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Behçet’s syndrome (BS) is a systemic vasculitis considered as the prototype of a

systemic inflammation-induced thrombotic condition whose pathogenesis cannot be

explained just by coagulation abnormalities. Circulating hematopoietic progenitor cells

(CPC), a population of rare, pre-differentiated adult stem cells originating in the bone

marrow and capable of both self-renewal and multi-lineage differentiation, are mobilized

in response to vascular injury and play a key role in tissue repair. In cardiovascular and

thrombotic diseases, low circulating CPC number and reduced CPC function have been

observed. Oxidative stress may be one of the relevant culprits that account for the

dysfunctional and numerically reduced CPC in these conditions. However, the detailed

mechanisms underlying CPC number reduction are unknown. On this background,

the present study was designed to evaluate for the first time the possible relationship

between CPC dysfunction and oxidative stress in BS patients. In BS patients, we

found signs of plasma oxidative stress and significantly lower CD34+/CD45−/dim and

CD34+/CD45−/dim/CD133+CPC levels. Importantly, in all the considered CPC subsets,

significantly higher ROS levels with respect to controls were observed. Higher levels

of caspase-3 activity in all the considered CPC population and a strong reduction in

GSH content in CPC subpopulation from BS patients with respect to controls were also

observed. Interestingly, in BS patients, ROS significantly correlated with CPC number

and CPC caspase-3 activity and CPC GSH content significantly correlated with CPC

number, in all CPC subsets. Collectively, these data demonstrate for the first time that

CPC from BS patients show signs of oxidative stress and apoptosis and that a reduced

CPC number is present in BS patients with respect to controls. Interestingly, we observed

an inverse correlation between circulating CPC number and CPC ROS production,

suggesting a possible toxic ROS effect on CPC in BS patients. The significant correlations

between ROS production/GSH content and caspase-3 activity point out that oxidative
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stress can represent a determinant in the onset of apoptosis in CPC. These data support

the hypothesis that oxidative-stress-mediated CPC dysfunctioning may counteract their

vascular repair actions, thereby contributing to the pathogenesis and the progression of

vascular disease in BS.
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INTRODUCTION

Behçet’s syndrome (BS) is a systemic vasculitis of unknown
etiology characterized by muco-cutaneous and ocular
manifestations as well as articular, neurological, and
gastrointestinal involvements (1). Vascular involvement is
also present, and represents one of the more important
manifestations in terms of morbidity and mortality (2). BS
affects both veins and arteries of all sizes and is usually more
frequent and severe in young males (3). To date, BS may
be considered as the prototype of a systemic inflammation-
induced thrombotic condition. Although some studies showed
different hemostatic system defects in BS (3, 4), current data
indicate that the pathogenesis of thrombosis in BS cannot
be explained by coagulation abnormalities only (5). Indeed,
neutrophils are pivotal in promoting thrombo-inflammation
by producing high amounts of reactive oxygen species (ROS),
mainly through NADPH oxidase. This mechanism ultimately
leads to a modification of the fibrin clot that becomes less
susceptible to plasmin-induced lysis (6). Moreover, in BS
patients, endothelial injury plays a prominent role in the
onset of thrombosis and inflammation leads to thrombosis
also via endothelial damage and endothelial cell dysfunction
(7). Altogether, these mechanisms may partly explain why
immunosuppressive treatment is essential in the management
of thrombosis occurring in BS, while anticoagulation generally
displays limited effects (8).

Circulating hematopoietic progenitor cells (CPC) are a
population of rare, pre-differentiated adult stem cells that
originate in the bone marrow and are uniquely capable of
both self-renewal and multi-lineage differentiation, including
cardiomyocytes, smooth muscle cells, endothelial progenitor
cells (EPC) and endothelial cells. CPC possess the ability to be
mobilized in response to vascular injury and play a key role
in tissue repair (9, 10). CPC replenish specialized somatic cells
and maintain the normal turnover of regenerative tissues and
organs, such as blood and skin. Interestingly, low circulating
CPC number and reduced CPC function are associated with
cardiovascular disease and mortality (11, 12).

Circulating CPC are involved in the regulation and repair
of the endothelium and in vessel formation (13, 14). Indeed,
enhancedmobilization of CPC into the blood has been associated
with increased endothelial function and repair (11). However,
circulating CPC number and function are dramatically altered
when cardiovascular risk factors are present (14, 15). On the
other hand, while acute inflammation increases CPC, a chronic
inflammatory state might be accompanied by a progressive
CPC reduction (16, 17). It has been demonstrated that
oxidative stress represents one of the main determinant of CPC

number reduction and dysfunction in cardiovascular diseases
(18, 19). Upon ROS production inhibition, the observed CPC
alterations have been reverted (18, 19). However, the underlying
mechanisms of CPC reduction have not been well-understood.

To date, insufficient, and conflicting clinical data to document
the CPC number/function in BS patients exist (20, 21). Therefore,
the present study was designed to evaluate for the first time
the possible relationship between CPC dysfunction and oxidative
stress in BS patients.

