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Macrophages are heterogeneous leukocytes regulated in a tissue- and disease-specific

context. While in vitromacrophage models have been used to study diseases empirically,

a systematic analysis of the transcriptome thereof is lacking. Here, we acquired gene

expression data from eight commonly-used in vitro macrophage models to perform

a meta-analysis. Specifically, we obtained gene expression data from unstimulated

macrophages (M0) and macrophages stimulated with lipopolysaccharides (LPS) for

2–4 h (M-LPSearly), LPS for 24 h (M-LPSlate), LPS and interferon-γ (M-LPS+IFNγ),

IFNγ (M-IFNγ), interleukin-4 (M-IL4), interleukin-10 (M-IL10), and dexamethasone

(M-dex). Our meta-analysis identified consistently differentially expressed genes that

have been implicated in inflammatory and metabolic processes. In addition, we

built macIDR, a robust classifier capable of distinguishing macrophage activation

states with high accuracy (>0.95). We classified in vivo macrophages with macIDR

to define their tissue- and disease-specific characteristics. We demonstrate that

alveolar macrophages display high resemblance to IL10 activation, but show a

drop in IFNγ signature in chronic obstructive pulmonary disease patients. Adipose

tissue-derived macrophages were classified as unstimulated macrophages, but acquired

LPS-activation features in diabetic-obese patients. Rheumatoid arthritis synovial

macrophages exhibit characteristics of IL10- or IFNγ-stimulation. Altogether, we defined

consensus transcriptional profiles for the eight in vitromacrophage activation states, built

a classification model, and demonstrated the utility of the latter for in vivo macrophages.

Keywords: meta-analysis, elastic net classification, macrophages, alveolar macrophages (AMs), synovial

macrophages (SMs), adipose tissue macrophages (ATMs), macrophage identifier (macIDR)
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INTRODUCTION

The spatiotemporal regulation of tissue homeostasis relies on
the complex network of diverse and heterogeneous immune cell
populations. As a highly plastic and multifunctional immune
cell, macrophages play a decisive role in the balance between
pro-inflammatory defense and anti-inflammatory tissue repair
(1). Dysregulation of macrophages has been implicated in a
variety of disorders. As in vivo macrophages are often difficult
to obtain in sufficient quantities, peripheral blood monocyte
derived macrophages (MDMs) have been used extensively
as in vitro model systems. To mimic in vivo macrophages
encountering various triggers, MDMs are stimulated in vitro
with lipopolysaccharides (LPS) and/or interferon-γ (IFNγ) to
generate pro-inflammatory macrophages (M1), or activated with
interleukin-4 (IL4), interleukin-10 (IL10) or glucocorticoids to
generate anti-inflammatory macrophages (M2) (2). While in
vitro model systems based on differential activation of MDMs
emerge as a practical heuristic, they are not identical to in
vivo tissue resident macrophages or infiltrating MDMs, which
are often shaped by a complex and dynamic milieu within the
microenvironment (1). Nonetheless, within the fast-growing field
of systems immunology a crucial need exists for identifying and
defining in vivo macrophage populations, as well as identifying
an in vitromodel capable of mimicking the tissue physiology and
the systemic perturbation associated with diseases (3).

In the most comprehensive expression profiling study
to date on in vitro macrophages, Xue et al. showed that
macrophages display a more divergent reprogramming,
thereby extending the classical pro- and anti-inflammatory
dichotomy to an activation spectrum (4). While there have
been attempts to summarize published studies in an effort to
attain consensus for in vitro models (5), a proper integrative
analysis on multiple published datasets has thus far not been
performed. To address this, we integrated 206 microarray and
bulk RNA-sequencing (RNA-seq) datasets from 19 different
studies (6–23) to systematically characterize eight in vitro MDM
activation states. Specifically, we investigated unstimulated
macrophages (M0) and macrophages activated by: short
exposure (2–4 h) to LPS (M-LPSearly) or long exposure (18–24 h)
to LPS (M-LPSlate), LPS with IFNγ (M-LPS+IFNγ), IFNγ

(M-IFNγ), IL-4 (M-IL4), IL-10 (M-IL10), and dexamethasone
(M-dex) (Table 1). First, we identified consistently differentially
expressed genes (cDEGs) and the associated pathways by
comparing activated with unstimulated macrophages using a
random effects meta-analysis (36). Second, we implemented
penalized multinomial logistic regression and trained a
classifier through repeated cross-validation that was capable
of accurately and robustly distinguishing MDM activation
states, independent of the macrophage differentiation factor
applied and transcriptomic platform used. We named this
classification model macIDR (macrophage identifier) and
used it to project in vivo tissue-isolated and disease-associated
macrophages onto the eight in vitro MDMs (26–29, 31–
35) in an effort to identify potential macrophage-associated
differences when comparing investigating tissues from different
patient groups.

