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Head and neck squamous cell carcinomas (HNSCC), emerging in the mucosa of

the upper aerodigestive tract, are associated with either the classical risk factors,

tobacco and alcohol consumption, or with infections with high-risk types of the

human papillomavirus (HPV). Depending on the involvement of HPV, HNSCC follow

different pathways of carcinogenesis and show distinct clinical presentations regarding

survival, prognosis and treatment response. For instance, HPV-driven HNSCC exhibit

an enhanced radiation response compared to their typically radioresistant HPV-negative

counterparts. Although radiosensitivity of HNSCC has been studied by many research

groups, the major causes for the difference in radiation responses between HPV-driven

and HPV-negative HNSCC are still an open question. In this mini review, we discuss the

reported cellular and immunological factors involved in the enhanced radiation response

in HPV-driven HNSCC, focusing on the vital role of the immune response in the outcome

of HNSCC radiotherapy.

Keywords: human papillomavirus (HPV), head and neck squamous cell carcinoma (HNSCC), HPV-driven HNSCC,
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INTRODUCTION

Head and neck squamous cell carcinomas (HNSCC) associated with high-risk human
papillomavirus (HPV) infections have emerged as an independent subgroup of HNSCC in recent
years (1). It has further been found that it is important to differentiate HPV-positive HNSCC into
merely HPV DNA-positive tumors, which however behave like HPV-negative ones, and tumors
that express HPV RNA and proteins. The latter are termed “HPV-driven” and show a different
biology (2). HPV-driven tumors represent about 25% of all HNSCC, and arise in specific sites in the
oropharynx, namely the tonsils and base of the tongue. At these sites, they constitute up to 80% of
all squamous cell carcinomas (3), which has resulted in oropharyngeal squamous cell carcinomas
(OPSCC) being treated separately from other HNSCC in the new WHO Classification of Head
and Neck Tumors (4). HPV-driven HNSCC are characterized by their significant better prognosis
and survival advantage over HPV-negative HNSCC (5–7). Also, HPV-driven HNSCC have been
observed to have a superior radiation response compared to their typically radioresistant HPV-
negative counterparts (8–11). Enhanced survival and better radiation response of HPV-driven
HNSCC have been assessed and reviewed by many papers; however, the major causes are still
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discussed, as many conflicting results have been reported
(9, 12–17) (reviewed below). A tumor’s response to
radiotherapy is commonly determined by the so-called 6 Rs of
Radiobiology including DNA Repair, cell cycle Redistribution,
tumor Reoxygenation, Repopulation, cancer cell intrinsic
Radiosensitivity and Reactivation of the anti-tumor immune
response (18, 19). The particularly enhanced radiation response
of HPV-driven HNSCC might be related to one or more of the
above-mentioned factors, especially considering that radiation
responses are known to be strongly determined by the cell
intrinsic ability to sense DNA damage, trigger a DNA damage
response (DDR) and mediate DNA repair (20). In this mini
review, we cover the cellular as well as the immunological
characteristics of HPV-driven vs. HPV-negative HNSCC that
may result in different radiation responses (Figure 1).

CELLULAR MECHANISMS

Numerous research groups have investigated the cellular basis
of the observed differential radiosensitivity of HPV-driven and
HPV-negative HNSCC, hypothesizing that viral proteins may
affect the cellular radiation response. Indeed, recent work has
shown that HPV inhibits the anti-viral cGAS-STING pathway,
influences the cellular DNA repair machinery, alters cell cycle
distribution, affects apoptosis as well as DNA replication and
mediates unique kinetics of hypoxia during radiotherapy (12–
16, 21–25). By analyzing cancerous and healthy tissue, Foy
et al. established a radioresistance score based on the expression
of 13 genes, RadR, that can potentially be utilized to predict
radioresistance or radiosensitivity and thus the outcome of
radiotherapy (26). The RadR score was correlated with genes
in seven essential pathways: TGFβ signaling, DNA repair,
angiogenesis, unfolded protein response, E2F targets, Myc
targets and epithelial to mesenchymal transition. Although HPV-
negative HNSCC were shown to be heterogeneous in the RadR
score, HPV-driven HNSCCs had significantly lower scores, in
line with the known superior radiation response of HPV-driven
HNSCC (26). In the following, we discuss those pathways
that are differentially regulated between HPV-driven and HPV-
negative HNSCC, and highlight the most critical components
for radiosensitivity.