MATERIALS AND METHODS

Study Population
This was a case–control study. Sixty-one consecutive patients
with BS who attended the Behçet Center of the University
Hospital of Firenze, Italy, were matched 1:1 for age and sex
with healthy control subjects. Patients with other autoimmune
diseases and active infectious or neoplastic conditions were
excluded, as well as pregnant patients. Control subjects
were excluded if they had a history of cerebro- and/or
cardiovascular diseases, peripheral arteriopathy, venous
thrombo-embolism events, or cancer. Both patients and control
subjects were assessed for the presence of vascular risk factors
and drug use.

The study protocol was approved by the local Ethical
Committee and informed consent was obtained from all
subject enrolled.

Blood Collection
Blood samples were obtained from an antecubital vein in the
morning after an overnight fasting and were collected into
evacuated plastic tubes (BD Vacutainer Systems, Plymouth,
UK) containing ethylenediaminetetraacetate 0.17 mol/L for
CPC evaluation.

Because inflammatory events are known to influence CPC
number (16), blood was withdrawn after excluding the
occurrence of infectious events, defined according to previously
published criteria (22), in the previous 15 days.

Flow Cytometric Analysis of CPC Oxidative
Stress and Apoptosis
CPC number was assessed by flow cytometry as previously
described with minor modifications (16, 22, 23). Briefly, 200 µl
of peripheral venous blood was incubated for 20min in the dark
with the appropriated monoclonal antibodies (PE anti-human
CD34, BD Pharmigen, Becton Dickinson, San Jose, CA; APC
anti-human CD133, Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany; APC-Cy7 anti-human CD45 BD, Becton Dickinson,
San Jose, CA). Then, 4ml of BD FACS Lysing Solution (Becton
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Dickinson Biosciences, San Jose, CA, USA) was added, gently
mixed, and incubated at RT in the dark for 10min, following
the manufacturer’s protocol. Then, the cells were centrifuged,
the supernatant was discarded, and cells were washed twice in
PBS. To determine the level of intracellular ROS generation, cells
were incubated with H2DCFDA (10µM) (Invitrogen, CA, USA)
in RPMI without serum and phenol red for 15min at 37◦C.
After labeling, cells were washed and resuspended in PBS and
immediately analyzed by FACS.

To determine the level of Caspase-3 activity, single-cell
suspensions were incubated in RPMI without serum and phenol
red with FAM-FLICATM Caspase-3 solution (CaspaseFLICA
kit FAM-DEVD-FMK) for 30min at 37◦C, following the
manufacturer’s protocol, and then washed twice with PBS and
immediately analyzed by FACS.

To determine the level of intracellular GSH content, single-cell
suspensions were incubated in RPMI without serum and phenol
red with 5-chloromethylfluoresceindiacetate, CMFDA (10µM),
for 30min at 37◦C, washed twice with PBS, and analyzed
immediately by FACS.

A total of 300,000 cells within the leukocyte gate were acquired
using a FACSCanto analyzer (Becton Dickinson, San Jose, CA).
Data were processed using BD FacsDiva software. By using a
modification of the International Society of Hematotherapy and
Graft Engineering guidelines (24), CPC were defined as cells
forming a cluster with low side scatter, low-to-intermediate CD45
staining, positive for CD34, CD133, and CD34/CD133.

Protein Concentration Assay
Protein concentration in the samples was determined using the
Bradford assay (25). A standard curve of bovine serum albumin
(0–15 µg protein/200 µl volume) was used.

Protein Carbonyl Content (PC)
Oxidative modification on plasma proteins was assessed on the
basis of carbonyl content using 2-4 dinitrophenylhydrazine, as
described by Levine et al. (26).

Samples were diluted to obtain a protein concentration of 10
mg/ml, and 100 µl of each sample was aliquoted in Eppendorf
tubes. For each sample, a blank measurement was prepared.
Then, 400 µl of a DNPH solution (5mM in 2.5M HCl) was
added to tubes. Blank tubes were also prepared, adding the HCl
solution without DNPH. Then, all the tubes were incubated in the
dark for an hour, vortexing every 15–20min. After incubation,
protein content was precipitated by adding 500 µl of a 20%
trichloroacetic acid (TCA) solution, placing tubes on ice for
5min, and centrifuging at 10,000 g for 5min to pellet protein
content. The supernatant was discarded and the pellet was
washed once with 500 µl of 10%TCA, and then twice with 500 µl
of a 1:1 solution of ethanol-ethyl acetate. Finally, the pellet was
resuspended in guanidine hydrochloride at 37◦C for 15min and
the absorbance of carbonyl-bound DNPH was read at 370 nm.
The corrected absorbance was calculated subtracting the mean
of blank values from raw DNPH values. Then, the concentration
was determined using an extinction coefficient of 0.022 µM−1

cm−1, and normalized with the total protein content.

