatic ISC regulation (150).
IRE1 signaling was also shown to induce vascular endothelial
growth factor-A (VEGF-A), IL-β, and IL-6 during the process
of CRC angiogenesis (151). Similar to IRE1, activation of
the PERK pathway has also been shown to play a vital
role in CRC initiation, progression and angiogenesis (152,
153). With respect to the causal role of the UPR effector
ATF6 in tumor biology, very little is known, although its
downstream target gene Grp78 is frequently found to be
overexpressed (154). A missense polymorphism in ATF6 is
associated with susceptibility to hepatocellular carcinoma (155).
ATF6 mRNA expression positively correlates with CRC primary
tumors and the likelihood of metastasis and relapse (156,
157). ATF6 was recently proposed as a marker for early
dysplastic changes both in ulcerative colitis (UC)-associated
and non-UC-associated CRC (158). In our newly generated
transgenic mouse model expressing the active form of ATF6
in IECs (nATF6IEC), we observed spontaneous colorectal
tumorigenesis through the induction of intestinal dysbiosis and
innate immune response in the absence of early inflammation
(35). Using germ-free mice, we showed that ATF6-activated
UPR in the epithelium requires the presence of intestinal
microorganisms for tumor formation. Our analysis of CRC
patients in The Cancer Genome Atlas dataset identified aberrant
ATF6 as a clinically relevant UPR mediator (35). Furthermore,
our clinical results identified approximately 11% of CRC
patients from all tumor stages who overexpressed ATF6, and
linked increased ATF6 levels in tumors of a subset of CRC
patients with increased risk of post-operative disease relapse,
supporting our hypothesis that ATF6 represents a novel and
clinically relevant tumor risk gene defining a subgroup of
CRC patients.

The above findings demonstrate a clear involvement of the
UPR in the different stages of CRC pathogenesis, however, it
remains largely unclear how ER stress and the UPR promote
survival of cancer cells. Cancer cells that are undergoing ER
stress can actively modulate immune cell function through
transmissible ER stress. Induced ER stress in cancer cells was
shown to cause the upregulation of UPR genes and pro-
inflammatory cytokines in responder macrophages (159). The
same group showed that cell-extrinsic effects of tumor ER stress
imprint myeloid DCs and impair CD8+ T cell priming (160).
Further evidence for the modulation of immune cells through
ER stress was provided by Lee et al. who showed that ER stress
in tumor-bearing mice accelerated cancer progression and the
immunosuppressive capacity of myeloid-derived suppressor cells
(MDSCs) (161). It seems to be the magnitude of ER stress,
which defines whether an immunosuppressive or immunogenic
response is mounted.

As summarized in this section and in Figure 2, research over
the past decade has provided much insight into the critical
role played by the UPR in IBD and CRC. Fully elucidating
the mechanisms by which the UPR promotes or prevents the
progression of diseases such as IBD and CRC will pave the way
for novel therapeutic approaches.
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UPR AS A PHARMACOLOGICAL TARGET
WITH THERAPEUTIC IMPLICATIONS

As a key player in immunity and inflammation, the UPR has been
increasingly recognized as an important pharmacological target,
providing promising hope in the development of personalized

therapeutic strategies for immune-mediated pathologies. To date
there are several therapeutic opportunities involving the UPR.
For descriptive and comparative purposes, these have been
compiled in Table 2. Chemical chaperones are a group of low-
molecular mass compounds that improve ER function. The
most studied chemical chaperones are Tauro-ursodeoxycholic

FIGURE 2 | The UPR in IBD and CRC. IBD and CRC constitute complex diseases with numerous major risk factors contributing to disease pathology. The UPR

significantly contributes to these two intestinal pathologies, mostly through an involvement in inflammation (IBD) and proliferation (CRC). Listed are the main known

mechanisms by which the UPR is implicated in IBD and CRC. DSS, Dextran sodium sulfate.

TABLE 2 | The UPR as a pharmacological target with therapeutic implications.