Ionizing radiation eradicates cancer cells by inducing DNA
damage, either directly or indirectly by the formation of free
radicals. Therefore, the DNA repair system is crucial for
the sensitivity of cancer cells toward irradiation. Liu et al.
reported that abrogation of TGFβ signaling by HPV results in
DNA repair deficiencies, which consequently cause elevated
radiosensitivity in HPV-driven HNSCC (27). Furthermore,
several groups revealed that HPV-driven HNSCC cells have
DNA double-strand break (DSB) repair defects (12, 16, 28),
specifically due to affected non-homologous end joining (29).
Interestingly, HPV-driven HNSCC cancer cells overexpress
proteins involved in base excision repair and single-strand
break (SSB) repair (16). Although defects in the DSB repair
system would contribute to enhanced radiosensitivity, it
is unknown how increased SSB repair would affect cancer

FIGURE 1 | HPV-induced modifications of (A) cancer cell biology and (B)

immune responses, impacting the radiation response. (A) Expression of
HPV-associated proteins induces adaptations of cellular biology, including
DNA repair dysfunction, proteasomal degradation of p53 altering cell cycle
distribution, E7-induced PD-L1 expression, HPV-mediated oxidative stress,
and viral antigen presentation. These cellular modifications as well as
mitochondrial oxidative phosphorylation enhance cancer cell sensitivity to
ionizing radiation and promote immunogenic cell death. (B) HPV-mediated
NF-kB activation, T cell infiltration and activation, and M1-like TAM polarization
are enhanced by radiation, promoting anti-cancer immunity after irradiation of
HPV-driven HNSCC. HPV-associated MDSC modulation as well as NK cell
exhaustion offer additional therapeutic targets to boost anti-tumor responses
(Figure created with BioRender.com).

cells, particularly considering that the HPV oncoprotein E6
was shown to bind XRCC1, a factor required for SSB repair
(30). On the other hand, it was recently found in patients
that radioresistance of HPV-negative HNSCC was associated
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with overexpression of BAP-1, potentially via the promotion
of homologous-recombination-mediated DNA repair and
histone H2A deubiquitination (31). Then again, HPV promotes
radiosensitivity of HNSCC by suppressing non-homologous end
joining and promoting error-prone microhomology-mediated
end-joining by the expression of the oncoprotein E7 (32). Lastly,
it was shown that p16INK4a overexpression, the most established
surrogate marker for diagnosing HPV involvement, suppresses
homologous recombination-dependent DNA repair through
suppression of RAD51 foci formation (33) and decreased
expression of TRIP12 (34). Since DNA repair is particularly
important after radiotherapy to restore genomic integrity, HPV
sensitizes HNSCC to irradiation by impairment of error-free as
well as promotion of error-prone DNA repair mechanisms.

Differential regulation of cell cycle components has also
been shown to affect the radiation response. For instance,
Lohavanichbutr et al. discovered that the differential expression
of Retinoblastoma-binding protein 4 and cyclin D1 genes (RBBP4
and CCND1) was associated with radiosensitivity in HPV-
driven OPSCC (24). Sepiashvili et al. reported that differential
regulation of several target genes of AP-1, such as cyclin-
dependent kinase inhibitor 2A (CDKN2A) and TP53, leads to
radioresistance in HPV-negative OPSCC (25). A major cell cycle-
related cause of the enhanced radiation response, as thoroughly
discussed by many papers, stems from the presence or absence
of functional p53 protein. While it has been demonstrated that
TP53 is commonly mutated in HPV-negative HNSCC but not
in HPV-driven HNSCC (35), the HPV E6 oncoprotein induces
proteasomal degradation of p53 leading to low amounts of
the functional form of this tumor suppressor in HPV-driven
tumors (36). Whether these low amounts of functional p53 affect
the radiosensitivity of HPV-driven HNSCC however remains
questionable. Indeed, despite the fact that complete knock-down
of p53 was shown to induce radioresistance in HPV-driven
HNSCC (37), Seltzsam et al. recently showed that radiation-
induced p53 pathway activation after functional restoration of
p53 by inhibition of proteasomal degradation does not sensitize
HNSCC cells to irradiation (38). Furthermore, Pang et al.
reported p53-independent radiation-induced death of HPV-
driven HNSCC cells (39). Therefore, even if p53 plays an
important role in the radiation response, it cannot be the main
and mere factor of HPV-driven HNSCC radiosensitivity.