TBARS (Thiobarbituric Acid Reactive
Substances) Estimation
Plasma TBARS levels were measured using a TBARS assay
kit (OXI-TEK, ENZO, USA) as previously reported (27).
Briefly, the adduct generated by reacting malondialdehyde
with thiobarbituric acid after 1 h at 95◦C was measured
spectrofluorimetrically, with excitation at 530 nm and
emission at 550 nm. TBARS were expressed in terms of
malondialdehyde equivalent (nmol/ml) and then normalized for
protein concentration.

Total Antioxidant Capacity (TAC) Assay
The ORAC method (oxygen radical absorbance capacity) was
performed as previously described on plasma samples (28).
Briefly, fluorescein solution (6 nM) was prepared daily in 75mM
sodium phosphate buffer (pH 7.4) and Trolox (250µM final
concentration) was used as a standard. Seventy microliters
of each sample with 100 µl of fluorescein was pre-incubated
for 30min at 37◦C in each well, before rapidly adding
AAPH solution (19mM final concentration). Fluorescence
was measured using Synergy H1 microplate reader (BioTek,
Winooski, VT). Results were expressed as Trolox Equivalents
(µM) and then normalized for protein concentration.

Statistical Analysis
To assess the statistical significance of differences in clinical
data and progenitor cell numbers between patients with BS
and control subjects, the χ

2 test for categorical variables and
Mann–Whitney test for numeric variables were used. Logistic
regression analysis, including age, drug use, and sex as variables
possibly influencing the cell number, was performed to test the
independency of associations. In this analysis, the logarithm
of the cell number was used for a better evaluation of the
OR. All analyses were performed using the SPSS (Statistical
Package for Social Sciences, Chicago, IL) software for Windows
(Version 15.0).

RESULTS

All the patients enrolled in the study fulfilled the International
Criteria for Behçet Disease (ICBD) (29). At the beginning of
the disease, almost all the patients presented oral ulcers (96.7%),
followed by cutaneous and articular involvement (65.6 and 59%,
respectively). More than one third of the patients also had
ocular and intestinal manifestations, as well as genital ulcers
and vascular involvement. HLA-B51 was present in 42.6% of
the patients.

All the patients with a Behçet Disease Activity Form (BDCAF)
with a score ≥ 1 were considered active, while BS patients with a
BDCAF equal to 0 were defined inactive.

Only a minority of the patients had no treatment at the time
of the enrollment or were on corticosteroid as the unique therapy
(11.5 and 4.9%, respectively). The majority of the BS patients
were on Disease Modifying Anti Rheumatic Drugs (DMARDs)
(32.8%) or on biologic+/– traditional DMARDs (50.8%).

Demographic and clinical features of the population studied
are summarized in detail in Table 1.
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TABLE 1 | Main clinical and demographic features of the patients enrolled in the

study.

N (% out of 61)

N obs 61

Sex

Male 32 (52.5)

Female 29 (47.5)

Age at diagnosis

Median (IQR; range) 35 (26–42)

HLA-B51

Positive 26 (42.6)

Manifestations at baseline (ICBD criteria)

Oral aphthosis 59 (96.7)

Skin involvement 40 (65.6)

Articular involvement 36 (59.0)

Ocular involvement 23 (37.7)

Intestinal involvement 22 (36.1)

Genital aphthosis 21 (34.4)

Vascular involvement 20 (32.8)

Neurologic involvement 17 (27.9)

Positive pathergy test 4 (6.6)

Disease activity at time of sample collection

Not active (BDCAF = 0) 21 (34.4)

Active (BDCAF ≥ 1) 40 (65.6)

Active manifestations at time of sample collection

Oral aphthosis 22 (36.1)

Articular involvement 17 (27.9)

Intestinal involvement 11 (18.0)

Skin involvement 10 (16.4)

Ocular involvement 9 (14.8)

Neurologic involvement 5 (8.2)

Vascular involvement 4 (6.6)

Genital aphthosis 1 (1.6)

Ongoing pharmacological therapies

No treatment 7 (11.5)

Only corticosteroids 3 (4.9)

Traditional DMARDs 20 (32.8)

Biologic (±traditional) DMARDs 31 (50.8)

Plasma Oxidative Stress
As reported in Table 2, patient plasma displayed significantly
higher total PC and TBARS levels compared to healthy controls
(p < 0.0001 vs. controls).

Levels of Circulating Progenitor Cells
Because several CPC may participate to vascular repair,
different phenotypically defined subpopulations of CD34+
CPC were analyzed by FACS analysis, allowing one
to determine the level of overall CD34+/CD45−/dim

CPC, of CD34+/CD45−/dim/CD133– CPC, and of
CD34+/CD45−/dim/CD133+, representative of more immature
CPC. As summarized in Figure 1A, significantly lower
CD34+/CD45−/dim and CD34+/CD45−/dim/CD133+ CPC

TABLE 2 | Oxidative stress markers.