METHODS

Data Sources and Search Strategy
Our initial search consisted of identifying public datasets for
the meta-analysis and classification analysis, which we called
the “training and test” data. Specifically, we searched the
National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) (37) and European Bioinformatics
Institute (EBI) ArrayExpress (AE) (38) using the keywords
“(macrophage) OR (monocyte) OR (MDM) OR (HBDM)
OR (MoDM) OR (MAC) OR (dendritic cell) AND “Homo
sapiens” [porgn:__txid9606].” Our search yielded 1,851 and 175
experiments for GEO and AE, respectively at the time of writing
(May 2018). In a subsequent screening we filtered for studies that
investigated primary macrophages where we excluded studies
that investigated stem cell derived macrophages or immortalized
cell lines. For consistency purposes, we limited the training
and test data to macrophages differentiated with macrophage
colony-stimulating factor (M-CSF) only as it is the most
commonly used method to generate MDMs for both pro- and
anti-inflammatory activations. We then categorized macrophage
activation states according to stimulus and treatment time. For
the meta-analysis and classification analysis, we sought to obtain
at least 4 studies that included at least 2 biological replicates
per activation state. Furthermore, studies were selected only if
they included unstimulated control macrophages. Microarray
datasets generated on platforms other than Illumina, Affymetrix
or Agilent were excluded to ensure comparability. As we only
investigated genes that were measured in every single study,
datasets that displayed limited overlap in the measured genes
with the other studies were also removed. To further validate the
classification model, we expanded our search by acquiring data
from granulocyte-macrophage colony-stimulating factor (GM-
CSF) differentiated macrophages as well as data from non-
macrophage cells. Finally, we expanded our search to include data
from in vivo macrophages obtained from clinical specimen. An
overview of our inclusion criteria and the general workflow can
be found in Figure 1.

Data Extraction and Import
Microarray Data Preparation
All analyses were performed in the R statistical environment
(v3.5.0) (39). The download and import of the raw and processed
GEO and AE microarray was performed using the GEOquery
(v2.48.0) (40) and the ArrayExpress (v1.40.0) (41) packages
respectively. Raw data was normalized in a platform-specific
fashion: Affymetrix microarrays were normalized using the
rma function from the affy (v1.54.0) (42) and oligo (v1.40.2)
(43) packages, whereas Illumina and Agilent microarrays
were normalized using the neqc function from the limma
(v3.31.14) (44) package. Quality control of the log2 transformed
expression values was performed using WGCNA (v1.51) (45)
and arrayQualityMetrics (v3.32.0) (46) to remove unmeasured
samples, genes, and studies of insufficient quality. Microarray
probes were reannotated to the Entrez ID according to
the annotation files on Bioconductor. Probes that associated
to multiple Entrez IDs were removed and multiple probes
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TABLE 1 | Included datasets.

References Type Dataset ID Purpose Isolation method for

monocyte/macrophage

Fuentes-Duculan et al. (6) Microarray GSE18686 Training & test Adherent PBMCs

Schroder et al. (7) Microarray GSE19765 Training & test CD14+ MACS microbead selection

Benoit et al. (16) Microarray GSE30177 Training & test FACS verified after differentiation

Chandriani et al. (17) Microarray GSE47538 Training & test CD14+ MACS microbead selection

Martinez et al. (18)* Microarray GSE5099 Training & test CD14+ MACS microbead selection

Derlindati et al. (19) Microarray GSE57614 Training & test Dynabeads negative isolation, FACS verified

Jubb et al. (20) Microarray GSE61880 Training & test CD14+ MACS microbead selection

Steiger et al. (21) Microarray GSE79077 Training & test CD14+ MACS microbead selection

Fujiwara et al. (22) Microarray GSE85346 Training & test CD14+ MACS microbead selection

Tsang et al. (8) Microarray E-MEXP-2032 Training & test Adherent PBMCs

Przybyl et al. (9) Microarray E-MTAB-3309 Training & test Adherent PBMCs

Byng-Maddick et al. (10) Microarray E-MTAB-5095 Training & test Adherent PBMCs

Surdziel et al. (11) Microarray E-MTAB-5913 Training & test CD14+ MACS microbead selection

RNAseq BLUEPRINT Training & test CD14+ MACS microbead selection

Park et al. (12) RNAseq GSE100382 Training & test CD14+ MACS microbead selection

Zhang et al. (13) RNAseq GSE55536 Training & test Adherent PBMCs

Martins et al. (14) RNAseq GSE80727 Training & test Dynabeads negative isolation

Realegeno et al. (15) RNAseq GSE82227 Training & test CD14+ MACS microbead selection

Own RNAseq E-MTAB-7572 Test CD14+ MACS microbead selection

Riera-Borull et al. (23) Microarray GSE99056 GM-CSF verification CD14+ MACS microbead selection

Vento-Tormo et al. (24) Microarray GSE75938 GM-CSF verification, non-mac

verification

CD14+ MACS microbead selection

Xue et al. (4) Microarray GSE46903 GM-CSF verification, non-mac

verification

CD14+ MACS microbead selection

Tasaki et al. (25) Microarray GSE93776 Non-mac verification FACS sorting

Yarilina et al. (26) Microarray GSE10500 Synovial macrophage test CD14+ MACS microbead selection

You et al. (27) Microarray GSE49604 Non-mac verification, synovial

macrophage test

CD14+ MACS microbead selection

Kang et al. (28) Microarray GSE97779 Synovial macrophage test CD14+ MACS microbead selection

Asquith et al. (29) Microarray E-MEXP-3890 Synovial macrophage test CD14+ MACS microbead selection

Stephenson et al. (30) scRNAseq phs001529.v1.p1 Synovial macrophage test Single cell RNA-seq

Shaykhiev et al. (31) Microarray GSE13896 Alveolar macrophage test Adherent bronchoalveolar lavage cells,

Diff-Quik staining verified

Woodruff et al. (32) Microarray GSE2125 Alveolar macrophage test Adherent bronchoalveolar lavage cells,

Diff-Quik staining verified

Madore et al. (33) Microarray GSE22528 Alveolar macrophage test Adherent bronchoalveolar lavage cells,

Diff-Quik staining verified

Goleva et al. (34) Microarray GSE7368 Alveolar macrophage test Filtered bronchoalveolar lavage cells

Dalmas et al. (35) Microarray GSE54350 Adipose tissue macrophage test Positive selection magnetic beads

An overview of the datasets and the associated studies included in the in the meta-analysis and the classification analysis.

