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Monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic MDSCs

(G-MDSCs) have been found to bemassively induced in TB patients as well in murine Mtb

infection models. However, the interaction of mycobacteria with MDSCs and its role in TB

infection is not well studied. Here, we investigated the role of Cav-1 for MDSCs infected

with Mycobacterium bovis Bacille-Calmette-Guerín (BCG). MDSCs that were generated

from murine bone marrow (MDSCs) of wild-type (WT) or Cav1−/− mice upregulated

Cav-1, TLR4 and TLR2 expression after BCG infection on the cell surface. However,

Cav-1 deficiency resulted in a selective defect of intracellular TLR2 levels predominantly

in the M-MDSC subset. Further analysis indicated no difference in the phagocytosis of

BCG by M-MDSCs from WT and Cav1−/− mice or caveosome formation, but a reduced

capacity to up-regulate surface markers, to secrete various cytokines, to induce iNOS

and NO production required for suppression of T cell proliferation, whereas Arg-1 was

not affected. Among the signaling pathways affected by Cav-1 deficiency, we found

lower phosphorylation of the p38 mitogen-activated protein kinase (MAPK). Together, our

findings implicate that (i) Cav-1 is dispensable for the internalization of BCG, (ii) vesicular

TLR2 signaling in M-MDSCs is a major signaling pathway induced by BCG, (iii) vesicular

TLR2 signals are controlled by Cav-1, (iv) vesicular TLR2/Cav-1 signaling is required for

T cell suppressor functions.
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INTRODUCTION

Tuberculosis (TB) is an airborne infectious disease caused by the intracellular pathogen
Mycobacterium tuberculosis (Mtb) which is transmitted by aerosol route. The WHO reports that
10.4 million people suffered from active TB and 1.3 million died of it in 2017 (1). Bacillus Calmette-
Guerin (BCG) is the only vaccine available against TB. Despite its widespread use in new-born
babies, BCG does not prevent adult pulmonary disease satisfactorily and therefore, has not reduced
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the global TB burden. The reasons for the varying efficacy
of BCG in protection against pulmonary TB are not
completely understood.

Myeloid-derived suppressor cells (MDSCs) are major
immuno-regulatory cells. MDSCs consists of granulocytic
MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs).
G-MDSCs and M-MDSCs have relatively low phagocytic
activity compared to dendritic cells and macrophages but they
have increased levels of reactive oxygen species (ROS), NO
production, arginase-1(Arg-1) expression, PGE2 and a number
of anti-inflammatory cytokines (2). In mice, G-MDSCs can be
identified best as CD11b+ Ly-6G+ Ly-6Clow and M-MDSCs
as CD11b+ Ly-6G− Ly-6Chi (3), although these markers are
not specific.

We found that MDSCs were expanded in the blood of TB
patients and decreased after successful chemotherapy (4), and
that vaccinations using Mtb can accumulate MDSCs in the
spleens of mice (5). In a murine model of TB infection, MDSCs
phagocytosed Mtb and secreted IL-10, IL-6, and IL-1α (6). A
higher frequency of MDSCs was associated with higher levels of
IL-4α and targeted depletion of MDSCs by anti-Gr-1 antibodies
or all-trans-retinoic acid (ATRA) resulted in a better outcome of
the disease (6). Accumulation of MDSCs in the lung and blood
of TB patients correlated with enhanced L-arginine catabolism
andNOproduction (7). Bothmonocytic and granulocytic subsets
were accumulated at the infection site as well as in the blood
depending on the severity of disease and other factors (4, 7).

Several reports suggest the adverse effects of MDSCs on anti-
TB immunity for T cell proliferation and activation (4, 6–8).
Therefore, MDSCs could be considered as cellular targets for
host-directed therapies against active TB disease, but this requires
a better understanding of mycobacteria interaction with MDSCs.
Here, we used G-MDSCs and M-MDSCs that were generated
from murine bone marrow (MDSCs) following a protocol we
published earlier (9). This allowed us to study MDSC interaction
with mycobacteria in more detail.

Mycobacterial ligands are recognized by defined pattern
recognition receptors such as TLR2 and TLR4 to induce
immune responses by macrophages and dendritic cells (10).
Although MDSCs also express TLRs, their activation induces
immunosuppressive responses, a phenomenon that can be
exploited for microbial immune evasion (11). TLR2 activation
by specific agonists increase the potential of MDSCs to suppress
anti-tumor immune responses (12). Similarly, TLR4 activation
through LPS has been shown to be essential forMDSC expansion,
activation, and suppression (13). Several TLRs can interact
with plasma membrane components such as Cav-1 to control
phagocytosis and cell activation. Cav-1 is a structural protein
component in lipid raft invaginations of the plasma membrane
which regulates lipid metabolism, signal transduction, and
membrane trafficking. Immune cells such as dendritic cells,
macrophages, monocytes, neutrophils, B cells are known to
express Cav-1 (14–17). Depending on the cell type and pathogen
stimulus, Cav-1 can have different functions. In endothelial cells,
Cav-1 interacts with TLR4 for NF-κB activation resulting in
the secretion of pro-inflammatory cytokines (18). Mutational
studies have shown that Cav-1 binding to TLR4 is required

for suppression of cytokine production (19). Other reports
have shown that Cav-1 regulates TLR4 signaling in murine
peritoneal macrophages (14). In a murine chronic asthma model,
inhibition of airway inflammation occurred via Cav-1 through
TLR2 mediated activation of MyD88 and NF-κB (20). Cav-
1 is found in the bulb-shaped pits of the plasma membrane
and are involved in the internalization of pathogens such as
SV40 virus (21), echovirus (22), respiratory syncitia virus (23),
S. typhimurium, and certain FimH-expressing bacteria (24).
Caveosome formation by Cav-1 association to phagosomes
has been proposed to serve as an intracellular niche for
pathogen survival by forming caveosomes (25). However, there
are conflicting reports questioning the existence of caveosomes
(26). From these findings, we hypothesized that Cav-1 may
play an important role in MDSCs for mycobacterial uptake
and activation.