Differential regulation of the tumor metabolism has been
shown to enhance HPV-driven HNSCC radiosensitivity. Jung
et al. demonstrated that HPV-negative HNSCC display high
rates of glycolysis in comparison to HPV-driven HNSCC, whose
energy supply is predominantly fueled by mitochondrial
oxidative phosphorylation. Additionally, in contrast to
their HPV-driven counterparts, HPV-negative HNSCC were
characterized by high expression levels of HIF1α, promoting
cancer cell resistance and aggressiveness (40). Pharmacological
manipulation to reverse the glycolytic phenotype in HPV-
negative HNSCC cells resulted in elevated radiosensitivity (40).
Supporting this data, the effect of hypoxia has been evaluated
in many papers (41–43); however, these studies surmise that
hypoxia may only partially play a role in radioresistance of HPV-
negative HNSCC, and no effect of hypoxia on radiosensitivity

was detected for HPV-driven HNSCC. Another important
metabolic factor determining radiosensitivity is oxidative stress,
as induced by ionizing radiation. Several HPV proteins have
been shown to increase levels of reactive oxygen and nitrogen
species in HNSCC cells and to alter the expression of antioxidant
enzymes leading to impaired oxidative stress reduction (44).
Therefore, HPV-driven HNSCC metabolism plays an important
role in the increased radiosensitivity, potentially through a
synergistic action between HPV-induced and radiation-induced
oxidative stress.

IMMUNE RESPONSES

In addition to differences in DNA repair, cell cycle control and
tumor metabolism, the importance of an intact immune system
for the radiation response was highlighted by Spanos et al.
They examined the effect of radiotherapy in HPV-driven and
HPV-negative HNSCC in vitro as well as in immune-competent
and immune-incompetent mice. They showed that HPV-driven
tumors were more sensitive to irradiation in immune-competent
mice but not in mice lacking an adaptive immune system. These
results suggest that an intact immune system plays a crucial
role in the radiosensitivity of HPV-driven HNSCC compared to
HPV-negative HNSCC (45).

There are many publications correlating specific immune
parameters in HPV-driven HNSCC patients with better disease-
free and overall survival (46–49). This is most likely due
to immune responses triggered by HPV infection, which
may be further enhanced by radiotherapy (20). It is well-
documented that radiation promotes anti-cancer immune
responses in various types of cancer, by favoring immunogenicity
via immunogenic cell death, increased antigen presentation,
promoting inflammation, dendritic cell maturation, and T cell
activation (50–55). Therefore, the impact of HPV on any
of these immune-related mechanisms could contribute to the
higher treatment response and improved prognosis of HPV-
driven vs. HPV-negative HNSCC. So far, none of the published
studies could however establish a direct relationship between the
immune response in HPV-driven HNSCC and their increased
radiosensitivity. Thus, in the following we discuss the known
immunological aspects of HPV-driven HNSCC, which are
potentially modifying tumor radiosensitivity in comparison to
HPV-negative HNSCC.

It has been shown that HPV-driven OPSCC present viral
antigens that elicit HPV-oncoprotein-specific antibody as well
as T cell responses. These responses are believed to be due
to the tight anatomical proximity of mucosa and immune
tissue in the oropharynx (tonsils) (56, 57). Especially T
cells responses are thought to participate in tumor rejection
and long-term immune surveillance. In addition, radiation
has been described to promote T cell-mediated anti-tumor
immunity (55). Several groups examined tumor infiltrating

lymphocytes (TILs) in HPV-negative and HPV-driven HNSCC
(58), specifically in HPV-driven OPSCC (57, 59–62), and
demonstrated that compared to HPV-negative HNSCC, HPV-
driven tumors were infiltrated by significantly more immune
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cells. A recent study further showed that HPV-driven OPSCC
have stronger immune cell infiltration than HPV-driven HNSCC
at other sites (63). Analysis of CD8+ cytotoxic TILs showed that
HPV-driven tumors displayed higher levels of activated CD8+