Pharmacological

agent

Function Effect References

TUDCA Small-molecule chaperone involved in

ER protein folding

Reduces ER stress and restores glucose homeostasis in a mouse model of type II

diabetes; reduces protein misfolding and colitis in mice

(162, 163)

PBA Small-molecule chaperone involved in

ER protein folding

Reduces ER stress and restores glucose homeostasis in a mouse model of type II

diabetes; reduces protein misfolding and colitis in mice; alleviates LPS-induced lung

inflammation

(162–164)

Bortezomib 26s proteasome inhibitor Activates the PERK pathway to induce ATF4 and CHOP, and sensitizing multiple

myeloma cells to apoptosis

(165)

Sunitinib Receptor tyrosine kinase inhibitor Affects tumor angiogenesis and tumor proliferation; influences IRE1α kinase activity

and eIF2α phosphorylation; negative effects on anti-viral immune response

(166, 167)

(1) STF-083010

(2) MKC3946

(3) B-109

(4) MKC8866

(5) KIRA6

(6) KIRA8

IRE1α inhibitors (1-4) tumor growth inhibition (1-2) increased apoptosis (4) increased survival (5)

preservation of photoreceptors; improved glucose tolerance (6) β-cell protection;

increased insulin secretion; prevents lung weight increase in lung fibrosis

(137, 168–175)

GSK2656157

GSK2606414

PERK inhibitors Tumor growth inhibition; neuroprotection; increased glucose-stimulated insulin

secretion

(176–183)

Compound 147 ATF6 activator Reduced infarct size; preserved cardiac, kidney and neurological function; reduced

liver triglyceride content

(184)

(1) Salubrinal

(2) Guanabenz

(3) Sephin 1

eIF2a phosphatase inhibitors (1) Neuroprotection; positively and negatively affects survival

(2) Neuroprotection; affects survival and disease onset; decreased axonal

degeneration

(3) Neuroprotection and motor recovery

(185–193)
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acid (TUDCA) and 4-phenyl butyrate (PBA) that, among
other functions, were shown to reduce ER stress in intestinal
epithelial cell lines (194), and in the intestinal epithelium where
they decreased the severity to DSS-induced colitis in mice
(162). In a further example, the clinically relevant Food and
Drug Adnministration (FDA)-approved proteasome inhibitor
Bortezomib sensitizes multiple myeloma cells to apoptosis
through UPR induction (165). Increasing our molecular
understanding of the intricate signaling pathways and their
effects on the immune system is therefore indispensable to
specifically and successfully target individual components of the
UPR. Interestingly, a study by Wielenga et al. reported that ER
stress-induced activation of the UPR forces colon cancer stem
cells to differentiate, resulting in their enhanced sensitivity to
chemotherapy in vitro and in vivo (195). These findings suggest
that agents that induce the activation of the UPR may be used
to specifically increase sensitivity of colon cancer stem cells
to the effects of conventional chemotherapy. In light of the
multitude of possible functions, responses and effects of the
UPR, the therapeutic implications for inflammatory disorders
and antitumor strategies in cancer may well be limitless. At
the same time, however, it is indispensable to consider possible
side effects when targeting the UPR, particularly with broad
targeting approaches. This becomes evident with examples such
as the receptor tyrosine kinase inhibitor sunitinib, which is
FDA-approved for the treatment of renal cell carcinoma and
gastrointestinal stromal tumors, but has also been shown to have
negative effects on the anti-viral immune response (167).

CONCLUDING REMARKS

Although our knowledge of the impact of ER stress and the
UPR on immune responses requires much more insight and
understanding, a growing body of new studies recognize the
UPR as a fundamental mediator in cellular physiology and
therefore also in the pathogenesis of inflammatory disorders,
autoimmune responses, metabolic diseases, and tumorigenesis.
Through its regulation of numerous cell-specific functions, the
UPR is associated not only with the restoration of homeostasis,
but also causally contributes to pathological processes. UPR
signaling induces inflammatory responses, as well as inducing
and controlling immune cell functions, making it an attractive
research target with therapeutic implications for chronic
immune-mediated diseases.
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