*The GSE5099 dataset was composed of two Affymetrix microarray datasets: U133A and U133B. Due to the limited overlap in genes between U133B with the rest, we only included

the U133A dataset.

associating to the same Entrez ID were summarized by taking
the median.

Bulk RNA Sequencing Data Preparation
Public raw sequencing reads were sourced from the NCBI
Sequence Read Archive (SRA) (47) and converted to fastq files
using the fastq-dump function from the SRA-tools package
(v2.9.0). All raw fastq files were first checked for quality using

FastQC (v0.11.7) (48) and MultiQC (v1.4) (49). The sequencing
reads were aligned against the human genome GRCh38 using
STAR (v2.5.4) (50). Post-alignment processing was performed
using SAMtools (v1.7) (51) after which reads overlapping gene
features obtained from Ensembl (v91) were counted using the
featureCounts program in the Subread (v1.6.1) (52) package.
Gene annotations were converted from Ensembl IDs to Entrez
IDs using biomaRt (53).
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FIGURE 1 | Overview study design. Transcriptome datasets were found on the Gene Expression Omnibus (GEO) or ArrayExpress (AE) and screened according to the

inclusion criteria yielding 18 datasets. A separate meta-analysis and classification analysis was performed and results thereof were subjected to functional

pathway analyses.

Single-Cell RNA Sequencing Data Preparation
Processed count data was downloaded and analyzed in the
R statistical environment. Normalization, scaling, clustering
was done using the Seurat package (v3.0.2) (54). Macrophages
were identified based on unsupervised Louvain clustering
and identifying the cluster that expressed typical macrophage
markers SPI1, C1QB, CD14, CD68, and CSF1R. The purported
macrophage cells were extracted and a secondary unsupervised
clustering analysis was performed. Classification of the individual
was subsequently performed without the use of an intercept.

Data Analysis
Meta-Analysis
A random effects meta-analysis was performed on the
normalized data using the GeneMeta package (v1.52.0)
(55), which implements the statistical framework outlined by
Choi et al. (36). In short, the standardized effect size (Cohen
d adjusted using Hedges and Olkin’s bias factor) and the
associated variance were calculated for each study by comparing
each activated macrophage with the unstimulated macrophage
within each study. The standardized effect sizes were then
compared across studies by means of random effects model to
correct for the inter-study variation, thereby yielding a weighted
least squares estimator of the effect size and its associated
variance. The estimator of the effect size was then used to
calculate the Z-statistic and the p-value, which was corrected for

multiple testing using the Benjamini-Hochberg procedure. We
modified the GeneMeta functions to incorporate the shrunken
sample variances obtained from limma (44) for calculating the
standardized effect sizes. Consistently differentially expressed
genes (cDEGs) were defined by an adjusted p < 0.05.

Classification Analysis
Raw microarray and RNA-seq data were log2 transformed where
necessary after which the data was (inner) merged and randomly
divided into a training (2/3) and test set (1/3). As the test set
should remain hidden from the training set, raw microarray
and RNA-seq data was used instead of normalized data to
prevent data leakage (56). Elastic net regression was subsequently
performed using the R glmnet (v2.0) (57) package where we set
the alpha to 0.8.

The training set was subjected to 10-fold cross-validation for
tuning the regularization parameter lambda. This procedure was
subsequently repeated 500 times to stabilize the randomness
introduced by the initial splitting step for cross-validation (58).
We considered genes to be stable classifiers if they displayed a
non-zero log odds ratio in at least 50% of the 500 iterations. The
final log odds ratio was selected by taking the median of each
stable predictor gene across the 500 iterations. We subsequently
validated our classification model on the withheld test set.

In addition to the training and test data, we downloaded and
imported additional datasets fromGM-MDMs, non-macrophage
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cells, and in vivo macrophages. Subsequent classification was
performed using the macIDR package. Unlike the studies
included for training and testing, some of the included studies
were performed on platforms that did notmeasure the expression
of some of the predictor genes. To that end, the relative log
odds ratios were calculated, which represent the log odds ratio
present relative to the total log odds ratio had all predictor genes
been present.

Functional Gene Set Analyses
Gene set analyses of the 8000 cDEGs with the lowest p-values
were performed using the Ingenuity Pathway Analysis (59)
software package, whereas the predictor genes were functionally
assessed using the Metascape software (60). Additionally,
potential relationships between the cDEGs were assessed and
visualized by performing a protein-protein association (PPA)
analysis on the 100 cDEGs with the lowest p-values for each
comparison using the STRINGdatabase (61). In short, the cDEGs
were interrogated for cataloged associations with evidence from
the literature that the encoded proteins interacted, co-expressed,
or co-evolved with one another based on text mining, curated
databases, and experiments. We limited the PPA-analyses to the
top 100 cDEGs to make networks comparable across the different
stimuli and to prevent overcrowding.