Controls

n = 61

BS patients

n = 61

Plasma PC (nmol/mg) 10.87 ± 3.08 17.75 ± 4.18 p < 0.0001

Plasma TBARS (nmol/ml) 0.66 ± 0.11 2.21 ± 0.82 p < 0.0001

Plasma TAC (nmol Trolox

equivalent/mg of protein)

21.8 ± 3.9 15.2 ± 4.8 p < 0.0001

levels were observed in BS patients with respect to controls (245
± 92 vs. 637 ± 96, p < 0.0001; 80 ± 28 vs. 536 ± 88, p < 0.0001,
respectively). On the contrary, CD34+/CD45−/dim/CD133–
level was significantly higher (p < 0.0001) in BS patients with
respect to controls (165± 70 vs. 101± 26).

CPC Oxidative Stress and Apoptosis
As shown in Figure 1B, in all the considered CPC subsets, we
observed significantly higher (p < 0.0001) ROS levels in BS
patients with respect to controls (CD34+/CD45−/dim: 14,333
± 5104 vs. 2549 ± 794; CD34+/CD45−/dim/CD133–: 16,941
± 7444 vs. 4728 ± 2165; CD34+/CD45−/dim/CD133+: 10,396
± 3469 vs. 2169 ± 737). Likewise, as shown in Figure 1C, we
observed significantly higher levels of caspase-3 activity (p <

0.0001) in all the considered CPC population in BS patients with
respect to controls (CD34+/CD45−/dim: 8704 ± 3158 vs. 323
± 66; CD34+/CD45−/dim/CD133–: 12,318 ± 5280 vs. 304 ±

73; CD34+/CD45−/dim/CD133+: 2197 ± 1002 vs. 3274 ± 67).
A strong reduction in GSH content (Figure 1D) in the CPC
subpopulation from BS patients with respect to controls was
observed (CD34+/CD45−/dim: 8454 ± 1874 vs. 64,792 ± 7825;
CD34+/CD45−/dim/CD133–: 3993 ± 1407 vs. 48,943 ± 7764;
CD34+/CD45−/dim/CD133+: 17,598± 5101 vs. 67,828± 8206).

Correlation Between Investigated
Parameters
As shown in Figure 2A, in all the considered CPC subsets,
ROS significantly correlated with CPC number. At the same
time, CPC caspase-3 activity (Figure 2B) and CPC GSH content
(Figure 2C) significantly correlated with CPC number, in all
CPC subsets.

DISCUSSION

BS is considered the prototype of systemic inflammatory
disease causing thrombosis, but the mechanisms underlying the
relationship between inflammation and vascular events are far to
be elucidated.

In this study, we investigated in a cohort of Behçet’s patients
the role of CPC, a population of undifferentiated progenitor cells
originated in the bone marrow with the ability to be mobilized
in response to vascular injury and capable of multi-lineage
differentiation including EPC and endothelial cells.

Both EPC and CPC are considered surrogate biomarkers of
cardiovascular health since they appear to constitute a natural
system for the maintenance of vascular function, improving
endothelial repair and neovascularization (30–32). Notably,
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FIGURE 1 | Number (A), intracellular ROS production (B), caspase-3 activity (C), and GSH content (D) in CD34+/CD45−/dim, CD34+/CD45−/dim/CD133– and of

CD34+/CD45−/dim/CD133+ CPC from patients and controls. *Significant difference vs. control at the p < 0.0001 level.

the restoration of blood supply to ischemic tissues is strictly
dependent on endothelial regeneration and angiogenesis. Here,
we demonstrate for the first time that CPC from BS patients, but
not those from healthy subjects, show signs of oxidative stress and

apoptosis. Another important finding emerging from our study is
the reduced CPC number observed in BS patients with respect to
control subjects. Importantly, the number and function of CPC
may reflect the balance between endothelial integrity and repair
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FIGURE 2 | Correlation analysis among CPC number and intracellular ROS production (A), caspase-3 activity (B), and GSH content (C).

and can be used as a marker of endothelial function. Indeed,
patients with hypertension, coronary artery disease, chronic
renal failure, diabetes, sepsis, and rheumatoid arthritis exhibit
decreased CPC number (33–36). Moreover, EPC isolated from
patients with coronary artery disease and hypertension display
an impaired migratory response (34, 35).

The decline in CPC number can be attributed to increased
apoptosis, oxidative stress, inflammation, and senescence, in
addition to reduced growth and migration from bone marrow
(33). However, recent data suggest that increased CPC number
may also represent a homoeostatic stress response contributing
to vascular damage repair (36, 37). Indeed, in acute coronary
syndromes, the early CPC mobilization from the bone marrow
seems related to the extension of myocardial ischemia expressed
as area at risk (38) and may contribute to the healing process by
promoting neovascularization (39).