Caveolae in lipid-raft microdomains are associated with
cell signaling cascades by directly interacting with several
proteins such as Src family tyrosine kinases, endothelial NO
synthase (eNOS) and the insulin receptor (27). During bacterial
infections, Cav-1 has a multi-faced role. On one hand, Cav1−/−

mice displayed higher bacterial burdens, decreased phagocytosis
ability, higher production of inflammatory cytokines and
increased mortality in Pseudomonas aeruginosa and Salmonella
typhimurium infection (28, 29). On the other hand, Cav1−/−

mice showed decreased mortality and low levels of inflammation
mediated by eNOS derived NO (30). However, the role of Cav-
1 in mycobacterial infections and their role in MDSCs have not
been investigated.

In this study we found upregulation of surface Cav-1, TLR2,
and TLR4 expression in both G-MDSCs and M-MDSCs subsets
of MDSCs after BCG infection. Using murine MDSCs from
WT and Cav1−/− mice, we found that Cav-1 does not play a
role in BCG phagocytosis or caveosome formation but rather
influences MDSC activation through intracellular TLR2 but not
TLR4 signaling via p38 MAPK supporting NO production to
suppress T cell proliferation. This study provides insights into
the functional role of Cav-1 for TLR2 signals after mycobacterial
infections in MDSCs.

MATERIALS AND METHODS

Animals and Ethics Statement
C57BL/6 and Cav1−/− mice (B6. Cg-Cavtm1Mls/J, JAX mice)
were bred under specific pathogen-free conditions in our animal
facility at the Institute of Virology and Immunobiology at
Würzburg, Germany and were used at an age of 6–10 weeks. The
in vitro experiments with BM or other murine organs from mice
were performed according to the German animal Protection Law
(TSchG) and under control of the local authorities (Regierung
von Unterfranken).

BCG
BCG-GFP (31) was cultured in Middlebrook 7H9 broth
medium (BD Difco) having 0.05% tween-80, 0.05% glycerol
and 10% albumin-dextrose-catalase (ADC) supplement. Log-
phase cultures were harvested by centrifugation at 1,000 rpm
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for 10min. Bacterial aggregates were removed by additional
centrifugation at 50 rpm for 10min. Bacillary count was
determined on basis of optical density at 600 nm. BCGwas grown
at 35◦ in the presence of 30µg/ml kanamycin (Sigma).

Reagents
LPS (100 ng/ml) and Pam3CSK4 (1µg/ml) were purchased
from Sigma-Aldrich. Pharmacological inhibitors cytochalasin
D (1µg/ml), filipin III (3µg/ml), simvastatin (50 nM, β-
cyclodextrine (1mM) were purchased from Sigma-Aldrich.

Murine Bone Marrow-Derived Myeloid
Derived Suppressor Cells (MDSCs)
MDSCs were generated as previously described (9). Briefly, tibiae
or femurs were removed from 4 to 10-week-old mice. BM was
flushed out with a PBS-filled sterile 10ml syringe. BM cells was
washed once by centrifugation by 1,000 rpm for 10min. BM cells
were then cultured in complete RPMI medium supplemented
with 10% GM-CSF for 3 days. On day 3, non-adherent and semi-
adherent cells were harvested and washed in complete RPMI
medium prior to in vitro stimulation assays.

Pharmacological Inhibition for BCG Uptake
WT MDSCs were incubated at 1.5 × 106/well in a 24-well plate
with cytochalasin-D (1µg/ml), filipin III (1µg/ml), simvastatin
(50 nM), or β-cyclodextrine (1mM) for 1 h and then stimulated
with BCG-GFP at MOI of 2, 5, or 10 for 6 h. Cells were then
analyzed by flow cytometry for BCG uptake by GFP detection in
G-MDSC and M-MDSC subsets.

In vitro Stimulation of MDSCs With BCG
MDSCs fromWT or Cav1−/− were added in a 24-well-plate (1.5
× 106 cells per well). BCG was added to cultures at indicated
multiplicities of infection (MOI). Cells were harvested after 16 h
and analyzed for the surface expression of TLR2, TLR4, Cav-1,
PDL-1, E-Cadherin, CD40, CD69 or intracellular expression of
TLR2, TLR4, iNOS, and arginase1. To analyze the production of
various cytokines and nitric oxide, MDSCs were stimulated with
BCG at 2,5,10 MOI and culture supernatants were collected after
16 h.

Antibodies
For Flow Cytometry
Ly-6C (clone: HK1.4), Ly-6G (clone: 1A8), CD11b (clone:
M1/70), rabbit caveolin1 (#3238,CST), PDL1 (clone: 10F.9G2),
TLR4 (clone: MTS510), TLR2 (clone: 6C2), iNOS (clone:
CXNFT), Arginase 1 (clone: A1exF5), CD4 (clone: GK1.5) CD8
(clone: 53-6.7), CD40 (clone: 3/23), CD69 (clone: H1.2F3),
phospho-p38 MAPK (clone: 4NIT4KK), phospho-AKT (clone:
SDRNR). All antibodies were directly fluorochrome conjugated
and purchased from BioLegend, except unconjugated Cav-1
which was purchased from Cell Signaling Technologies and
detected with donkey anti-rabbit-DyLightTM 649 secondary
antibody (Jackson Immuno Research).

For Western Blot
All antibodies were purchased from Cell Signaling Technologies
except for α-Tubulin which was purchased from Santa Cruz

(#sc-8035). Rabbit phospho-p38 MAP Kinase (#9211), rabbit
p38 MAPK (#9212), rabbit phospho-AKT (#4060), rabbit AKT
(#4691), and secondary antibody HRP (horseradish peroxidase)-
anti-rabbit (#7074) was used.

