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Immune responses to therapeutic proteins and peptides can adversely affect their

safety and efficacy; consequently, immunogenicity risk-assessments are part of the

development, licensure and clinical use of these products. In most cases the

development of anti-drug antibodies is mediated by T cells which requires antigen

presentation by Major Histocompatibility Complex Class II (MHCII) molecules (also

called Human Leucocyte Antigen, HLA in humans). Immune responses to many protein

therapeutics are thus HLA-restricted and it is important that the distribution of HLA

variants used in the immunogenicity assessments provides adequate coverage of the

target population. Due to biases inherent to the collection of samples in a blood bank

or donor pool, simple random sampling will not achieve a truly representative sample

of the population of interest. To help select a donor cohort we introduce SampPick, an

implementation of simulated annealing which optimizes cohort selection to closely match

the frequency distribution of a target population or subpopulation. With inputs of a target

background frequency distribution for a population and a set of available, HLA-typed

donors, the algorithm will iteratively create a cohort of donors of a user selected size

that will closely match the target population rather than a random sample. In addition

to optimizing the HLA types of donor cohorts, the software presented can be used to

optimize donor cohorts for any other biallelic or monoallelic trait.

Keywords: immunogenicity, HLA-typing, optimization, donor-selection, simulated-annealing, algorithm

INTRODUCTION

Protein and peptide therapeutics include seven of the 10 top-selling drugs (1) and provide medical
interventions for diseases that are otherwise untreatable. Immunogenicity, the undesired immune
response to a protein or peptide therapeutic, is a key concern during drug-development and
licensure. While the development of some drugs has been discontinued due to immunogenicity-
risk (2–5); immunogenicity issues continue to cast a shadow even on marketed drugs. For example,
within 5 years, 30–70% of patients receiving TNF-alfa inhibitors experience “secondary failure”
due to immunogenicity (6). Similarly, about a quarter of hemophilia A patients develop so-called
inhibitors, i.e., neutralizing antibodies (NABs) to Factor VIII, leading to severely diminished quality
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of life and medical costs that can exceed USD 1 million per year.
Thus, the most egregious consequence of immunogenicity is not
that a drug will fail to be marketed but that medications with a
market value of almost 100 billion dollars that treat millions of
individuals are sub-optimal.

The immunogenicity risk of a drug-candidate can be
determined at two principal steps during drug-development. In
early stage drug-development, non-clinical in silico, in vitro,
and ex vivo tools can be used to assess the potential for an
immune response (7). Although there have been substantive
improvements in these technologies in the last decade, it is
still not possible to rely entirely on the surrogate markers
measured by these methods for estimating the risk of clinical
immunogenicity of biologics (8). Consequently, the identification
of anti-drug antibodies (ADAs) and NABs is almost always a part
of Phase 3 clinical studies (9).

The HLA-type of a patient is one of several risk factors
for immunogenicity. The HLA proteins act at the interface
between the antigen and the immune system. These receptors
bind peptides derived from protein antigens and transport them
to the membrane surface where the complex is recognized by
T cells which can then initiate the cascade of complex immune
responses. Numerous studies indicate that immune responses to
therapeutic proteins require T-cell activation (10). Hence antigen
presentation via the HLA is a necessary, albeit not a sufficient,
condition for therapeutic protein product immunogenicity (8).

From the point of view of assessing the immunogenicity risk
of a protein-drug; a population that has a diverse HLA repertoire
presents a challenge. Genes for the major histocompatibility
complex (MHC), also called the HLA in humans, are the most
polymorphic in the vertebrate genome (11). If, and this is often
the case, immune responses to the therapeutic-protein are HLA
restricted, ensuring that a representative distribution of HLA
variants is included in the clinical and non-clinical studies is
very difficult.

A testing cohort can be generated from any “available
population” such as HLA typed individuals donating at a blood
bank, a bio-repository, commercial catalogs of HLA typed cells
etc. The immense diversity of the HLA repertoire raises many
technical questions in the design of a study. How many HLA
variants should be studied? How does one generate a suitable
cohort that considers the relative frequencies of HLA variants
in different human populations? For an ex vivo assay how many
samples should be used? What HLA types should the donors
of the cells have? The answers to many of these questions will
depend on the drug, the disease and the specific question(s) the
study is being designed to answer. However, once a decision has
been made as to the composition of the “representative cohort”
(e.g., a distribution of HLA alleles reflecting the US population, a
disease etc.) statistical approaches can be used to select the most
appropriate cohort for the study.