Moreover, we observed an inverse correlation between
circulating CPC number and CPC ROS production, suggesting

a possible toxic ROS effect on CPC in BS patients. Indeed, signs
of oxidative stress (increased ROS production and reduced GSH
content) and apoptosis in CPC from BS patients were observed,
suggesting a functional impairment of these cells. Furthermore,
the significant correlations between ROS production/GSH
content and caspase-3 activity point out that oxidative stress can
represent a determinant in the onset of apoptosis in CPC.

To date, few data are available about the possible pathogenetic
role of CPC in systemic vasculitis. It was previously reported that
the increased number of circulating inflammatory endothelial
cells could represent an activity marker in patients with systemic
necrotizing vasculitis (40). EPC were reported to be increased
in number also in a patient with BS complicated with cerebral
trombophlebitis (41). Recently, Bozkirli et al. demonstrated
that EPC number was significantly higher in BS patients with
thrombosis (42). On the other hand, it was also demonstrated
that BS is associated with a progressive reduction in EPC number,
which can be interpreted as a mechanism of induction and/or
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progression of vascular injury in these patients (21). However, to
date, there are no data on CPC function in BS patients.

In the case of EPC population, the univocal interpretation of
data is limited by the extremely low frequency of the analyzed
cell populations and by the lack of validation of the utilized
markers. For this reason, in this study, we analyzed the most
abundant CPC population instead of the rare EPC population
(which accounts for about 0.01 – 0.0001% of nucleated cells). To
our knowledge, this is the first study to detect ROS production,
GSH content, and caspase-3 activation in CPC, defined as
CD34+/CD45−/low/CD133+ and CD34+/CD45−/low/CD133–,
in peripheral blood (not in isolated and cultured cells).

It is accepted that EPC mobilization can be stimulated
by transient restricted inflammatory response, while high-
grade inflammation results in decreased EPC number and
EPC dysfunction (43). Considerable evidence also suggests that
ROS play a key role in EPC mobilization/function (44). In
particular, low ROS levels activate pro-angiogenic pathways in
EPC, whereas high ROS levels impair EPC function. Therefore,
oxidative stress is responsible not only for EPC circulating
number reduction but also for an impairment EPC function
with consequent harmful effects in vascular homeostasis. Indeed,
during conditions such as diabetes mellitus, characterized by
oxidative stress, the mobilization of dysfunctional EPC is
observed (45). Indeed, increased superoxide generation reduces
EPC levels and impairs EPC function (46). In addition,
incubation of EPC with hydrogen peroxide has been shown to
induce apoptosis (47), profoundly reducing EPC number (48).
Furthermore, increased ROS production has been associated
with reduced EPC levels in a rat model of myocardial
infarction (49).

An overall imbalance in blood redox status has been proposed
in BS (50). Recently, we demonstrated that neutrophils are
responsible for an increased ROS production in BS patients,
thus favoring thrombosis through a deep modification of
fibrinogen secondary structure (51). Accordingly, in the present
study, plasma protein carbonyls and TBARS were markedly
and significantly increased in BS patients when compared with
control subjects, thus confirming an altered oxidative status in
BS patients.

In human vasculature, ROS production is counterbalanced
by several antioxidant molecules aimed at ROS scavenging.
Intracellular antioxidant enzymes, such as glutathione
peroxidase, catalase, and manganese superoxide dismutase,
were increased in EPC from healthy subjects with respect
to differentiated, mature endothelial cells (52). This is in
agreement with our data that show, for the first time, a
marked increase (+62%) in ROS production in CD133—
population with respect to the more immature CD133+
population, in human peripheral blood. In addition, our
results indicate, in CPC from human peripheral blood, a
significant reduction in GSH content compared with CPC
from control subjects, suggesting that an impairment in
antioxidant system can promote CPC sensitivity toward
oxidative-stress-mediated apoptosis and consequently reduced
CPC number in BS patients. Our observations were supported
by the finding that glutathione peroxidase-1-deficient mice

exhibited a reduced number and functional activity of progenitor
cells (53).

The exact oxidative mechanisms underlying CPC dysfunction
has not yet been understood. To date, no study has addressed
the question whether redox balancing therapeutic strategies can
modify CPC function and number. Only when antioxidant
therapies will demonstrate to improve these parameters of CPC
biology will a safe conclusion be drawn regarding ROS and CPC
relationship in humans.

The results of the present study may have implications in
the pathogenesis of thrombotic manifestations in BS. Indeed,
CPC have not only been associated with coronary artery
disease (54) and atherosclerosis (55). Different from other
inflammatory immune-mediated conditions, BS is not associated
with accelerated atherosclerosis, despite without having a clear
pathogenetic explanation (56). Notably, CPC dysfunction has
been also evoked as a potential mechanism in deep vein
thrombosis occurrence (57) and aneurysm formation (58),
typical clinical features of BS.

Future longitudinal studies on a larger BS population would
be helpful in order to explore CPC dysfunction in specific subsets
of BS patients. Moreover, functional analysis showing the impact
of ROS production on vessel wall of BS patients would be
of importance.