For Microscopy
Rabbit caveolin1 (#3238, CST), TLR2-Alexa 647 (clone:
6C2), TLR4-Biotin (clone: MTS510), DAPI (eBioscience).
Following labeled secondary reagents were used: donkey
anti-rabbit-DyLightTM 649 (Jackson Immuno Research),
Cy3-Streptavidin (BioLegend).

Flow Cytometry
For surface staining of in vitro stimulated MDSCs, 1.5× 106 cells
were harvested from the 24 well plates and washed with FACS
buffer (1x PBS supplemented with 0.1% BSA and 0.1% NaN3).
Cells were then re-suspended in 100 µl FACS Buffer and stained
with antibodies against surfacemolecules for 20min on ice before
flow cytometry.

For Intracellular staining 1.5 × 106 cells were fixed with
2% formaldehyde for 20min at room temperature after surface
staining as described before and then washed in FACS buffer.
Cells were then stained intracellularly for 45min with 100 µl
antibodies diluted in 1x intracellular staining perm wash buffer
(BioLegend) at room temperature. Cell were then resuspended in
100 µl FACS buffer before flow cytometry.

For phosphorylated stainings of p-AKT and p-38 markers
1.5 × 106 cells were fixed with 2% formaldehyde for 20min
at room temperature after surface staining described before.
Cells were then incubated in “IC fixation buffer” (eBioscience)
for 30min at room temperature. After washing with FACS
buffer, cells were incubated in ice-cold methanol. Cells were then
washed twice with FACS buffer and then incubated with 100 µl
respective phospho-markers diluted in FACS buffer for 60min at
room temperature. Cell were resuspended in FACS buffer before
flow cytometry.

MDSCs were analyzed for Annexin-V (BD Pharmingen)
staining, following the instructions provided by the
manufacturer. In brief, 1.5 × 106 cells were washed with
FACS buffer before incubating with surface antibodies (Ly-6G,
Ly-6C, and CD11b) diluted in FACS buffer for 20min. Cell death
was analyzed by staining the cells for 20min with a staining
mix composed of 1x Annexin-V binding buffer containing
annexin-V (BD Pharmingen).

For all stainings 50,000 events were acquired on a BD LSRII
with DIVA software (BD Biosciences, San Jose, USA). Data
analysis was done on FlowJo software (Tree Star, USA).

MDSC-T Cell Suppressor Assay
MDSCs from WT or Cav1−/− mice were pre-activated at 1.5
× 106/well in a 24-well plate with BCG for 1 h. T cells from
Spleen and lymph nodes of syngeneic mouse were then labeled
with the proliferation dye Cell Trace Violet (Thermo Fisher
Scientific) and 2 × 106 cells were added into a 48-well flat
bottom plate (Greiner). T cells were stimulated with soluble anti-
CD3(1µg/ml) and anti-CD28 (1µg/ml). BCG-activated MDSCs
were then added at 1:10 (2 × 105 cells/well) or 1:30 (6.6 × 104
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cells/well) ratios. Co-cultures were analyzed after 3 days. Cells
were harvested and stained for CD4 and CD8 and analyzed by
flow cytometry to detect T cell suppression. Proliferated T cells
dilute the tracer during cell division and so can be measured as %
Cell Trace Violet-low expressing cells.

Cytokine Estimation With ELISA
Cytokine (IL-6, IL-10, IL-12p40, TNF-α, and IL-1β) levels in
MDSCs culture supernatants 1.5 × 106/well in a 24-well plate
were determined using ELISA kits purchased from BioLegend,
San Diego, CA, according to the instructions provided by
the manufacturer.

NO Measurement
NO production was determined by measuring its stable end
product nitrite, using the standard Griess reagent. Briefly, 50
µl of supernatants from 1.5 × 106/well in a 24-well plate were
added to 96 well plate, followed by 50 µl of 1:1 ratio mixed
Griess reagents A = 0.1% sulphanilamide and B = 0.1% N-1-
napthylethylenediamine dihydrochloride (NED). Absorbance at
492 nm was measured by microplate reader and standard curves
were created based on the NaNO2 optical density (OD) readings.
From this standard curve, sample concentrations were calculated.

Cytospins and Immunofluroscence
Staining
MDSCs from WT and Cav1−/− mice were stimulated at
1.5 × 106/well in a 24-well plate with BCG-GFP for 16 h.
Cells were then centrifuged onto a glass slide by cytospin
at 600 g for 10min. Cells on the slides were fixed with
4% paraformaldehyde (PFA)/PBS 20min. After washing with
PBS, cells were permeabilized with 0.1% Triton X-100 for
5min and then blocked with 5% BSA for 30min. Cells
with primary antibody diluted in 1% BSA were incubated
overnight at 4◦C. Next Day, corresponding secondary antibody
was added for 1 h at room temperature. Nuclei were stained
using DAPI (eBioscience). Slides mounted with Fluoromount-
G (SouthernBiotech) were analyzed by confocal laser-scanning
microscope (LSM 780, Zeiss).

Western Blot
Cellular lysates (1.5 × 106) were lysed at 4◦C for 1 h in
1ml of lysis buffer consisting of 50mM Tris-HCl [pH 8.0],
150mM sodium chloride [NaCl], 1.0% Igepal CA-630 [NP-40],
0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate [SDS]
containing complete protease inhibitor cocktail (Sigma) and
1mM dl-dithiothreitol (DTT). The protein quantification was
done using the bicinchoninic acid (BCA) assay. Equal amounts
of proteins were heated at 95◦C for 5min in reducing Laemmli
buffer (50mM Tris HCl [pH 6.8], 2% SDS, 10% glycerol, 1% β-
mercaptoethanol, 12.5mMEDTA, 0.02% bromophenol blue) and
subjected to 10% SDS-PAGE. Proteins were blotted semidry on
nitrocellulose membranes (Applichem), followed with 5% BSA
or 5% milk in PBS with 0.05% Tween 20. Then membranes
were incubated with specific primary antibodies overnight
followed by HRP-conjugated secondary antibodies. Signals
were visualized with the help of chemiluminescent FemtoMax

supersensitive HRP substrate (Rockland). Quantification of
protein bands was done using Li-cor software. The fold changes
in phosphorylated proteins were normalized to the band densities
of total protein and/or Total Revert stain (Li-cor). Western
blotting was repeated 3–5 times, and representative images
are shown.