Usual methods for donor cohort selection involve either hand
selection of donors to ensure that alleles with high frequencies in
the population are included in the study, or random selections
of donors under the assumption that this random selection will
be a representative sample of the population from which it is
drawn. While hand selecting donors to cover important alleles

will ensure that these alleles are included in the study, it does not
consider the frequencies of the alleles. Additionally, it does not
try to model the distribution of the less frequent alleles on the
population of interest.

Random selections of donors would address these issues of
attaining the proper distribution of alleles assuming the pool
of donors is representative of the population from which it is
drawn. It is known that some biases will exist in donors in a bio-
repository or blood bank (12). In order to confront the biases
inherent to the group of samples to choose we propose avoiding
random sampling from a biased population and introduce a
method that uses simulated annealing to generate a cohort of
subjects in which HLA alleles occur at the similar frequencies as
they occur in the sub-population of interest. We use a simulated
annealing algorithm to select a cohort of subjects that better
resembles a background population (vis-à-vis relative frequencies
of HLA alleles) as measured by the Jensen-Shannon distance
(JSD). While there are several distance measures that can be
used, this distance measure is often used in the comparison of
probability distributions in machine learning applications due to
its symmetry and finite bounds.

Simulated annealing is a global optimization algorithm which
draws its inspiration from the metallurgical process of annealing.
This annealing process involves a scheduled heating and cooling
process that serves to strengthen metal and reduce flaws.
The basis of Simulated Annealing is the Metropolis-Hastings
Algorithm in which a change is introduced into the system. In
our case this change is the substitution of one potential member
of the selected cohort for another. This new state is accepted
with some probability and the algorithm will continue anew. The
introduction of the concept of cooling in annealing sets up a
schedule for the acceptance of new states. At the start of the
algorithm, the system is hotter and has a great deal more free
energy (temperature of 1). This temperature will exponentially
decrease over the iterations of the algorithm until the system has
cooled to a temperature nearing 0. For each iteration, the JSD
score is assessed after the substitution is made. If the substitution
is an improvement with respect to JSD, then the change is
accepted. In addition, if a random number from a uniform
distribution between 0 and 1 is below the current temperature,
the change is also accepted regardless of whether the score is an
improvement. These non-optimal changes are considerably more
likely when there is a lot of free energy in the system (higher
temperature). As the system “cools” to a temperature of 0, the
chance of a substitution being accepted without also being an
improvement in score exponentially decreases. The benefit of
this algorithm is in its flexibility in dealing with local vs. global
minima. If the algorithm has no chance to accept non-optimal
solutions, there is a chance that it will miss a lower minimum and
just be stuck in theminimum for the region in which it started. By
allowing for the algorithm to try out other areas in the solution
space, there is a greater chance that the global minimum is found.
Importantly, the reduction in temperature means that toward
the later parts of the algorithms run, the algorithm would have
hopefully found the area around the global minimum and will
fine-tune its selection in that region as the system further cools
toward 0.
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TABLE 1 | The samples used for the creation of the background distribution of HLA-DRB1 alleles for the US population.

Race/ethnic description DRB1-typed sample

counts (1)

% US population race distribution

(US Census Bureau estimate) (2)

% US population race

distribution (used in this work)

African American 505,250 13.4 13.5

Asian or Pacific Islander 568,597 6 6.0

Caucasian 3,912,440 60.7 61.0

Hispanic 712,764 18.1 18.2

Native American 46,148 1.3 1.3

Total 5,745,199 99.5 100

The allelic distributions for each sub-population are weighted by the demographic distribution of those sub-populations (scaled to 100%).

We demonstrate that a cohort selected using this tool is closer
in HLA type distribution to a known background distribution
(as measured by the Jensen-Shannon distance) than random
selections from biased sets of donors. Finally, we provide
illustrative applications of our tool.

METHODS

Obtaining the Background Distribution of
HLA DRB1 Alleles
We obtained the population frequencies of 514 HLA-DRB1
alleles from the United States (US) from the Be the Match R©

bone marrow donor registry (13). This dataset reports the allele
frequencies for broad race categories in the US (Table 1) from
5,745,199 haplotyped samples. To calculate the allele frequencies
representing the general American population we weighted the
racial allele frequencies with the demographic distribution of
those races in the population. To obtain the racial distributions,
we first retrieved theUSCensus Bureau’s July 1, 2018 estimates on
the population demographics and then amended the percentages
such that they add up to a 100, by distributing the missing (100%-
99.5%) based on the original percentages. In the allele dataset,
there were four ambiguous (04:07G, 11:01G, 12:01G, 14:01G)
and four not-expressed (07:10N, 12:24N, 15:17N, 15:50N) DRB1
allele types. For standardization purposes we mapped those
alleles to their base allele type (e.g., 04:07G reverts to 04:07).
The resulting scaled and weighted table of allele frequencies
(Supplementary Table 1) was used as a background distribution
for the North American Population.