In vitro Validation Experiment
Human Monocyte-Derived Macrophage

Differentiation and Stimulation
Buffy coats from three healthy anonymous donors were acquired
from the Sanquin blood bank in Amsterdam, the Netherlands.
All the subjects provided written informed consent prior to
donation to Sanquin. Monocytes were isolated through density
centrifugation using LymphoprepTM (Axis-Shield) followed by
human CD14 magnetic beads purification with the MACS R©

cell separation columns (Miltenyi). The resulting monocytes
were seeded on 24-well tissue culture plates at a density of
0.8 million cells/well. Cells were subsequently differentiated to
macrophages for 6 days in the presence of 50ng/mL human
M-CSF (Miltenyi) with Iscove’s Modified Dulbecco’s Medium
(IMDM) containing 10% heat-inactivated fetal bovine serum, 1%
Penicillin/Streptomycin solution (Gibco) and 1% L-glutamine
solution (Gibco). The medium was renewed on the third
day. After differentiation, the medium was replaced by culture
medium without M-CSF and supplemented with the following
stimuli: nothing, 10 ng/mL LPS (Sigma, E. coli E55:O5), 10 ng/mL
LPS plus 50 ng/mL IFNγ (R&D), 50ng/mL IFNγ, 50 ng/mL IL4
(PeproTech), 50 ng/mL IL10 (R&D), 100 nM dexamethasone
(Sigma) for 24 h. LPSearly macrophages were first cultured with
culture medium for 21 h and then stimulated with 10 ng/mL LPS
for 3 h prior to harvest. Total RNA was isolated with Qiagen
RNeasy Mini Kit per the manufacturer’s recommended protocol.
RNA sequencing libraries were prepared using the standard
protocols of NuGEN Ovation RNA-Seq System V2 kit. Size-
selected cDNA library samples were sequenced on a HiSeq 4000
sequencer (Illumina) to a depth of 16M per sample according
to the 50 bp single-end protocol at the Amsterdam University

Medical Centers, location Vrije Universiteit medical center. Raw
fastq files were subsequently processed in the samemanner as the
public datasets to maintain consistency.

RESULTS

Overview Datasets
Altogether, we identified 206 suitable microarray and bulk RNA-
sequencing (RNA-seq) datasets from 19 different studies (6–23)
for the meta-analysis and classification analysis (Figure 1). These
datasets comprised eight in vitroMDM activation states, namely
unstimulated macrophages (M0) and macrophages activated
by: short exposure (2 to 4 h) to LPS (M-LPSearly) or long
exposure (18 to 24 h) to LPS (M-LPSlate), LPS with IFNγ (M-
LPS+IFNγ), IFNγ (M-IFNγ), IL-4 (M-IL4), IL-10 (M-IL10), and
dexamethasone (M-dex) (Table 1).

Identification of Well-Known and Novel
Transcriptional Markers and Pathways of
Macrophage Activation
We identified genes that were consistently differentially
expressed across studies (cDEGs) by means of a random
effects meta-analysis (Supplementary Table 1). Many of the
observed cDEGs were known to be characteristic for certain
macrophage activation states. For example, interleukin-1
beta (IL1B), C-C Motif Chemokine Ligand 17 (CCL17) and
Cluster of Differentiation 163 (CD163) were consistently
upregulated in M-LPSlate, M-IL4, and M-dex compared with
M0, respectively (5). Notably, we identified several novel genes
that were not widely considered as activated macrophage
markers. Consistent upregulation of interleukin-7 receptor
(IL7R) and CD163 Molecule Like 1 (CD163L1) was observed
in M-LPSearly and M-IL10, respectively. Similarly, consistent
downregulation of Nephroblastoma Overexpressed (NOV)
and Adenosine A2b receptor (ADORA2B) was observed
when comparing M-IFNγ, M-LPSlate, and M-LPS+IFNγ with
M0, respectively.

At the genome-wide level, pairwise correlation analysis of the
standardized effect sizes across studies showed that M-LPSearly,
M-LPSlate, M-IFNγ, and M-LPS+IFNγ formed one cluster,
whereas M-IL4, M-IL10 and M-dex formed a second cluster
(Figure 2A). Other activation states could not be discerned
easily, which could be attributed to study-specific effects. This
observation agrees with previous studies where transcriptional
alterations induced with these conventional pro- and anti-
inflammatory stimuli were found to cluster according to the
M1-M2 dichotomy (4, 62). Further sub-clustering appeared to
divide the macrophages according to the stimuli. The separation
between the M1 and the M2 was also apparent as the first
principal component (PC1), which displayed a clear separation
between M1 and M2 associated stimuli on the left and right,
respectively (Figure 2B). Relative to the M1 macrophages, the
M2 macrophages appeared to display a stronger diversity along
PC2, suggesting a more distinctive transcriptional programming
of the individual activation states.
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FIGURE 2 | Summary meta-analysis. (A) Heatmap of the Cohen d pairwise Spearman correlation coefficients. (B) Principal component analysis of the Z-values

obtained from the meta-analysis. (C) Protein-protein association network as obtained from the top 100 cDEGs using the STRING database. Node colors represent

the unbiased estimator of the effect size (mu), whereas the edge colors and thickness represent the source of the cataloged association and the weight of the

evidence. (D) Heatmap of the canonical pathways with the intensity representing the activation z score. Two most defining clusters have been enlarged and annotated

on the right.
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FIGURE 3 | Summary classification analysis. (A) Heatmap of the median-stabilized log odds ratios per macrophage activation state for each of

the 97 predictor genes. (B)Confusion matrix representing the number of correctly classified samples (entries on the diagonal) vs. the misclassified samples (entries on the