Normalization of FACS Data
Normalization of FACS surface staining data was performed
using the mean fluorescence intensities (MFI) values of
individual experiments for the expression of Cav-1, TLR2,
and TLR4. Unstimulated WT-MDSCs were considered as 1
and fold change was calculated accordingly. Normalization of
phosphorylated markers such as p38 and pAKT was done in
comparison to WT-unstimulated control that were considered as
1 and for all at 0 min.

Statistical Analysis
Statistical analyses were performed with help of GraphPad
Prism 6.0 (Graphpad, USA) or Fiji ImageJ for co-localization
studies and calculating Pearson’s coefficients (National Institute
of Health, USA). Data from the experiments are presented as
mean values ± standard error of the mean (SEM) or standard
deviation (SD) as indicated, and the statistical tests are indicated
in the legends.

RESULTS

Cav-1 Is Upregulated Upon BCG Infection
but Its Deficiency Does Not Affect TLR4 or
TLR2 Surface Expression on Murine
MDSCs
Cav-1 has been demonstrated to be upregulated in macrophages
upon HIV infection (32). We investigated the functional role
of Cav-1 during mycobacterial infections by using defined
MDSCs generated from BM cells of WT or Cav1−/− mice.
Murine G-MDSCs and M-MDSCs were identified by their
differential expression of CD11b, Ly-6G, and Ly-6C (Figure 1A).
Of note, MDSCs could be generated from both WT and
Cav1−/− mice, and BCG infection did not induce cell death
of MDSCs (Supplementary Figure 1). Both subsets of MDSCs
up-regulated Cav-1 expression on the cell surface upon BCG
infection on WT MDSCs (Figures 1B,C). Similarly, the up-
regulation of both surface TLR2 and TLR4 was observed with
different MOIs or after exposure to their respective ligands for
TLR2 (Pam3CSK4) or TLR4 (LPS) detected by flow cytometry
(Figures 1D–G), except that there was only a trend for up-
regulation of surface TLR4 expression between unstimulated
or BCG infected M-MDSCs (Figure 1G). For TLR2 and TLR4
no significant differences between WT and Cav1−/− MDSCs
could be observed (Figures 1B–G). Thus, our data indicate that
although Cav-1 is increased in murine G-MDSC and M-MDSC
upon BCG infection, its genetic deficiency does not alter the
surface expression of TLR2 and TLR4.

Frontiers in Immunology | www.frontiersin.org 4 December 2019 | Volume 10 | Article 2826

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


John et al. Caveolin-1 Controls MDSC Suppression

FIGURE 1 | Upregulation of TLR2 and TLR4 on MDSCs after BCG infection is independent of Cav-1 expression. (A) MDSCs were differentiated from WT mice by

culturing them in vitro with GM-CSF for 3 days and then analyzed by flow cytometry. Gating strategy to define G-MDSCs and M-MDSCs after FSC/SSC live gating

and doublet exclusion by expression of CD11b, Ly-6C, and Ly-6G. (B) MDSCs from WT mice were stimulated with BCG at 5 MOI or left unstimulated and analyzed

after 16 h for surface Cav-1 expression on G-MDSCs and M-MDSCs. (C) Pooled and normalized data of several experiments as performed for (B). (D,F) MDSCs from

WT or Cav1−/− mice were stimulated for 16 h with BCG and analyzed for surface TLR2 or TLR4 expression by flow cytometry. (E) Pooled and normalized data of

several experiments as performed for (D) and additional stimulation at different MOIs or the TLR2 agonist Pam3CSK4. (G) Pooled and normalized data of several

experiments as performed for (F) and additional stimulation at different MOIs or the TLR4 agonist LPS. Normalization of (C,E,G) was done according to unstimulated

WT control. Data represent for (C) n = 7, for (E) n = 7, and for (G) n = 6 independent experiments. ***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant by

unpaired, two-tailed, student’s t-test.

Cav-1 Deficient BCG-Stimulated MDSCs
Have Reduced Intracellular Levels of TLR2
but Not TLR4
Previous reports have shown that the TLR4 recycled between the
Golgi apparatus and the cell membrane (33); and in macrophages

TLR2 localized around yeast containing phagosomes (34). To

address whether intracellular TLR2 and TLR4 are affected by

Cav-1, we analyzed both markers intracellularly by confocal

microscopy and intracellular FACS analysis using BCG that

expressing GFP. Both TLR2 and TLR4 were detected at the
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cell surface and in the cytoplasm (Figures 2A,B). Surprisingly,
we observed that MDSCs from Cav1−/− mice had reduced
expression of intracellular TLR2, most prominently for M-
MDSCs (Figures 2A,C), but not of TLR4 (Figures 2B,D).
Moreover, the intracellular colocalization of BCG with TLR2
but not TLR4 was also reduced in MDSCs from Cav1−/−

mice (Figures 2E,F). This was further confirmed by intracellular
staining of TLR2 and TLR4 expression in BCG-infected WT
and Cav-1−/− MDSCs by flow cytometry. Also, here, TLR2
expression was diminished in unstimulated Cav-1−/− in M-
MDSCs and the expression was increased by trend but not
significantly after BCG infection (Figures 3A,B). In contrast,
TLR4 expression was upregulated in M-MDSCs from both WT
and Cav-1−/− mice upon BCG infection but remained without
difference between WT and Cav1−/− MDSCs (Figures 3C,D).
TLR4 expression remained unchanged by G-MDSC and also
showed no effect by Cav-1 deficiency (Figures 3C,D). Together,
our results indicate that Cav-1 deficiency affects the intracellular
levels of TLR2 that appear as punctual stainings in BCG-infected
M-MDSCs, thus suggesting a vesicular localization. Also, BCG-
induced up-regulation of intracellular TLR2 is impaired in Cav-1
deficient M-MDSCs.