T cell infiltration with elevated effector cytokine expression
(58), despite the fact that Liu et al. reported HPV-associated
E7 expression directly favoring T cell dysfunction by PD-L1
overexpression (64). The correlation of CD8+ T cell infiltration
with overall survival in HPV-driven and in HPV-negative
HNSCC demonstrated that independent of the HPV status,
higher cytotoxic T cell infiltration is associated with increased
overall survival (57, 59, 61). These results are in line with recent
in silico studies analyzing The Cancer Genome Atlas (TCGA)
data, that showed a higher level of T cell signatures in HPV-
positive compared to virus-negative tumors (58, 63, 65–67),
and especially that an immune response signature is associated
with a favorable prognosis in patients with HPV-driven HNSCC
(58, 63, 65, 66). Furthermore, Hess et al. established an immune
signature risk score (ISRS), based on the expression on 13 genes,
robustly distinguishing patients with either a more favorable
overall survival prognosis or a less favorable prognosis. Even
though HPV-driven HNSCC patients were present in both
subgroups, they clearly accumulated in the group with better
overall survival (67). These results highlight that inflammation
and T cell responses as promoted by HPV as well as irradiation
might contribute to an improved response to radiotherapy in
HPV-driven HNSCC.

On the other hand, some immune cell types are frequently
described to be pro-tumorigenic and immunosuppressive. The
most prominent examples are tumor associated macrophages

(TAMs) and regulatory T cells (Tregs). Lee et al. defined
the number of CD68+ TAMs and the distribution of Tregs
as negative factors that determine the outcome of concurrent
chemoradiotherapy in HPV-driven tonsillar cancer (68).
Nevertheless, it should be considered that TAMs are highly
plastic cells that can act pro- or anti-inflammatory. In this
context, Chen et al. discovered a predominantly M1-like
proinflammatory phenotype in HPV-driven cancer (65, 69),
which favors an enhanced radiation response (69). However,
the phenotype of TAMs and therefore their role in long-term
treatment response is known to be affected by various anti-
cancer therapies including radiotherapy, as reviewed in further
detail by Genard et al. (70). Treg infiltration in HPV-driven
tumors was analyzed by Mandal et al. (58), Punt et al. (59),
and Bron et al. (71). Surprisingly, all these studies reported a
higher Treg infiltration than in HPV-negative HNSCC, and a
correlation of Treg infiltration with good prognosis. Recently,
Santegoets et al. focused the analysis on Tbet-positive Tregs,
which also were found to be increased in HPV-driven OPSCC,
and correlated with improved survival (72). The authors argue
that these counterintuitive findings most likely reflect Treg
recruitment by the presence of a strong ongoing (effector T cell
based) protective immune response, with the net effect being
anti-tumorigenic. Similarly, PD-1 expressing tumor-infiltrating
T cells were found at higher frequencies in HPV-driven HNSCC,
and were positively correlated with a favorable outcome (73, 74).
This again most likely reflects an ongoing protective immune

response, with PD-1 representing an activation rather than an
exhaustion marker.

Additionally, Mandal et al. characterized another cell type
to have an “exhausted” phenotype: both HPV-driven and HPV-
negative HNSCC were infiltrated with CD56dim NK cells

expressing the inhibitory killer cell immunoglobulin-like (KIR)
receptor (58). Despite intrinsically inducing unfavorable immune
responses, an exhausted or immunosuppressive phenotype of
defined cell subsets could be targeted and influenced by
using immunomodulators such as anti-PD-1/PD-L1 antibodies,
anti-CTLA-4 antibodies and anti-KIR antibodies. Indeed,
the KEYNOTE-012 trial, testing the anti-PD-1 antibody
pembrolizumab in PD-1-positive HNSCC patients, reported
a higher rate of overall responses in patients with HPV-
positive tumors (25%) as compared to HPV-negative ones (14%)
(74). These results suggest that the combination of immune-
checkpoint blockage with radiotherapy, which is reported to
promote immunogenicity of various types of cancer cells (51),
might harbor important potential for the treatment of head and
neck cancer, particularly HPV-driven HNSCC.

Lastly, CD11b+LIN−HLA-DR−CD33+ myeloid-derived

suppressor cells (MDSCs) were also defined to be a pivotal cell
population in HPV-driven HNSCC that moderates inflammatory
responses and immune suppression (75). In order to modulate
the immunosuppressive effect of MDSCs in HNSCC, Jayaraman
et al. treated the MDSCs with TGFβ-containing conditioned
medium. As a result, it was observed that TGFβ-MDSCs
exhibited a novel immunostimulatory phenotype with enhanced
antigen presenting capability and no inhibitory effect on T cell
proliferation. Increased Fas-L expression by TGFβ-MDSCs led
to killing of HPV-driven HNSCC cells. In addition, combination
of radiotherapy and intratumoral injection of TGFβ-MDSCs
augmented MHC class I expression and promoted the tumor
infiltration of HPV E7 tetramer-positive CD8+ T cells, resulting
in clearance of established tumors and long-term survival
in mice (76). The authors also observed that in parallel
to the mouse TGFβ-MDSCs, human TGFβ-MDSCs lost
their immunosuppressive activity and gained tumor killing
characteristics (76). As a result, the immunosuppressive effect of
MDSCs may also be manipulated in favor of anti-tumor immune
responses, which could affect radiosensitivity.