The Source of HLA Typed Donors
As a test case for an available population of samples, all available
samples from the CTL ePBMC R© Searchable Database v1.2.6 were
used (Table 2). Samples that had no information for HLA-DRB1
were not considered and sample labeled as ambiguous with a “P”
group suffix were excluded.

The Jensen-Shannon Distance
The Jensen-Shannon Distance is used as a metric for scoring the
difference between the two probability distributions. This metric
was used since it is symmetrical version of the Kullback-Leibler
Divergence. As we are using the natural log in the Kullback-
Leibler Divergence definition, the Jensen-Shannon Distance is

bounded by 0 and
√
ln(2) ≈ 0.83. It is defined by the

following equation:

JSD(P| |Q) =
√

λ∗DKL(P| |M) + λ∗DKL(Q||M)

where:

D(P||Q) is the Kullback-Leibler divergence of probability
distributions a and b.
λ is a scaling factor for the two distribution (1/2 is
generally used).
P is the probability distribution of the Sample of interest.
Q is the probability distribution of the Target Population
(Background Distribution).
M is the mean of both distributions defined as:

M =
1

2
(P + Q)

The Kullback-Leibler Divergence is defined as:

DKL(P| |Q) =
∑

aεA

P (a) ∗ log
(

P(a)

Q(a)

)

where:
A is the union of all alleles in the target and

sample populations.

Simulated Annealing
A Simulated Annealing algorithm (Figure 1) was used to
optimize selection of a sample cohort through iterative
resampling of the population. The algorithm allows for the user
to select a sample size (N), as well as refine the parameters:
number of iterations (I), temperature decrease (α), number
of changes (C).

The purpose of this algorithm is to accept changes to the
selected cohort which will decrease the JSD between the cohort
chosen and target distribution. The reason it will accept non-
optimal changes in step VII (ii) is to allow the algorithm
to avoid getting stuck on local minima and have a chance
to fully explore the search space. It should be noted that
the probability of accepting non-optimal changes decreases
exponentially over time.
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TABLE 2 | All available samples from the CTL ePBMCR Searchable Database

v1.2.6 were used as an example of available donors to use in the selection

process.

Subject DRB1 Allele 1 DRB1 Allele 2

LP_7 DRB1*07:01 DRB1*14:02

LP_88 DRB1*04:04 DRB1*08:01

LP_89 DRB1*13:02 DRB1*14:01

LP_91 DRB1*04:07 DRB1*07:01

LP_92 DRB1*15:01 DRB1*15:01

LP_96 DRB1*03:01 DRB1*04:04

LP_98 DRB1*03:01 DRB1*03:02

LP_99 DRB1*03:01 DRB1*08:02

LP_105 DRB1*03:01 DRB1*15:01

LP_118 DRB1*14:02 DRB1*15:01

LP_120 DRB1*04:07 DRB1*08:02

LP_121 DRB1*01:01 DRB1*16:02

LP_123 DRB1*07:01 DRB1*13:01

LP_141 DRB1*01:02 DRB1*13:03

LP_151 DRB1*10:01 DRB1*14:02

LP_161 DRB1*03:01 DRB1*14:06

LP_169 DRB1*11:04 DRB1*15:01

LP_178 DRB1*04:02 DRB1*14:06

LP_180 DRB1*01:02 DRB1*03:01

LP_188 DRB1*04:02 DRB1*13:03

LP_194 DRB1*11:04 DRB1*14:06

LP_198 DRB1*04:07 DRB1*16:02

LP_203 DRB1*01:03 DRB1*16:01

LP_205 DRB1*03:01 DRB1*07:01

LP_208 DRB1*03:01 DRB1*11:02

LP_209 DRB1*08:01 DRB1*15:02

LP_210 DRB1*04:10 DRB1*15:01

LP_211 DRB1*01:02 DRB1*04:04

LP_212 DRB1*08:01 DRB1*15:02

LP_214 DRB1*11:04 DRB1*14:06

LP_231 DRB1*11:01 DRB1*11:01

LP_235 DRB1*01:02 DRB1*04:04

LP_238 DRB1*07:01 DRB1*11:04

LP_239 DRB1*07:01 DRB1*08:02

LP_242 DRB1*08:04 DRB1*14:06

LP_253 DRB1*04:04 DRB1*13:03

LP_258 DRB1*07:01 DRB1*14:02

LP_260 DRB1*14:01 DRB1*15:01

LP_263 DRB1*01:01 DRB1*03:01

LP_264 DRB1*04:03 DRB1*08:02

LP_265 DRB1*01:02 DRB1*13:01

LP_266 DRB1*04:03 DRB1*15:01

LP_267 DRB1*04:07 DRB1*16:01

LP_268 DRB1*04:01 DRB1*08:02

LP_270 DRB1*11:01 DRB1*16:01

LP_272 DRB1*08:04 DRB1*15:03

LP_273 DRB1*01:02 DRB1*04:07

LP_275 DRB1*03:01 DRB1*09:01

LP_277 DRB1*01:03 DRB1*01:03

LP_279 DRB1*13:02 DRB1*14:06

LP_280 DRB1*01:01 DRB1*01:01

(Continued)