Cav-1 Inhibition or Genetic Deficiency
Does Not Impair BCG Uptake Into MDSCs
and Cav-1 Does Not Co-localize With BCG
MDSCs have been shown to internalize mycobacteria in infected
mice (6) and Cav-1 has been reported to be involved in the
uptake of several pathogens (22–24, 35). Therefore, we examined
whether Cav-1 is required for BCG uptake into MDSCs.
Cytochalasin-D was used as a positive control for blocking actin
polymerization required for phagocytosis (36). MDSCs were
treated with these inhibitors prior to BCG-GFP infection and
then tested for uptake after 6 h by flow cytometry. As expected,
cytochalasin D strongly inhibited BCG uptake by phagocytosis
(Figure 4A). Filipin III is a cholesterol binding drug which acts as
a caveolae disrupter (23, 37, 38). In macrophages, Filipin III has
been implicated as functionally important for caveolae-mediated
endocytosis (39). Simvastatin and β-cyclodextrine are a lipid raft
disrupter drugs which also influence caveolae functions, although
less specific (24). Pharmacological inhibition by filipin-III did
not block the BCG uptake into G-MDSC or M-MDSC. However,
inhibition with β-cyclodextrine reduced the uptake significantly
in both G-MDSC and M-MDSC subsets, while simvastatin
showed only a trend for reduction of uptake, but without
statistical significance (Figure 4B). To further address the role of
Cav-1 in BCG uptake, we compared WT with Cav1−/− deficient
MDSCs. As observed with the pharmacological inhibitors, we did
not find any significant difference in the phagocytosis of BCG
into WT and Cav1−/− G-MDSCs or M-MDSCs (Figures 4C,D).

The formation of caveosomes has been described after
mycobacterial uptake into a macrophage cell line J774 (40).
Therefore, we tested for the formation of caveosomes in BCG-
stimulated MDSCs by confocal microscopy. G-MDSC were
identified by their ring-shaped or polymorphic nuclei whereas
M-MDSC has kidney shaped or round nuclei. Both MDSC

subsets readily ingested BCG-GFP but showed very limited co-
localization with Cav-1 (Figure 4E) with a Pearson’s coefficient
of only +0.05 (Figure 4F). These results show that Cav-1 is
dispensable for BCG uptake by MDSCs and do not provide
evidence for caveosome formation of BCG in MDSCs.

Cav-1 Deficiency Alters Inhibitory Markers
and Influences Cytokine Production in
MDSCs Upon BCG Infection
Next, we compared the activation status and inhibitory
molecules of WT and Cav1−/− MDSCs by flow cytometry.
BCG infection resulted in significantly increased CD40, PD-
L1, and CD69 expression in G-MDSCs and M-MDSCs from
WT mice (Figures 5A–C). However, Cav1−/− M-MDSCs had
significantly reduced expression of all three markers upon BCG
infection while G-MDSCs remained unaffected (Figures 5A–C).
We further evaluated the role of Cav-1 in cytokine production
in response to BCG infection. We stimulated WT and Cav1−/−

MDSCs with BCG at increasing MOIs and analyzed for
the cytokine production after 16 h by ELISA. Although Cav-
1 deficiency affected the secretion of IL-6, IL-12p40, IL-10,
and TNF-α in response to BCG infection (Figures 5D–G),
no significant difference was observed for IL-1β secretion
(Figure 5H). Together, these data suggest that Cav-1 deficiency
affects surface markers and secretion of selected cytokines
in BCG-infected M-MDSCs but not in G-MDSCs, and
that their inflammasome-dependent IL-1β production is Cav-
1 independent.

Lack of Cav-1 Impairs iNOS in
BCG-Activated MDSCs and Exhibits
Reduced T Cell Suppression
L-Arginine degradation by Arg-1 or iNOS, resulting in L-arginine
deprivation and NO secretion, respectively, represent major
suppressive mechanisms of MDSCs. Hence, we also compared
intracellular iNOS and Arg-1 in BCG activatedWT and Cav1−/−

MDSCs by flow cytometry. Interestingly, both G-MDSCs and
M-MDSC showed a highly impaired iNOS induction upon
BCG infection in the absence of Cav-1 (Figures 6A,B) but no
clear difference for Arg-1 (Figures 6C,D). These iNOS data are
concordant with the finding that MDSCs from Cav1−/− mice
also showedmassively reducedNO secretion upon BCG infection
as compared with WTMDSCs (Figure 6E).

As we observed impaired surface marker and iNOS expression
as well as reduced cytokine and NO secretion from Cav1−/−

MDSCs in response to BCG infection, we hypothesized that
MDSCs from Cav1−/− mice might also be impaired in their
T cell suppression capacity. To test this, we performed an in
vitro T cell suppression assay where BCG-infected MDSCs were
added at different ratios to CD3/CD28 antibody activated T
cells to stimulate their proliferation. MDSCs from Cav1−/− mice
displayed a reduced CD4+ and CD8+ T cell suppressive capacity
when compared to WT MDSCs (Figures 6F,G). Furthermore,
supernatants obtained from T cell suppressor assays contained
less NO compared to WT MDSCs (Figure 6H). Taken together,
these results show that Cav-1 deficiency of MDSCs impairs iNOS
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FIGURE 2 | Cav-1 deficient MDSCs show reduced intracellular TLR2 but not TLR4 in BCG-infected vesicles. MDSCs were stimulated with BCG-GFP for 16 h at 1

MOI. Cytospins were stained for TLR2 (A) or TLR4 (B) and analyzed by confocal microscopy. G-MDSCs and M-MDSCs were identified on the basis of

polymorphonuclear or mononuclear shape by DAPI staining. All scale bars 11µm. (C,D) Quantified data of raw intensity/area for TLR2 or TLR4. of M-MDSCs from WT

and Cav1−/− mice. (E,F) Pearson’s correlation coefficients for colocalization of BCG with TLR2 overlap and BCG with TLR4 overlap. Data represent for (C) n = 30

cells, for (D) n = 30 cells, and for (E,F) n = 10 cells. ****P < 0.0001; **P < 0.01; ns, not significant unpaired, two-tailed, student’s t-test.

expression and thereby NO secretion that was associated with a
reduction in T cell suppressive capacity.