However, taking into account that oxidative stress plays an
important role in the pathogenesis of all vascular diseases (59),
our data support the hypothesis that oxidative-stress-mediated
CPC dysfunctioningmay counteract their vascular repair actions,
thereby contributing to the pathogenesis and the progression of
vascular disease in BS patients.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Comitato Etico Università degli Studi di Firenze,
Largo Brambilla 3, Firenze, Italy. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

GE, AM, FA, ES, AB, CF, and MB were responsible for data
collection and analysis. MB, AM, and FA performed experiments.
GE, ES, AV, and DP monitored patient inclusion. MB and CF
were responsible for protocol development and study funding,
and supervised the study. NT, AF, and LS gave critical guidance
during the project. MB, GE, and CF designed the experiments
and wrote the manuscript. All authors contributed substantially
to the critical revision of themanuscript, and gave approval of the
final draft.

Frontiers in Immunology | www.frontiersin.org 7 December 2019 | Volume 10 | Article 2877

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Emmi et al. CPC Dysfunction in Behçet’s Syndrome

FUNDING

This study was supported by Fondazione CR Firenze
research funding no. 0849.2017 attributed to MB and by

Fondi di Ateneo research funding from the University
of Florence to GE. This study was also partly supported
by the Associazione Italiana Sindrome e Malattia
di Behçet (SIMBA).

REFERENCES

1. Leccese P, Alpsoy E. Behçet’s disease: an overview of etiopathogenesis. Front
Immunol. (2019) 10:1067. doi: 10.3389/fimmu.2019.01067

2. Emmi G, Bettiol A, Silvestri E, Di Scala G, Becatti M, Fiorillo C, et al.
Vascular Behçet’s syndrome: an update. Intern Emerg Med. (2019) 14:645–52.
doi: 10.1007/s11739-018-1991-y

3. Emmi G, Silvestri E, Squatrito D, Amedei A, Niccolai E, D’Elios MM, et al.
Thrombosis in vasculitis: from pathogenesis to treatment. Thromb J. (2015)
13:15. doi: 10.1186/s12959-015-0047-z

4. Espinosa G, Font J, Tàssies D, Vidaller A, Deulofeu R, López-Soto A, et al.
Vascular involvement in Behçet’s disease: relation with thrombophilic factors,
coagulation activation, and thrombomodulin. Am J Med. (2002) 112:37–43.
doi: 10.1016/S0002-9343(01)01048-8

5. Becatti M, Emmi G, Bettiol A, Silvestri E, Di Scala G, Taddei N, et al. Behçet’s
syndrome as a tool to dissect the mechanisms of thrombo-inflammation:
clinical and pathogenetic aspects. Clin Exp Immunol. (2019) 195:322–33.
doi: 10.1111/cei.13243

6. Emmi G, Becatti M, Bettiol A, Hatemi G, Prisco D, Fiorillo C. Behçet’s
syndrome as a model of thrombo-inflammation: the role of neutrophils. Front
Immunol. (2019) 10:1085. doi: 10.3389/fimmu.2019.01085

7. Butta NV, Fernández-Bello I, López-Longo FJ, Jiménez-Yuste V.
Endothelial dysfunction and altered coagulation as mediators of
thromboembolism in behçet disease. Semin Thromb Hemost. (2015)
41:621–8. doi: 10.1055/s-0035-1556727

8. Hatemi G, Christensen R, Bang D, Bodaghi B, Celik AF, Fortune
F, et al. 2018 update of the EULAR recommendations for the
management of Behçet’s syndrome. Ann Rheum Dis. (2018) 77:808–18.
doi: 10.1136/annrheumdis-2018-213225

9. Weissman IL. Stem cells: units of development, units of
regeneration, and units in evolution. Cell. (2000) 100:157–68.
doi: 10.1016/S0092-8674(00)81692-X

10. Mazo IB, Massberg S, von Andrian UH. Hematopoietic stem and
progenitor cell trafficking. Trends Immunol. (2011) 32:493–503.
doi: 10.1016/j.it.2011.06.011

11. Foresta C, De Toni L, Ferlin A, Di Mambro A. Clinical implication
of endothelial progenitor cells. Expert Rev Mol Diagn. (2010) 10:89–105.
doi: 10.1586/erm.09.80

12. Sen S,McDonald SP, Coates PT, Bonder CS. Endothelial progenitor cells: novel
biomarker and promising cell therapy for cardiovascular disease. Clin Sci.
(2011) 120:263–83. doi: 10.1042/CS20100429

13. Lamping K. Endothelial progenitor cells: sowing the seeds for vascular repair.
Circ Res. (2007) 100:1243–5. doi: 10.1161/01.RES.0000268193.46418.d1