TABLE 2 | Continued

Subject DRB1 Allele 1 DRB1 Allele 2

LP_282 DRB1*04:04 DRB1*12:01

LP_283 DRB1*13:04 DRB1*13:04

LP_284 DRB1*04:07 DRB1*07:01

LP_285 DRB1*03:02 DRB1*07:01

LP_289 DRB1*13:02 DRB1*13:04

LP_290 DRB1*04:01 DRB1*12:01

LP_292 DRB1*14:01 DRB1*15:01

LP_296 DRB1*11:01 DRB1*15:02

LP_297 DRB1*04:04 DRB1*04:07

LP_298 DRB1*04:11 DRB1*16:02

LP_299 DRB1*04:07 DRB1*08:03

LP_301 DRB1*09:01 DRB1*14:02

LP_302 DRB1*14:01 DRB1*15:01

LP_304 DRB1*01:02 DRB1*13:01

LP_305 DRB1*07:01 DRB1*14:01

LP_306 DRB1*11:04 DRB1*13:02

LP_307 DRB1*04:04 DRB1*08:02

LP_311 DRB1*08:02 DRB1*11:01

LP_312 DRB1*14:06 DRB1*15:01

LP_313 DRB1*07:01 DRB1*07:01

LP_314 DRB1*04:02 DRB1*04:02

LP_315 DRB1*13:02 DRB1*13:04

LP_317 DRB1*04:11 DRB1*11:01

LP_318 DRB1*04:04 DRB1*04:04

LP_320 DRB1*01:01 DRB1*16:02

LP_321 DRB1*04:02 DRB1*04:02

LP_323 DRB1*03:01 DRB1*13:02

LP_325 DRB1*12:01 DRB1*13:01

LP_326 DRB1*08:06 DRB1*11:01

LP_327 DRB1*14:02 DRB1*15:03

LP_328 DRB1*01:01 DRB1*11:04

LP_331 DRB1*04:07 DRB1*08:02

LP_332 DRB1*03:01 DRB1*04:03

LP_333 DRB1*04:01 DRB1*07:01

LP_334 DRB1*11:01 DRB1*15:01

LP_335 DRB1*01:02 DRB1*11:02

LP_336 DRB1*01:01 DRB1*04:01

LP_338 DRB1*03:01 DRB1*04:07

LP_340 DRB1*01:01 DRB1*15:01

LP_341 DRB1*01:02 DRB1*13:01

LP_342 DRB1*13:02 DRB1*15:01

LP_343 DRB1*04:01 DRB1*15:03

LP_344 DRB1*04:01 DRB1*07:01

LP_345 DRB1*01:02 DRB1*13:01

LP_346 DRB1*08:01 DRB1*11:01

LP_347 DRB1*13:01 DRB1*13:03

LP_349 DRB1*01:01 DRB1*13:02

LP_350 DRB1*11:04 DRB1*11:04

LP_351 DRB1*11:01 DRB1*13:02

LP_352 DRB1*04:01 DRB1*07:01

LP_353 DRB1*07:01 DRB1*11:01

(Continued)
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TABLE 2 | Continued