(Continued)
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FIGURE 3 | off-diagonal). Classes on the y-axis represents the reported class while classes on the x-axis represent the predicted class. Colors represent the

predicted classes with purple, red, yellow, and blue representing M-dex, M-LPS+IFNγ, M-IFNγ, and M-IL10, respectively. (C) Bar plots of the misclassified samples

depicting the classification signal on a scale of 0 to 1 where the class with the largest signal represents the predicted class. Blue bars represent the incorrectly

predicted class and orange bars represent the reported class. Border colors represent the predicted classes with purple, red, yellow, and blue representing M-dex,

M-LPS+IFNγ, M-IFNγ, and M-IL10, respectively. (D) Boxplots representing the classification signal on a scale of 0 to 1 where classes with the largest signal

represents the predictions. Colors represent GM-CSF differentiated macrophages (GM-MDMs), monocyte-derived dendritic cells (MoDCs), fibroblast-like synoviocytes

(FLS), B lymphocytes (B), T lymphocytes (T), natural killer cells (NK), and neutrophils (NP). (E) GM-MDMs and (F) MoDCs colored by stimulation.

cDEGs Are Enriched for Pro- and Anti-inflammatory

Pathways
To investigate the functional relevance of the cDEGs, we
performed protein-protein association (PPA) analyses on the
top 100 cDEGs. Per comparison, we observed cluster formation
visually as well as statistically, where an overrepresentation
analysis identified more PPAs than would have been observed by
chance for a random gene set of similar size. Notably, M-LPSearly,
M-LPSlate, M-IFNγ, M-IL4, M-IL10, and M-dex cDEGs all
displayed significantly more interactions (Figure 2C). M-LPSearly
cDEGs formed an upregulated PPA-network centered around the
pro-inflammatory mediators tumor necrosis factor α (TNFα),
interleukin-6 (IL6), and prostaglandin-endoperoxide synthase 2
(PTGS2). M-IFNγ cDEGs revealed two separate clusters, one for
major histocompatibility complex (MHC) proteins (upregulated)
and one for nucleic acid and nitrogen metabolism-associated
proteins (downregulated). The PPA network found for M-IL4
cDEGs suppressed pro-inflammatory proteins interleukin-1B
(IL1B) and interleukin-1 receptor-associated kinase 3 (IRAK3),
but enhanced chemokine ligands (CCL) considered to be co-
expressed with IL1B, such as CCL13, CCL17, CCL18, and
CCL22 (Figure 2C). Finally, M-dex cDEGs displayed a cluster
centered at V-Set And Immunoglobulin Domain Containing 4
(VSIG4) with many of the genes encoding anti-inflammatory
proteins, such as Macrophage Receptor With Collagenous
Structure (MARCO) (63) and membrane-spanning, four domain
family, subfamily A (MS4A4A) (64). As VSIG4 has been
shown to modulate macrophage inflammatory function via
mitochondrial reprogramming (65), the PPA network in M-
dex vs. M0 suggests concordant immunosuppressive metabolic
changes in macrophages.

To systematically identify whether the cDEGs were enriched
for particular pathways, we performed pathways analyses using
the Ingenuity Pathway Analysis (IPA) software package. While
the clusters were slightly different among individual macrophage
activation states, the overall separation between M1 and M2
was apparent with hierarchical clustering revealing two sets of
pathways that appeared to be responsible for the separation
(Figure 2D and Supplementary Table 2). Pathways known for
their pro- and anti-inflammatory responses, such as interferon
signaling and LXR/RXR activation, displayed a clear and distinct
pattern for the M1 and M2 macrophages, respectively.

Elastic Net Classification
Classification Analysis Distinguishes Macrophage

Activation States With High Accuracy
We merged the data from different microarray and RNA-seq
experiments and performed multinomial elastic net regression
on the 5986 overlapping genes present in all datasets to identify

TABLE 2 | Classification testing.

Macrophage TP FP TN FN TNR TPR Accuracy

M0 26 1 50 2 0.98 0.93 0.96

M-LPSearly 6 0 73 0 1.00 1.00 1.00

M-LPSlate 6 0 72 1 1.00 0.86 0.99

M-LPS+IFNγ 7 1 71 0 0.99 1.00 0.99

M-IFNγ 8 1 70 0 0.99 1.00 0.99

M-IL4 11 0 68 0 1.00 1.00 1.00

M-IL10 6 1 72 0 0.99 1.00 0.99

M-dex 5 0 73 1 1.00 0.83 0.99

A confusion matrix representing the classifier performance on the test set. TP, True

positives; FP, False positives; TN, True negatives; FN, False negatives; TNR, True negative

rate/specificity; TPR, True positive rate/sensitivity.

gene sets capable of distinguishing macrophage activation states.
The merged expression data was randomly split into a training
(2/3) and a test (1/3) set whereupon the training set was used
to build a model through 10-fold cross-validation. To achieve
robust performance, we repeated the cross-validation procedure
500 times and took the median thereof to stabilize the log
odds ratios (58). Genes were considered stable predictors if
their log odds ratio was non-zero in more than 50% of the
iterations (Supplementary Figure 1). Subsequent classification
was performed using themedian log odds ratio per gene across all
iterations (Figure 3A). Altogether, our classifier was composed of
97 median-stabilized predictor genes, and was compiled as an R
package called macIDR (https://github.com/ND91/macIDR).