Cav-1 Is Required for p38 MAPK Signaling
in BCG-Activated MDSCs
Next, we addressed the signaling pathway leading to Cav-1
mediated reduction of NO production and thereby decreased
T cell suppression. Recognition of mycobacterial ligand by
TLR2 can activate MAPK p38 or AKT which are required
for NO secretion. For that, we stimulated MDSCs from WT
and Cav1−/− mice with BCG at indicated time points and
analyzed by western blot for the native and phosphorylated forms

of p38 and AKT. We found that Cav1−/− MDSCs generated
less p38 MAPK compared to WT MDSCs (Figures 7A,B and
Supplementary Figure 2). However, there was no statistically
significant difference observed in p-AKT of WT and Cav-1−/−

MDSCs (Figures 7A,C). We also confirmed and extended the
p38 and AKT data by flow cytometry showing that specifically
the subset of M-MDSCs had reduced p38 MAPK production
in the absence of Cav-1 as compared to WT M-MDSCs
(Figures 7D,E). No significant difference was observed in G-
MDSCs (Figures 7D,E). These results indicate that Cav-1 is
required to coordinate BCG activation of TLR2 mediated signals
via p38-MAP Kinase in M-MDSCs.
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FIGURE 3 | Cav-1 deficient MDSCs have reduced intracellular TLR2 but not TLR4 upon BCG infection. (A) MDSCs from WT or Cav1−/− mice were stimulated for

16 h with BCG at 2 or 5 MOI and analyzed for intracellular TLR2 expression, or by flow cytometry on G-MDSCs and M-MDSCs subsets using the gates as for

Figure 1A. (B) Pooled and normalized data of several experiments as performed for (A), and MDSCs were stimulated additionally with the TLR2 agonist Pam3CSK4.

(C) Experimental setting as in (A), but MDSC analysis for intracellular TLR4. (D) Pooled and normalized data of several experiments as performed for (C), and MDSCs

were stimulated additionally with the TLR4 agonist LPS. Normalization of (B,D) was done according to unstimulated WT controls. Data are from n = 5, independent

experiments. **P < 0.01; *P < 0.05; ns, not significant unpaired, two-tailed, student’s t-test.

DISCUSSION

MDSCs are significantly upregulated in both TB patients and

murine Mtb infection (4, 6). Here, we provide insights into

the interaction of MDSCs with mycobacteria. Both TLR2 and

TLR4 are major receptors for mycobacterial recognition (41)

but differences in their regulation and signaling in MDSCs have

not been elucidated. Our study unveils a role of Cav-1 for

mycobacterial recognition and the induction ofMDSC functions.

We found that Cav-1 affects specifically TLR2 via the p38MAPK,

but TLR4 signaling and the AKT pathway were not affected.

This resulted in an impaired induction of surface markers,

secretion of cytokines and NO production, and defective T cell

suppression. Thereby, MDSCs respond different to mycobacteria

as compared to macrophages and DCs. These data extend our

general understanding of mycobacterial recognition by immune

cells and pathology of TB and may help to develop new

treatments for TB by targeting MDSCs (42).
Cav-1 is one of main components of lipid raft invaginations

of the plasma membrane expressed on almost all immune
cell types (16, 17, 43, 44). In this study, we showed that
Cav-1 is upregulated in both G-MDSC and M-MDSCs in
BCG infected murine G-MDSC and M-MDSCs. Our data
add on previous findings showing Cav-1 upregulation in

HIV infected macrophages (32). We detected some differences
between G-MDSDs and M-MDSCs. M-MDSCs showed no up-
regulation of TLR4 on the cell surface after BCG stimulation,
as compared to TLR2. Also the intracellular levels of TLR2
appear more affected in M-MDSC. G-MDSCs showed an up-
regulation of CD40. CD69 and PD-L1, on both WT and
Cav1-deficient cells. This was in contrast to M-MDSCs, that
showed a clear defect when Cav1-deficient, a likely result
of their impaired signaling through the p38 MAPK and
potentially other, not investigated pathways. Since M-MDSCs
are also the major producers of NO via iNOS activity, this
subset seems be preferentially affected by Cav1-deficiency.
Thus, our data indicate a TLR2-p38-iNOS signaling cascade
in M-MDSCs that is Cav-1 dependent and required for T
cell suppression.

Cav-1 mediated endocytosis in dendritic cells, macrophages,
neutrophils and kidney fibroblast cells has been implicated for
several pathogens such as, respiratory syncia virus, Leishmania
chagasi, Pseudomonas aeruginosa, E. coli, SV40 (simian virus)
(21, 23, 45). Surprisingly, we did not find any differences between
WT or Cav1−/− in the phagocytosis of BCG into G-MDSC
or M-MDSCs. Previous reports showed a role of Cav-1 for
pathogen entry by using pharmacological inhibitors to block
caveolae (45, 46). Others have shown the role of Cav-1 in
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FIGURE 4 | Pharmacological inhibition or genetic deficiency of Cav-1 do not impair BCG uptake by G-MDSC and M-MDSC. (A) MDSCs were left untreated or

pretreated or not with Cytochalasin D for 1 h and then incubated with BCG-GFP at MOI 2 for 6 h. Cells were then analyzed by flow cytometry for % BCG uptake by

(Continued)
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FIGURE 4 | GFP detection (gated by dotted line) in G-MDSC and M-MDSC subsets by gates shown in Figure 1A. Dotted lines indicate gating for positive detection

of uptake by GFP fluorescence. (B) As in A but several pooled experiments are shown and MDSCs were incubated with cytochalasin-D, filipin III, simvastatin or