Subject DRB1 Allele 1 DRB1 Allele 2

LP_354 DRB1*07:01 DRB1*07:01

LP_355 DRB1*01:01 DRB1*13:02

LP_356 DRB1*04:07 DRB1*16:01

LP_359 DRB1*04:01 DRB1*07:01

LP_360 DRB1*01:03 DRB1*03:01

LP_361 DRB1*04:04 DRB1*13:01

LP_362 DRB1*08:04 DRB1*11:01

LP_363 DRB1*01:01 DRB1*11:04

LP_364 DRB1*09:01 DRB1*15:01

LP_365 DRB1*04:05 DRB1*08:02

LP_366 DRB1*03:01 DRB1*13:01

LP_367 DRB1*11:02 DRB1*13:02

LP_369 DRB1*01:01 DRB1*11:04

LP_372 DRB1*13:01 DRB1*13:02

LP_373 DRB1*03:01 DRB1*08:02

LP_375 DRB1*03:01 DRB1*04:02

LP_377 DRB1*01:01 DRB1*11:04

LP_378 DRB1*13:03 DRB1*16:01

LP_379 DRB1*04:04 DRB1*07:01

LP_381 DRB1*04:05 DRB1*12:02

LP_383 DRB1*01:02 DRB1*13:01

LP_384 DRB1*09:01 DRB1*13:02

LP_385 DRB1*10:01 DRB1*14:06

LP_386 DRB1*03:01 DRB1*04:11

LP_388 DRB1*03:01 DRB1*03:01

LP_389 DRB1*07:01 DRB1*07:01

LP_390 DRB1*01:01 DRB1*13:02

LP_391 DRB1*04:11 DRB1*13:02

LP_392 DRB1*01:01 DRB1*04:01

LP_393 DRB1*03:01 DRB1*09:01

LP_394 DRB1*03:01 DRB1*14:02

LP_395 DRB1*01:02 DRB1*15:03

LP_396 DRB1*04:05 DRB1*15:01

LP_397 DRB1*04:06 DRB1*15:01

LP_398 DRB1*01:02 DRB1*03:02

LP_399 DRB1*04:01 DRB1*15:01

LP_400 DRB1*01:02 DRB1*12:01

LP_401 DRB1*01:02 DRB1*11:02

LP_402 DRB1*09:01 DRB1*15:01

LP_403 DRB1*04:04 DRB1*07:01

LP_404 DRB1*07:01 DRB1*11:04

LP_405 DRB1*11:01 DRB1*13:04

LP_406 DRB1*07:01 DRB1*11:01

LP_407 DRB1*11:02 DRB1*13:02

LP_408 DRB1*03:01 DRB1*16:01

LP_409 DRB1*13:02 DRB1*16:02

LP_411 DRB1*07:01 DRB1*15:01

LP_412 DRB1*08:02 DRB1*16:02

LP_413 DRB1*04:02 DRB1*07:01

LP_414 DRB1*01:03 DRB1*03:01

LP_415 DRB1*11:01 DRB1*15:02

LP_416 DRB1*03:02 DRB1*08:02

LP_417 DRB1*08:03 DRB1*12:02

(Continued)

TABLE 2 | Continued

Subject DRB1 Allele 1 DRB1 Allele 2

LP_418 DRB1*09:01 DRB1*14:02

LP_419 DRB1*10:01 DRB1*11:01

LP_420 DRB1*13:01 DRB1*14:01

LP_421 DRB1*04:07 DRB1*15:01

Each sample is identified by a unique donor ID and has two HLA-DRB1 alleles identified.

I. The starting temperature is set to 1.
II. A random sample of size N is first selected by

the algorithm.
III. This sample is scored using the Jensen-Shannon Distance

(JSD) described above.
IV. C members of the sample are replaced with new subjects

from the available samples.
V. The subjects removed from the sample are put back into

the available samples.
VI. This sample is scored using the JSD.
VII. This new sample will be accepted if either of two criteria

are true:

i The new sample has a lower JSD score.
ii A number drawn from a uniform distribution, U (0,1),

is less than the current temperature.

VIII. The current temperature is multiplied by (1-α).
IX. Return to step 4 while the number of iterations is below the

target number of iterations.
X. Output an optimized sample to the user.

The algorithm is written in Python (14). All visualizations were
created in R Core Team (15) using the ggplot2 package (16) or in
Python using matplotlib (17).

Parameter Testing
The algorithm was run using the background population of
interest and available sample mentioned above. Sample sizes of
10, 20, 30, 40, 50, 75, and 100 were chosen from the available
sample of 159 subjects. The number of substitutions during each
iteration was all discrete values from 1 to 10. The number of
iterations test were: 102, 103, 104,105, and 106 with corresponding
values for α of: 0.2, 0.02, 0.002, 0.0001, and 0.00001. These values
of α were chosen to allow for the exponential decay of the
temperature over the respective number of iterations to approach
0 with sufficient speed.

It should be noted that parameters are highly sensitive to
the inputs given and it is often best to try a number of
combinations of parameters (as seen in section Optimizing
Number of Iterations, Size of Replacement Sub-set, and Cohort
Size for Simulated Annealing) to get the best results.

RESULTS

Workflow and Description of Computation
Tool
We have developed a computational tool that uses a bio-
repository of HLA typed cells, and a background distribution of
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FIGURE 1 | A description of the SampPick algorithm. The user inputs a background distribution, a set of available samples and/or a sample to test, and parameters

for the algorithm. The algorithm will proceed for the prescribed number of iterations, making substitutions to the samples chosen in order to obtain the sample closest

to the background distribution ranked by Jensen-Shannon Distance.

allelic frequencies in the global population or a sub-population
of choice. In this study we used an on-line catalog of HLA typed
frozen cells, ePBMC R© to evaluate the algorithm. The number
of unique donors in the catalog fluctuates; at the time of our
analysis there were cells from 159 unique donors listed who
had non-ambiguous HLA-DRB1 typing. The workflow of the
computational tool is illustrated in Figure 1 and described in the
sectionMethods. In our testing of the software, we first developed
trials to evaluate the parameters being used in the software. We
then present instructive examples that show a variety of uses for
this software.