To validate our model, we tested macIDR against the
previously withheld test set, which included a newly-generated
RNA-seq experiment containing all included activation states (E-
MTAB-7572). Classification of the test set revealed an accuracy
above 0.95 with both high sensitivity (>0.98) and specificity
(>0.83; Table 2). In total, 75 out of 79 test samples were correctly
classified (Figure 3B). Notably, for three of the four misclassified
samples, the second-best prediction was the activation model as
reported by the authors. Investigation of the four misclassified
samples revealed that most errors were made regarding M0: two
M0 datasets were classified as M-IL10 (GSM151655) and M-
IFNγ (GSM1338795), and one M-dex dataset (d54D) as M0.
The fourth misclassification pertained a M-LPSlate (GSM464241)
dataset classified as M-LPS+IFNγ (Figure 3C).

Next, we wanted to test the potential limitations of macIDR
by classifying macrophage differentiated with granulocyte-
macrophage colony-stimulating-factor (GM-CSF) stimulated
MDMs (GM-MDMs) as well as non-macrophage cell types. To
this end, we classified data from four different studies (4, 23–25).
We observed that the GM-MDMs were classified as their M-CSF
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counterparts (Figures 3D,E), whereas most non-MDMs were
classified as M0 (Figure 3D, Supplementary Table 3). Notably,
the monocyte-derived dendritic cells (MoDCs) were recognized
as M-IL4 (Figure 3D), even after stratifying for subsequent
stimulation (Figure 3F). We speculate that this might due to
the differentiation method (GM-CSF + IL4) used to generate
MoDCs in vitro.

Pathway analysis of all predictor genes revealed enrichment
for inflammatory pathways, such as TNFα signaling,
inflammatory response and interferon gamma signaling,
underscoring the importance of inflammation regulation
in macrophage activation (Supplementary Figure 2A,
Supplementary Table 4). A follow-up transcription factor
motif analysis on the promoters of the predictor genes showed
significant enrichment for macrophage-specific transcription
factors, the E26 transformation-specific PU.1 (Spi1) and SpiB
(Supplementary Figure 2B).

In vivo Macrophage Classification
Alveolar Macrophages From COPD and Smoking

Individuals Display Reduced M-IFNγ Signal
We next classified macrophages derived from patient tissues to
study their semblance to in vitroMDMs.We investigated alveolar
macrophages (AMs) obtained through bronchoalveolar lavage
from smoking individuals, COPD patients, asthma patients
(31), and healthy control (HCs). Overall, we found that the
AMs were classified primarily as M-IL10 (Figure 4A), which

appears to be driven by the MARCO signal. This corroborates
the observation that lung tissue, specifically AMs, display
significantly higher gene expression of MARCO relative to
surrounding cells and other tissues (66, 67). Moreover, MARCO
was found to be necessary in AMs for mounting a proper
defense response (66–68). Further comparisons of the AMs
derived from different patient groups, we found that the
macrophage signal could be stratified according to health status
where COPD- and smoker-derived AMs displayed a higher M-
IL4, M-IL10, and M-dex signal and a reduced M-IFNγ and
M-LPS+IFNγ signal compared to AMs obtained from HCs.
This observation indicates a stronger M2- and lesser M1-like
phenotype, which was also noted in previous studies (4, 31).
This difference in classification signal was found to be driven
by decreased log odds for C-X-C Motif Chemokine Ligand 9
(CXCL9) (M-IFNγ and M-LPS+IFNγ) and CXCL5 (M-IL4) and
increased log odds for TNFAIP6 (M-IL10), and ADORA3 (M-
dex; Supplementary Figure 3).

While no clear differences were observed when comparing
AMs from asthma patients to HCs, AMs from steroid-resistant
asthma patients displayed a decreased M-dex signal and
increased M-LPSearly, M-IFNγ, and M-LPS+IFNγ signal
relative to steroid sensitive asthma AMs (Figure 4A).
The apparent difference in steroid sensitivity appeared
to be caused by a difference in TNF and CXCL9 signals
contributing to the M-LPSearly and M-IFNγ classification,
respectively (Supplementary Figure 3). This observation

FIGURE 4 | Classification of in vivo macrophages. Summarized classification results per dataset with cross-bars representing the mean and the standard errors of the

log odds colored by the macrophage in vivo type. Dots above represent the log odds ratio [log(OR)] relative to the sum of the log odds ratios if all predictor genes were

measured. (A) Alveolar macrophages obtained from smoking individuals, chronic obstructive pulmonary disease (COPD), asthma patients, as well as healthy controls.

(B) Adipose tissue macrophages obtained from diabetic obese and non-diabetic obese patients. (C) Synovial macrophages obtained from rheumatoid arthritis (RA)

patients and MDMs from healthy controls (HCs).
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corroborates previous studies where IFNγ signaling was found
to suppress glucocorticoid-triggered transcriptional remodeling
in macrophages leading to the macrophage-dependent steroid-
resistance (69), thereby reflecting a higher level of IFNγ in
steroid-resistant relative to steroid-sensitive asthma patients (70).