β-cyclodextrine for 1 h and then stimulated with BCG-GFP at MOI of 2, 5, or 10 for 6 h. (C,D) MDSCs of WT and Cav1−/− mice were incubated with BCG-GFP at MOI

2 for 6 h. Cells were then analyzed by flow cytometry for BCG uptake by GFP detection in G-MDSC and M-MDSC subsets by gating as shown in Figure 1A. Pooled

and normalized data of several experiments as performed for (A). (E) MDSCs were stimulated with BCG-GFP at 1 MOI for 16 h. Cytospins were then stained for

Cav-1 and DAPI and analyzed by confocal microcopy. G-MDSC and M-MDSCs were defined on the basis of their nuclear shape. Scale bars upper row 7µm, all other

rows 10µm. (F) Pearson’s correlation coefficients for colocalization (“overlap”) of BCG and Cav-1 from n = 5 independent experiments like shown in (E). Data are

from ****P < 0.0001; **P < 0.01; ns, not significant unpaired, two-tailed, student’s t-test.

FIGURE 5 | Cav-1 deficiency alters the surface marker profile and impairs the cytokine production after BCG infection selectively of M-MDSCs. MDSCs from WT or

Cav1−/− mice were stimulated with BCG for 16 h at 2, 5, or 10 MOI. Cells were then harvested and G-MDSCs and M-MDSCs were separately analyzed by flow

cytometry for CD40 (A), PD-L1 (B), CD69 (C). Cell supernatants from WT or Cav1−/− MDSCs were stimulated with BCG for 16 h at 2, 5, or 10 MOI and were

measured by ELISA for the indicated cytokines (D–H). Data shown are from n = 3–6 independent experiments. ***P < 0.001; **P < 0.01; *P < 0.05; ns, not

significant unpaired, two-tailed, student’s t-test.
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FIGURE 6 | Cav-1 deficiency impairs iNOS expression and reduced T cell suppression by BCG-activated MDSCs. (A) MDSCs were stimulated with BCG for 16 h at

2, 5, or 10 MOI. Cells were then harvested and G-MDSCs and M-MDSCs were separately analyzed by flow cytometry for intracellular iNOS. (B) Pooled and

normalized data of several experiments as performed for (A). (C) Experimental setting as in (A) but staining for intracellular Arg1. (D) Pooled and normalized data of

several experiments as performed for (C). (E) Cell supernatants from WT and Cav-1−/− MDSCs were stimulated with BCG-GFP at 2, 5, or 10 MOI for 16 h. Then NO

was measured as nitrite by Griess reaction. (F) Suppressor assay for T cell proliferation. Syngeneic lymph node and spleen cells as a source of T cells were labeled

(Continued)
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FIGURE 6 | with the proliferation dye Cell Trace Violet and then stimulated with anti-CD3 and anti-CD28. Then 1 h BCG pre-activated MDSCs from WT and Cav-1−/−

mice were added or, as a control, T cells remained without MDSCs. Co-cultures were analyzed after 3 days. Cells were harvested and stained for CD4 and CD8 and

analyzed by FACS. T cell division is analyzed as % proliferating cells. Dotted lines indicate the gate separating Cell Trace Violet low proliferating cells from high

non-proliferating cells. (G) Pooled and normalized data of several experiments as performed for F of proliferated CD8+ and CD4+ T cells. (H) Cell supernatants from

the suppressor assay were measured for NO production by Griess assay. Data shown are from n = 3–7 independent experiments. ***P < 0.001; **P < 0.01;

*P < 0.05; ns, not significant unpaired, two-tailed, student’s t-test.

FIGURE 7 | Cav-1 is required for p38-MAPK signaling in MDSCs upon BCG infection. MDSCs from WT or Cav1−/− mice were stimulated at 5 MOI BCG for the

indicated time periods. (A) Cell lysates were prepared, and Western blot analysis was used to examine the total and phosphorylated forms of p38, AKT1 and the

housekeeping protein β-tubulin. Normalized and quantified data for phospho-p38 MAP Kinase (B) or phospho-AKT (C). (D,E) Experimental setting as in (A) but

G-MDSCs and M-MDSCs were analyzed separately for phospho-p38 (D) or phospho-AKT (E) by flow cytometry. Normalization of (D,E) was done by comparing them

to unstimulated WT controls at 0min. Data shown are from n = 3–5 independent experiments. *P < 0.05; ns, not significant unpaired, two-tailed, student’s t-test.

phagocytosis by using Cav1−/− mice for pathogens such as
Pseudomonas aeruginosa and E. coli (28, 47). In our experimental
set up, both pharmacological inhibitors and genetic deficiency
of Cav-1 did not show any influence on BCG phagocytosis
into MDSCs. After uptake into a macrophage cell line the
accumulation of Mtb in caveosomes has been reported (48).
Since coronin-1 inhibits the fusion of cytoplasmic vesicles with
lysosomes for bacterial degradation (40), this may reflect a
mechanism of immune evasion. We readily observed focal,
caveolae-like antibody staining for Cav-1 on Cav1−/− cells,
suggesting cross-reactivity with Cav-2, but at lower affinity.
Cav-2 is expressed in macrophages can form heterooligomers
with Cav-1 (49). Careful titrations of the antibody allowed to
eliminate this background, which was possible by the use of
Cav1−/− cells. After this, we did not find evidence for a co-
localization of Cav-1 with genetically GFP-labeled BCG within
G-MDSCs or M-MDSCs. Together, these results indicate that
caveosome formation by BCG is either different between subsets
of immunogenic (macrophages and DCs) and suppressive
immune cells (MDSCs), or Cav-2 detection may account for

previous findings and that Cav-2 but not Cav-1 may associate
with mycobacteria-containing phagosomes.