Optimizing Number of Iterations, Size of
Replacement Sub-set, and Cohort Size for
Simulated Annealing
As illustrated in Figure 1, our computational tool selects a
cohort from the available pool of donors. The input parameters
for simulated annealing are an important factor in finding the
most compact, yet representative group of donors to use for an
experiment. Our algorithm was tested using different numbers
of iterations (100, 1000, 10000, 100000), various numbers of
substitutions made per iteration (from 1 through 10) and
different cohort sizes from 2 to 157.

The first parameter we evaluated is the number of iterations
the algorithm runs for. The JSD scores decrease as one allows the
algorithm to run longer. These extra iterations allow for more
fine-tuning of the cohort selection. However, there is a limit

to the usefulness of this fine-tuning and unnecessary iterations
increase in computational time (and costs). We found that 10,000
iterations are optimal (Figure 2A) and used this number for
evaluating the other parameters. It is important to note that the α

parameter is directly related to the number of iterations chosen.
An α needs to be chosen for each number of iterations such that
(1− α)i approaches 0 as i approaches the number of iterations.
The values we used, as shown in section 2.5 could be used as a
guideline for how quickly (1− α)i approaches 0.

Using test runs that all had 10,000 iterations, we evaluated the
number of changes allowed per iteration. In these tests we found
that the lowest JSD scores were obtained when there was only one
change made per iteration (Figure 2B).

The size of the cohort chosen is related to considerations
outside of the scope of this algorithm including cost, samples
availability, etc. We have assessed several different sample sizes
using these original parameters of 10,000 iterations with an α of
0.002 and one change per iteration (Figure 2C). The variation in
JSD scores in relation to sample size will be helpful for the user in
deciding on an appropriate sample size.

Performance of the Computational Method
and the Range of JSD Scores
Based on the results shown in Figure 2, the following parameters
were selected for evaluating the performance of our algorithm:
Cohort size (N) = 50; Replacement number per iteration (C)
= 1, number of iterations (I) = 10,000. Using our pool of 159
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FIGURE 2 | Optimizing SampPick’s input parameters. The JSD score was

calculated for 100 repetitions for each combination of: a sample size from

2–157, a number of iterations from 100 to 100,000, and a number of

substitutions per iteration from 1 to 10. (A) The number of iterations for all test

were compared and there is a clear decrease of scores as iterations increase.

The decrease in JSD scores appears to diminish at 10,000 iterations. (B)

Looking only at the tests with 10,000 iterations, the number of substitutions

per iteration was examined. Simply making one substitution per iteration

returned the lowest scores. (C) Looking at the tests with 10,000 iterations and

1 substitution per iteration, the JSD scores decrease as sample size increases.

At a sample size of 82, the JSD score increases as sample size increases.

subjects we randomly selected 10-million cohorts of 50 subjects
each. The JSD scores for these (compared to the frequencies of
HLA variants in the US population) are depicted in the histogram
in Figure 3. We also used the same pool of subjects to run our
algorithm to select 100 cohorts (of 50 subjects each). The mean
of the JSD scores for the cohorts selected by our algorithm (0.11)
was 7 standard deviations below the mean JDS scores for the
random samples. In addition, 1,000 random sets of 100 alleles,
drawn with replacement from the 30 most common in the North
American population, were generated and scored according to
JSD. These allele sets had the same number of alleles as a cohort of
50 donors, but the alleles were uniformly distributed with respect
to HLA type. These sub-sets were used as a negative control to
examine the scores of cohorts that were not drawn from the given
population distribution at all. These cohorts of random alleles
were found to have a higher JSD score than the random donor
cohorts, 0.365. This progression of shows that while the random
cohorts drawn from actual donors are more representative of the

population of interest, the optimized samples that result from our
algorithm are far better.

The frequencies of HLA alleles in the pool of 159
subjects compared to the frequencies of the same alleles
in the US population (Figure 3A) illustrate considerable
discrepancies. A much smaller cohort of 50 subjects drawn
from this pool using our algorithm however shows a far closer
match to the frequencies of HLA alleles in the population
(Figure 3B).