Adipose Macrophages Show Similarity With M0 and

M-IL4
We subsequently investigated visceral adipose tissue
macrophages (ATMs) derived from diabetic and non-diabetic
obese patients (35). Classification analysis suggested visceral
ATMs showed most similarity with M0 followed by M-
IL4 (Figure 4B). While we were not capable of defining
a set of genes responsible for the M0 classification, we
observed that the concordant expression of Monoamine
oxidase A (MAOA) and CCL18 contributed the most to the
M-IL4 signal (Supplementary Figure 4). MAOA encodes
a norepinephrine degradation enzyme and is expressed
primarily in sympathetic neuron-associated macrophages
isolated from the subcutaneous adipose tissue. In these cells,
MAOA’s norepinephrine clearance activity has been linked
to obesity (71). Interestingly, when comparing ATMs from
diabetic obese with non-diabetic obese patients, we observed
a stronger signal of M-IL10 and M-LPSearly driven by CCL18
and TNF, respectively (Supplementary Figure 4). Notably,
CCL18 expression in both visceral and subcutaneous adipose
tissue has been associated with insulin-resistant obesity
(72, 73). Furthermore, several studies have demonstrated

that ATMs could be divided into CD11C+CD206+ and
CD11C−CD206+ subpopulations (74, 75). Specifically,
an increased density of the IL10 and TNFα-secreting
CD11C+CD206+ ATMs in adipose tissue was associated
with insulin resistance (74), which coincides with the observed
increase of M-IL10 andM-LPSearly signals while the M-IL4 signal
remained unaltered.

Synovial Macrophages From Rheumatoid Arthritis

Patients Similar to M- IFNγ and M-IL10
Finally, we analyzed synovial macrophages (SMs) from RA
patients and MDMs from HCs (26–29). Whereas, unstimulated
MDMs were successfully classified as M0, SMs from RA patients
were classified as either M-IL10 or M-IFNγ (Figure 4C).
Specifically, RA-derived synovial macrophages (RA-SMs)
from 3 studies (26, 28, 29) were classified as M-IL10, whereas
samples from one study (27) were classified as M-IFNγ.
Comparison of the classification signal of the RA-SMs
with the HC MDMs displayed a higher signal for M-IFNγ

and M-IL10 (Figure 4C). Concordantly, a previous study
reported an increased gene expression of IFNγ and IL10 in
RA synovial fluid mononuclear cells compared with PBMCs
from both RA patients and HCs (76). Further investigation
of the M-IFNγ and M-IL10 classification revealed dominant
signals for M-IFNγ predictor gene CXCL9 and for M-IL10
predictor gene MARCO (Supplementary Figure 5). This
observation agrees with previous studies where elevated
gene and protein expression of CXCL9 was found in the

FIGURE 5 | Analysis of the rheumatoid arthritis-derived synovial cells. (A) t-distributed stochastic neighbor embedding (tSNE) visualization of the synovial

biopsy-derived cells as obtained through Louvain clustering. (B) Pie chart depicting the frequency of each macrophage activation model as predicted by macIDR.

Frontiers in Immunology | www.frontiersin.org 10 December 2019 | Volume 10 | Article 2887

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Integration of in vitro Macrophage Datasets

synovium of RA patients compared with that of osteoarthritis
patients (77, 78). Similarly, an increased presence of MARCO
was detected in the inflamed joints, particularly in RA
patients (79).

We extended our analysis to single-cell RNA-seq (scRNA-
seq) data from RA-derived biopsies (30). We extracted the
macrophage cluster (cluster 0) based on the expression of the
typical macrophage markers Spi-1 proto-oncogene (SPI1),
complement C1q B chain (C1QB), CD14 molecule (CD14),
CD68 molecule (CD68), and colony stimulating factor 1
receptor (CSF1R) (Figure 5A and Supplementary Figure 6).
Classification of the individual macrophages using macIDR
indicated that most macrophages were classified as M-
IL10 (Figure 5B). Notably, the macrophage predictions
did not match with according to RA-SM sub-clusters
(Supplementary Figure 7).

DISCUSSION

In this study, we characterized macrophages by integrating
public gene expression datasets of eight in vitro macrophage
models. We identified both well-known and novel markers
for activated macrophages across different studies. We
subsequently built a classification model capable of defining
and discriminating macrophage activation states and
made this available as an R package called macIDR. By
applying macIDR to in vivo macrophages, we projected
the latter onto the in vitro macrophage model system
providing insights in how disease and tissue of origin affect
activation composition.

Previous macrophage characterization studies focused
primarily on gathering large cohorts. Xue et al. adopted
an inclusive strategy by categorizing genes into different
activation states through self-organizing maps and correlation
analyses (4). Instead, we sought to find consensus from
published data by implementing a descriptive and an exclusive
strategy represented by the meta-analysis and the elastic net
classification analysis, respectively. Where the meta-analysis
identified genes that were consistently differentially expressed
across studies when comparing stimulated with unstimulated
MDMs, elastic net classification analysis represented a rigorous
feature selection approach that yielded predictor genes capable
of classifying the MDMs with high accuracy. As a meta-
analysis-based computational model, the strength of our
approach would continuously increase as public repositories
expand. Furthermore, we implemented an additional layer
of robustness by performing repeated cross-validation to
ensure that the final output of the elastic net regression
was stable.