Apart from immune cells, another immune related factor that
is essential in anti-tumor immune responses is MHC class I
expression by tumor cells. The effect of MHC class I expression
on clinical outcome in HPV-driven HNSCC has been studied
only by a few research groups. Interestingly, low MHC class I
(HLA-A, B, C) expression of HPV-driven tonsillar squamous cell
carcinoma was significantly associated with a favorable clinical
outcome (77). This unexpected correlation was further supported
by another paper from the same group that correlates absence of
HLA class I expression inHPV-drivenHNSCCwith high survival
(78) and by a study by Tertipis et al., claiming that absence of
HLA-A∗02 correlated with better disease-free survival in HPV-
driven tonsillar and base of tongue cancer (79). As described by
Wagner et al., the improved prognosis of HPV-driven HNSCC
despite decreased HLA class I expression might be mediated by
increased NK cell cytotoxicity (80). Nevertheless, the findings
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that describe a correlation between low HLA class I expression
and better survival are surprising and need further investigation
with larger patient cohorts.

CONCLUSION AND OUTLOOK

Considering all the factors enhancing the radiation response
that have been reviewed above and in the light of the
research certifying that HPV-positivity predicts a better outcome
(8, 10, 11), we conclude that the cellular factors DNA repair,
cell cycle control, and tumor metabolism partially mediate
the superior radiation response of HPV-driven HNSCC.
However, high immunogenicity of HPV-driven tumors, further
enhanced by radiotherapy, constitutes another main factor in
radiosensitivity of HPV-driven tumors. Hence, in order to predict
the radiation response for HNSCC patients, it is paramount to
characterize the immunologically active subtypes of HNSCC.
Even if HPV-driven HNSCC tumors are postulated to have
an “active immune response” in general (81) and to promote
an inflammatory environment by co-activation of classic and
alternative NF-κB pathways (82), two distinct HPV-driven
HNSCC subtypes have been defined based on gene expression-
based consensus clustering that might explain the significant
heterogeneity in clinical behavior in HPV-driven HNSCC (83,
84). In this classification, an “inflamed/mesenchymal” subtype
was characterized by expression of immune response genes such
as CD8, ICOS and HLA-DRA; decreased expression of epithelial
markers and upregulation of mesenchymal markers (suggesting
an epithelial-mesenchymal transition signature). The “classical”
subtype was represented by enrichment of components of the
polyamine degradation pathway, related to an even higher
proliferation rate. Associated with HPV infection, both subtypes
displayed high cell cycle-related activities (84). The authors
revealed that HPV-driven HNSCC have different subgroups,

some of which are less immunogenic or lack immune-related
markers. A comprehensive classification of HNSCC types based
on immune phenotype was recently established by Chen et al.
(49). This study describes a new molecular immune phenotyping
of HNSCC, called “immune class” depending on the presence
of immune cell subsets, cytolytic activity, immune metagenes
and enrichment of a 6-gene interferon signature. Application
of this phenotyping defined a non-immune class and two
groups of immune class. The first of these was “active immune
class,” described by enrichment of B cells, M1-like macrophages,
cytolytic activity, high numbers of tumor TILs and high HPV
infection; it was found to be correlated with a favorable prognosis,
better overall and disease-free survival. Of the HNSCC tumors
with known HPV status (by p16 immunohistochemistry), 63%
assigned to the “active immune class” were HPV-positive. On
the other hand, the “exhausted immune class” was characterized
by a more “exhausted phenotype” and had tumor-promoting
activated stroma, activated TGFβ and Wnt signaling, markers
of M2-like TAM polarization and poor survival. Only 13% of
“exhausted immune class” HNSCC with known HPV status
were HPV-positive. When comparing within the HPV-positive
tumors, 67% fell into the “active” category and only 5% into
“exhausted” (49).

In summary, characterization of HNSCCs according
to their immune-related markers, independent from HPV
status, will most likely contribute to tailor therapies
more efficiently in the future, and help understand the
difference in radiotherapy response between HPV-driven and
HPV-negative HNSCC.
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