The Diminishing Returns of Increasing
Sample Size
One important utility of the SampPick algorithm is that not only
does it choose samples that more closely match the population
of interest, but it will often choose fewer samples than available
in the pool. Figure 2C shows the JSD scores from 25 runs of the
algorithm with sample sizes ranging from 2 to 157 (out of 159
available samples in the pool). It is not surprising that the JSD
scores decrease as sample size increases from 2 to ∼80. What
is crucial for the setup of experiments using a limited donor
pool such as this is that at a certain point the JSD score will
start to increase, tending toward the sub-optimal score of the
whole donor pool. Similar to the constraints imposed on a cohort
of extremely small sizes, where it is not possible to generate a
representative cohort with 2 to 7 subjects, larger cohorts with 152
or 157 samples are also constrained. In these almost complete
sub-sets of the whole donor pool, the algorithm is only able to
exclude small numbers of donors to match the population of
interest. Our approach therefore not only results in cohorts more
representative of the population but also (by limiting the size of
the cohort) saves cost, labor, and time.

Is There a Need for Our Computational
Method?
Assessing the Distribution of a Donor Cohort for an

ex vivo Study of Inhibitor Development to Factor VIIa

(FVIIa) Analogs Created to Reduce Immunogenicity
A cohort of 50 HLA-typed donors were used in T-cell
proliferation and ELISA assays to assess the T-cell responses of
three variants engineered to reduce the potential immunogenicity
of FVIIa (18). In this experiment, donors were manually
chosen with the intention of being representative of the
North American allelic distribution. As shown in Figure 4,
the optimized sample shows a closer match to the North
American allelic distribution than the samples selected by hand.
In addition to avoiding overrepresenting common alleles such
as HLA-DRB1∗15:01, HLA-DRB1∗13:02 and HLA-DRB1∗13:02,
the algorithm selects alleles such as HLA-DRB1∗04:02 and HLA-
DRB1∗04:03. The use of our algorithm caused a reduction of
JSD from 0.198244 in the hand-picked sample to 0.111660 in the
optimized sample.

Assessing a Cohort Used in a Clinical Study for

Association of HLAs With Neutralizing Antibodies to

Factor VIII (FVIII)
A cohort of 57 HLA typed subjects with Hemophilia A was used
in a study of neutralizing antidrug antibodies to FVIII (19). As
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FIGURE 3 | The range of Jensen-Shannon distances. (A) 10,000,000 random samples of 50 subjects were drawn from our pool of donors and their similarity to the

background distribution of North Americans was calculated using JSD (Orange) with a median value of 0.281. Additionally, 100 samples were created using our

optimization algorithm (Green). These 100 samples all had a sample size of 50 and were run using one substitution per iteration and 10,000 iterations. The scores

obtained using the algorithm were roughly 7 standard deviations below the mean of the scores for the random samples with a median score of 0.110. In addition,

1000 sets of completely random alleles were selected (Blue). These random sets, which were meant as a negative control, have a median score of 0.365. (B) The

frequency of alleles in the background distribution of alleles in the North American Population (blue) was compared to both the entire set of 159 subjects available (red)

and a smaller subset of 50 subjects selected by the algorithm (green). Although the optimized sample is much smaller than the available samples, it is much closer to

the desired distribution of alleles.

the study was conducted in the US, we estimated the JSD score
(0.29) between this cohort and the North American population
with respect to HLA-DRB1 allele frequency (Figure 5A). We
also generated 1,000,000 random samples of 57 subjects each
from the ePBMC samples to obtain a distribution of JSD scores
from this population. Since the population in the study and
the source of the ePBMC samples is similar (North American),
it is not surprising that the study population fit within this
distribution. We then ran our algorithm 100 times to create
optimized samples from the same pool of ePBMCs. These
optimized samples have a much lower JSD score when compared
to the allele frequencies in the North American population.
In addition to showing a global decrease in the JSD score
(Table 3), we also demonstrate that compared to the study
cohort our optimized cohort better matches the frequencies
of individual HLA variants in the North American population
(Figure 5B). Our analysis illustrates that the distribution of
HLA alleles in a typical clinical study is sub-optimal if

the aim is to have a cohort that is representative of the
general population.