Many of the observed cDEGs and predictor genes have
been recognized as bona fide markers for different activation
states, such as TNF (M-LPSearly), IDO1 (M-LPS+IFNγ), CXCL9
(M-IFNγ), and ADORA3 (M-dex) (5) (Supplementary Table 1

and Figure 3A). We also identified several novel marker genes,
which have been reported to be differentially expressed in
diseases correlated with the stimuli. For example, deficiency of

NOV (also known as CCN3), a down-regulated cDEG when
comparing M-LPSlate and M-IFNγ with M0, increases foam
cell formation and exacerbates atherosclerosis in mice (80, 81).
Similarly, the regulation of NOV might play a bridging role in
inflammatory response and lipid accumulation in macrophages
during atherogenesis as both toll-like receptor 4 and IFNγ-
signaling represent major regulators in atherosclerosis (82).
Pathway and transcription factor motif analyses of the predictor
genes revealed enrichment for inflammatory pathways and
macrophage transcription factors PU.1 and SpiB. As both key
transcription factors drive macrophage differentiation (83), our
observation suggests that macrophage activation is determined
by the regulation of the lineage-specific inflammation. We
also observed that some predictor genes were associated
to pathways not typically described within the context of
macrophage activation. For example, ribosomal proteins (RPL)
6 and 9 were found to be negative predictor genes of M-
LPSearly and are typically involved in translation. This finding
might be akin to the downregulation of ribosomal translation
during the maturation of MoDCs with LPS (84). Another
example pertains M-IL4 for which we observed changes in
serotonin processing. We observed that serotonin receptor 5-
Hydroxytryptamine Receptor 2B (HTR2B) (76) was represented
by a negative log odds ratio, whereas serotonin degrading
enzyme MAOA (85) was represented by a positive log odds
ratio. Together, it appears as though M-IL4 favors the absence
of serotonin, despite the fact that serotonin reportedly attenuates
the secretion of the pro-inflammatory cytokine TNFα (86).
While it remains enticing to describe the functionality of the
novel macrophage genes based on previous literature, it should
be understood that the current study is associative in nature
with the reported genes being different in expression. Our
observations warrant future mechanistic studies that elucidate
the physiological and functional relevance of these genes
within macrophages.

To test the limits of the classification model, we classified
non-MDM cells. Classification of MoDCs indicated that they
were most similar to M-IL4, even after treatment with pro-
inflammatory agents such as LPS. This observation is likely due
to the method used to generate MoDCs, where monocytes are
differentiated with GM-CSF and IL4. Notably, while the MoDCs
were classified primarily as M-IL4, some MoDCs matured with
LPS for 24 h displayed a mildly increased signal toward M-
LPS+IFNγ and M-LPSlate. Similarly, immature MoDCs (DC0)
displayed a slightly higher response for M0. All other non-
macrophage cells were classified as M0. While the log odds of
proper M0 classifications were slightly higher than improper
M0 classifications, we acknowledge that no clear threshold
could be defined. We are unsure why M0 was predicted
as a class for non-MDM and non-MoDC datasets, but we
speculate that it might be related to the M0 class being
represented by most predictor genes relative to the other
classes. We therefore recommend potential users of macIDR
to determine a priori that their dataset of interest represents
macrophages either experimentally or using in silico cell-
composition estimation methods, such as CIBERSORT (87) or
xCell (88).
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As macIDR was capable of properly classifying differentially
differentiated in vitro MDMs, we applied it to in vivo
macrophages with the goal of extracting activation information.
We observed differences in predictions, such as reduced signals
of M-IFNγ and M-LPS+IFNγ and increased signals of M-IL4,
M-IL10, and M-dex when comparing AMs from COPD patients
with HCs. Moreover, we observed that the tissue of origin had
a large impact on the macrophage classification with in vivo
tissue-residentmacrophages obtained fromHCs not always being
classified as M0 as was observed for the AMs. Since some in
vivo macrophages obtained from healthy tissue were classified
as in vitro activated MDMs, unstimulated in vitro MDMs
(M0) likely do not reflect the basal state of all tissue-resident
macrophages underpinning the importance of how multiple
factors in the microenvironment shape the transcriptome.
Our results suggest that for some in vitro models, using
activated MDMs might achieve a more comparable phenotype
to the in vivo tissue macrophages that express the tissue
transcriptomic signatures.

Unlike the AMs, no transcriptomic data was available
of SMs from healthy donors. We were therefore unable to
conclude whether the M-IL10 and M-IFNγ predictions for
the RA samples were tissue-specific or disease-associated.
Though samples from different studies were classified as M-IL10
or M-IFNγ, these two activation states appeared to be the
highest two predicted classes among all recruited datasets.
Characterization studies on RA-SMs suggested that they
represent multiple subpopulations, such as the CD163+ anti-
inflammatory tissue-resident macrophages and the S100A8/9+

pro-inflammatory macrophages recruited from peripheral
monocytes (89). As in vivo macrophages represent a more
heterogeneous population, prediction of mixed cell clusters
using macIDR will return signals frommultiple different models.
The classification could therefore reflect perturbations of the
macrophage composition associated with disease states. Since
scRNA-seq enables deconvolution of cellular identities, we
reasoned that integrating macIDR with single-cell profiling
would enhance the understanding of in vivo macrophage
heterogeneity in diseases and improve the resolution of
cellular clusters as classified functional groups. By applying
macIDR to the macrophages observed in the RA synovial
samples obtained through scRNA-seq we found that most
macrophages were M-IL10-like. However, the predictions did
not match with the observed macrophage sub clusters suggesting
that while RA-SMs are composed of different macrophage
subsets, they might not necessarily coincide with the eight
in vitromodels.

In conclusion, our work represents a practical and
robust platform-independent approach to characterize
and classify in vitro macrophages. We anticipate that our
approach could be expanded to multiple cell types and
states, not only for modeling the activation, but also for
characterizing the functional cell groups in vivo. Altogether,
we have established a consensus gene expression profile and
built a classification model called macIDR that is capable
of deconvoluting heterogeneous signals both in vitro and
in vivo.
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