14. Giannotti G, Doerries C, Mocharla PS, Mueller MF, Bahlmann FH, Horvàth T,
et al. Impaired endothelial repair capacity of early endothelial progenitor cells
in prehypertension: relation to endothelial dysfunction. Hypertension. (2010)
55:1389–97. doi: 10.1161/HYPERTENSIONAHA.109.141614

15. Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutase
expression in endothelial progenitor cells accelerates wound healing in
diabetic mice. J Clin Invest. (2010) 120:4207–19. doi: 10.1172/JCI36858

16. Cesari F, Caporale R, Marcucci R, Caciolli S, Stefano PL, Capalbo A, et al. NT-
proBNP and the anti-inflammatory cytokines are correlated with endothelial
progenitor cells’ response to cardiac surgery. Atherosclerosis. (2008) 199:138–
46. doi: 10.1016/j.atherosclerosis.2007.09.045

17. Fujii H, Li SH, Szmitko PE, Fedak PW, Verma S. C-reactive protein
alters antioxidant defenses and promotes apoptosis in endothelial
progenitor cells. Arterioscler Thromb Vasc Biol. (2006) 26:2476–82.
doi: 10.1161/01.ATV.0000242794.65541.02

18. Chen DD, Dong YG, Yuan H, Chen AF. Endothelin 1 activation
of endothelin A receptor/NADPH oxidase pathway and diminished

antioxidants critically contribute to endothelial progenitor cell reduction and
dysfunction in salt-sensitive hypertension. Hypertension. (2012) 59:1037–43.
doi: 10.1161/HYPERTENSIONAHA.111.183368

19. Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, et
al. Decreasing intracellular superoxide corrects defective ischemia-induced
new vessel formation in diabetic mice. J Biol Chem. (2008) 283:10930–8.
doi: 10.1074/jbc.M707451200

20. Bozkirli ED, Keşkek SÖ, Kozanoglu I, Yücel AE. High levels of endothelial
progenitor cells can be associated with thrombosis in patients with Behçet’s
disease. Clin Exp Rheumatol. (2014) 32(4 Suppl. 84):S49–53.

21. Fadini GP, Tognon S, Rodriguez L, Boscaro E, Baesso I, Avogaro A,
et al. Low levels of endothelial progenitor cells correlate with disease
duration and activity in patients with Behçet’s disease. Clin Exp Rheumatol.
(2009) 27:814–21.

22. Nencini P, Sarti C, Innocenti R, Pracucci G, Inzitari D. Acute inflammatory
events and ischemic stroke subtypes. Cerebrovasc Dis. (2003) 15:215–21.
doi: 10.1159/000068831

23. Cesari F, Sofi F, Caporale R, Capalbo A, Marcucci R, Macchi C, et
al. Relationship between exercise capacity, endothelial progenitor cells
and cytochemokines in patients undergoing cardiac rehabilitation. Thromb

Haemost. (2009) 101:521–6. doi: 10.1160/TH08-10-0644
24. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I. The ISHAGE

guidelines for CD34+ cell determination by flow cytometry. International
society of hematotherapy and graft engineering. J Hematother. (1996) 5:213–
26. doi: 10.1089/scd.1.1996.5.213

25. Bradford MM. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem. (1976) 72:248–54. doi: 10.1006/abio.1976.9999

26. Levine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assays for
determination of oxidatively modified proteins. Methods Enzymol. (1994)
233:346–57. doi: 10.1016/S0076-6879(94)33040-9

27. Fiorillo C, Becatti M, Attanasio M, Lucarini L, Nassi N, Evangelisti L, et al.
Evidence for oxidative stress in plasma of patients with Marfan syndrome. Int
J Cardiol. (2010) 145:544–6. doi: 10.1016/j.ijcard.2010.04.077

28. Sofi F, Dinu M, Pagliai G, Cesari F, Gori AM, Sereni A, et al.
Low-calorie vegetarian versus mediterranean diets for reducing body
weight and improving cardiovascular risk profile: CARDIVEG study
(Cardiovascular Prevention With Vegetarian Diet). Circulation. (2018)
137:1103–13. doi: 10.1161/CIRCULATIONAHA.117.030088

29. International Team for the Revision of the International Criteria for Behçet’s
Disease (ITR-ICBD). The international criteria for Behçet’s disease (ICBD):
a collaborative study of 27 countries on the sensitivity and specificity
of the new criteria. J Eur Acad Dermatol Venereol. (2014) 28:338–47.
doi: 10.1111/jdv.12107

30. Bianconi V, Sahebkar A, Kovanen P, Bagaglia F, Ricciuti B, Calabrò P,
et al. Endothelial and cardiac progenitor cells for cardiovascular repair: a
controversial paradigm in cell therapy. Pharmacol Ther. (2018) 181:156–68.
doi: 10.1016/j.pharmthera.2017.08.004

31. Rigato M, Fadini GP. Circulating stem/progenitor cells as prognostic
biomarkers in macro- and microvascular disease: a narrative review of
prospective observational studies. Curr Med Chem. (2018) 25:4507–17.
doi: 10.2174/0929867324666170920154020