We found that CD40, CD69, and PD-L1 surface markers
were not up-regulated after BCG infection of Cav1−/− MDSCs.
In dendritic cells, CD40 ligation results in the recruitment of
TRAF6 and further activating p38 MAPK which results in the
secretion of cytokines (50). CD40 expression on MDSCs has
been shown to be important for suppressive activity and MDSC-
mediated Treg expansion in tumor bearing mice (51). In this
study, we noted that Cav1−/− M-MDSCs dampened intracellular
TLR2 and CD40 expression upon BCG infection and impaired
activation of p38 MAPK, and thereby reduced T cell suppression.
We did not test for induction of Treg in the suppressor assay
and consider their expansion unlikely in this short-term assay.
The expression of the early activation marker CD69 and the T
cell inhibitory ligand PD-L1 were not induced to the same levels
in Cav1−/− M-MDSCs as compared to WT cells. PD-L1 was
increased on blood MDSCs of active TB patients compared to
healthy controls (52). Although not further tested here, impaired
induction of CD69 and PD-L1 may can be considered as reduced
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MDSC activation with consequences for known inhibitory effects
via PD-L1 in other contexts. The inhibition of activation markers
was observed together with a reduced cytokine secretion in
Cav1−/− M-MDSCs. Silencing of Cav-1 by siRNA in murine
alveolar and peritoneal macrophages has been shown to result
in increased LPS-induced TNFα and IL-6 and decreased IL-10
production (14). Thus, in macrophages and MDSCs Cav-1 seem
to have opposite effects on cytokine secretion. These data also
suggest that in M-MDSCs both the inhibitory marker expression
and cytokine production depend on Cav-1 to mediate TLR2
expression and signaling after BCG infection.

MDSCs can express high amount of both Arg-1 and iNOS
which are involved in the suppressor T cell function (53).
Deficiency in arginine-1 inhibits T cell proliferation by impairing
CD3 ζ-chain synthesis, which as a consequence prevents
upregulation of the expression of cell cycle regulators cyclin
D3 and cyclin-dependent kinase 4 (54). NO suppresses T cell
function by inducing T cell apoptosis or blocking JAK3 and
STAT5 function in T cells (53) or by killing DCs (5). We observed
that Cav1−/− MDSCs displayed defects in the NO production
and T cell suppression. Since NO production represents the
major mechanism of our MDSCs in vitro, these findings may
indicate that MDSCs lose their functional property to suppress
T cells in the absence of Cav-1.

Lipid rich surfaces can act synergistically with TLRs in
enhancing their signaling intensity (55, 56). Cav-1 is typically
associated with surface lipid rafts and some reports linked Cav-1
functionally with TLR4 expression and signaling (19, 47). Cav-
1 has been shown to be required for the TLR4 expression and
signaling in peritoneal macrophages infected (47). In contrast
to this, we could not find a differential surface or intracellular
expression and up-regulation of TLR4 in the absence of Cav-1
after BCG infection. However, TLR2 showed reduced amounts of
TLR2 in the cytoplasm of Cav1−/− MDSCs before BCG infection
and a failure to increase intracellular TLR2 after infection.
Although considered as a surface receptor, TLR2 has been shown
recently to perform signaling from intracellular compartments
after vaccinia virus or Lactobacillus infection or by LTA exposure
from Staphylococcus aureus. In these studies induction of type-I
interferons via IRFs has been identified as the signaling cascade
downstream of vesicular TLR2 (57). Here, we find that after
phagocytic uptake of BCG the p38 signaling cascade is reduced
leading to various defects to up-regulate surface markers, pro-
inflammatory cytokines, as well as iNOS to produce NO for T
cell suppression. Thus, our data suggest that surface expression
and signaling of TLR2 and BCG phagocytosis are not affected
by Cav-1, but rather that vesicular TLR2 signaling is strongly
affected. This points to a novel vesicular TLR2 signaling pathway,
exemplified here for BCG-infected M-MDSCs and that this
pathway is regulated by Cav-1.

In MDSCs, the induction of iNOS and NO secretion relies
on NF-κB signals induced by TLR stimulation, which need
further support by mobilization of the IRF-1 transcription factor
(58). The major adapter for TLR signals, MyD88, has been
shown to be required for MDSC accumulation in a model of
sepsis (59). M-MDSCs accumulated at the BCG infected site

requires MyD88-dependent BCG-specific signals to evade the
infection site (60). MDSCs can also be activated by IL-1β in vitro
and in vivo through NF-κB pathway (61). These data suggest
that NF-κB is also involved in MDSC expansion and immune
suppressive function.We also found thatCav1−/− MDSCs which
failed to up-regulate TLR2 synthesis after BCG infection also
showed an impaired p38 MAPK and NF-κB signaling, indicating
that these two cooperative pathways act down-stream of TLR2
in M-MDSCs for NO production. Others have shown that S.
aureus binds both asialoGM1 and TLR2 in lipid rafts leading to
synergistic signals in airway epithelial cells (62). The asialoGM1
mediated co-signals have been identified for flagellin binding to
TLR5 to enhance NF-κB signals via the ERK pathway (63). These
data indicate that different co-receptors or membrane lipid area
components may cooperate with specific TLRs to shape specific
immune responses. Here, in this study we found cooperation of
TLR2 with Cav-1 for mycobacterial recognition.

In conclusion, our data indicate that known recognition of
mycobacteria through TLR2 and TLR4 is differentially affected
by Cav-1 in murine M-MDSCs. In the absence of Cav-1, the
intracellular expression level of TLR2, but not TLR4, and its
increase after BCG infection is impaired. Thereby intracellular
TLR2 signaling from BCG-containing phagosomes results in a
defect of p38 and NF-κB signals affecting several subsequent
activation processes such as surface markers, cytokines, iNOS
and NO release, finally impairing M-MDSC suppressor function.
Thus, we provide novel signaling pathways via intracellular
TLR2 induced by BCG. It is tempting to speculate that
similar functional consequences occur in human MDSCs such
as indicated by up-regulation of Cav-1, TLR2 and TLR4 on
MDSCs of TB patients. Further studies are needed to validate
this point.
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