32. Cesari F, Sofi F, Molino Lova R, Vannetti F, Pasquini G, Cecchi F, et al.
Aging process, adherence to Mediterranean diet and nutritional status in
a large cohort of nonagenarians: effects on endothelial progenitor cells.
Nutr Metab Cardiovasc Dis. (2018) 28:84–90. doi: 10.1016/j.numecd.2017.
09.003

33. Umemura T, Higashi Y. Endothelial progenitor cells: therapeutic
target for cardiovascular diseases. J Pharmacol Sci. (2008) 108:1–6.
doi: 10.1254/jphs.08R01CP

Frontiers in Immunology | www.frontiersin.org 8 December 2019 | Volume 10 | Article 2877

https://doi.org/10.3389/fimmu.2019.01067
https://doi.org/10.1007/s11739-018-1991-y
https://doi.org/10.1186/s12959-015-0047-z
https://doi.org/10.1016/S0002-9343(01)01048-8
https://doi.org/10.1111/cei.13243
https://doi.org/10.3389/fimmu.2019.01085
https://doi.org/10.1055/s-0035-1556727
https://doi.org/10.1136/annrheumdis-2018-213225
https://doi.org/10.1016/S0092-8674(00)81692-X
https://doi.org/10.1016/j.it.2011.06.011
https://doi.org/10.1586/erm.09.80
https://doi.org/10.1042/CS20100429
https://doi.org/10.1161/01.RES.0000268193.46418.d1
https://doi.org/10.1161/HYPERTENSIONAHA.109.141614
https://doi.org/10.1172/JCI36858
https://doi.org/10.1016/j.atherosclerosis.2007.09.045
https://doi.org/10.1161/01.ATV.0000242794.65541.02
https://doi.org/10.1161/HYPERTENSIONAHA.111.183368
https://doi.org/10.1074/jbc.M707451200
https://doi.org/10.1159/000068831
https://doi.org/10.1160/TH08-10-0644
https://doi.org/10.1089/scd.1.1996.5.213
https://doi.org/10.1006/abio.1976.9999
https://doi.org/10.1016/S0076-6879(94)33040-9
https://doi.org/10.1016/j.ijcard.2010.04.077
https://doi.org/10.1161/CIRCULATIONAHA.117.030088
https://doi.org/10.1111/jdv.12107
https://doi.org/10.1016/j.pharmthera.2017.08.004
https://doi.org/10.2174/0929867324666170920154020
https://doi.org/10.1016/j.numecd.2017.09.003
https://doi.org/10.1254/jphs.08R01CP
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Emmi et al. CPC Dysfunction in Behçet’s Syndrome

34. VasaM, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number
and migratory activity of circulating endothelial progenitor cells inversely
correlate with risk factors for coronary artery disease.Circ Res. (2001) 89:E1–7.
doi: 10.1161/hh1301.093953

35. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, et
al. Increase in circulating endothelial progenitor cells by statin therapy in
patients with stable coronary artery disease. Circulation. (2001) 103:2885–90.
doi: 10.1161/hc2401.092816

36. Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Seidinger D,
et al. Depletion of endothelial progenitor cells in the peripheral blood
of patients with rheumatoid arthritis. Circulation. (2005) 111:204–11.
doi: 10.1161/01.CIR.0000151875.21836.AE

37. Valgimigli M, Rigolin GM, Fucili A, Porta MD, Soukhomovskaia O,
Malagutti P, et al. CD34+ and endothelial progenitor cells in patients with
various degrees of congestive heart failure. Circulation. (2004) 110:1209–12.
doi: 10.1161/01.CIR.0000136813.89036.21

38. Porto I, Leone AM, De Maria GL, Hamilton Craig C, Tritarelli A, Camaioni
C, et al. Are endothelial progenitor cells mobilized by myocardial
ischemia or myocardial necrosis? A cardiac magnetic resonance study.
Atherosclerosis. (2011) 216:355–8. doi: 10.1016/j.atherosclerosis.2011.
02.014

39. Dubois C, Liu X, Claus P, Marsboom G, Pokreisz P, Vandenwijngaert
S, et al. Differential effects of progenitor cell populations on left
ventricular remodeling and myocardial neovascularization after myocardial
infarction. J Am Coll Cardiol. (2010) 55:2232–43. doi: 10.1016/j.jacc.2009.
10.081

40. Hergesell O, Andrassy K, Nawroth P. Elevated levels of markers of
endothelial cell damage and markers of activated coagulation in patients
with systemic necrotizing vasculitis. Thromb Haemost. (1996) 75:892–8.
doi: 10.1055/s-0038-1650390

41. Camoin-Jau L, Kone-Paut I, Chabrol B, Sampol J, Dignat-
George F. Circulating endothelial cells in Behçet’s disease with
cerebral thrombophlebitis. Thromb Haemost. (2000) 83:631–2.
doi: 10.1055/s-0037-1613881
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