Comparing the Distribution of HLA Variants in a

Biased Cohort, Randomly Selected Individuals, and a

Cohort Optimized Using SampPick
A study carried out in Iraq (20) recruited self-selecting
individuals from a hospital and not a randomly selected cohort.
This cohort has a much higher JSD score than the distribution of
JSD scores of 1,000,000 randomly selected 48 individual samples
from the ePBMC R© databank as compared to a background
distribution of Middle Eastern and North African donors due
to the inclusion of some very rare alleles (i.e., DRB1∗14:02)
(Figure 6A). An optimized cohort of 48 subjects had a lower JSD
score when compared to either the randomly selected subjects
or the subjects included in the study (Figure 6A). This analysis
provides another example where study subjects are sub-optimal
with respect to distribution of HLA variants (Figure 6B).
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FIGURE 4 | Optimizing selection of a hand-picked donor cohort. A cohort of 50 HLA-typed donors were used in a T-cell proliferation and ELISA assay to assess the

T-cell responses of three variants engineered to reduce the immunogenicity of a FVIIa. The frequency of each allele found in the assay is shown in black. The frequency

of each allele in the optimized sample is shown in blue. The frequency of each allele in the background distribution of alleles in the North American population is shown

in green. The use of our algorithm resulted in a reduction of JSD from 0.198244 in the hand-picked sample to 0.111660 in the optimized sample when each was

compared to the background distribution of HLA variants in the US population.

Evaluating the Distribution of HLA Variants in Cohort

of Subjects With Rheumatoid Arthritis (RA)

Using SampPick
A study by Lee et al. (21) evaluated 1364 HLA typed Korean
subjects, 744 patients with RA and 620 healthy controls.
Consistent with previous findings, this study demonstrated
an association between some HLA haplotypes and RA. We
computed the JSD scores for the HLA alleles in the patient
population and control subjects as well as a distribution of
theoretical samples drawn from the pool of alleles in the
population, weighted by allele frequencies found on the Allele
Frequencies Net Database (22, 23) (Figure 7A). While the large
sample sizes of these theoretical groups coupled with the fact
that they were drawn using the theoretical frequencies of the
background distribution should render a nearly perfect match,
the results show that they still have some distance from the
background distribution, with median scores of 0.062 and
0.067. The distribution of HLA alleles in both populations
deviated from the distribution of alleles in the Korean population
(JSD scores of 0.1289 and 0.2398 for the control and RA
populations, respectively) (Table 3). This finding is consistent
with our findings in Figures 4–6 and shows that the relative
frequencies of HLA variants in randomly picked individuals,
deviates from that found in the population. This bias could be due
to some bias in either the sample selected or in the background
distribution. However, the difference between the JSD scores
for the control and patient populations suggests that specific

alleles are represented in the patient population. Figures 7B,C
show that the differences in allelic distribution is due to large
discrepancies in certain HLA-DRB1 alleles in the RA cases as
compared to the Korean population that are not exhibited in
the controls.

DISCUSSION

In the last decade novel and critical medical interventions
have revolutionized the treatment of many devastating diseases.
Their immunogenic potential poses a critical safety and efficacy
threat. Therefore, immunogenicity needs to be considered at
every step of drug-development and licensure (8). For most
biologics, immunogenicity risk is evaluated thought clinical
trials, but the size of the trial (and donors for ex vivo non-clinical
immunogenicity assessments) can range from thousands of
patients to <100, depending on the disease. A critical unresolved
concern when setting up clinical trials is that adequate and
representativeHLA distribution is achieved so that the results can
be extrapolated to the affected population. Multiple studies have
shown that HLA alleles play a central role in the immunological
cascade and some immune responses are HLA-restricted (24).
TheHLA repertoire is themost diverse in the human genome and
different HLA alleles occur at different frequencies in different
human sub-populations (23). This is illustrated by the difference
in relative frequencies of HLA alleles between human ethnicities
(25, 26) disease conditions (27, 28), etc. Currently, given the
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difficulties of putting together a cohort that is representative of
the HLA repertoire, most studies do not even collect information
on the HLAs represented in the cohort. As shown above, based

FIGURE 5 | Optimizing a cohort with donors from the same sub-population as

the population of interest. (A) A cohort of 57 HLA typed subjects forming the

control group in a clinical study were analyzed using the algorithm. The study

population had a JSD score which fit within the normal bounds for a

population size of randomly selected donors from our available samples (red).

However, 100 samples of the same size (green) were created from the same

available samples using the algorithm. These optimized samples had a

significantly lower JSD score. (B) An analysis of one of these optimized

samples (blue) show that it is much closer in distribution to North American

Population (green) than study sample (gray).

on a JSD-score (see methods and results) the HLA distribution of
study subjects in some studies where HLA typing was performed
(Figures 4–7) was not representative of the population from
which the population was drawn. This is expected as we find
that the HLA distributions of as many as 700 randomly selected
individuals deviates from the distribution of HLA variants in
the same population to some degree (Figure 7A), but larger
trials are expensive, and can delay the access of patients
to drugs.

One proposed solution to the seemingly intractable problem
of generating a reasonably-sized cohort that includes HLA
variants at frequencies comparable to any desired population
is to use simulated annealing (29). As previously discussed,
self-section bias and the “healthy donor effect” (12, 30) will
cause for some bias in the available samples in a blood bank.
If a cohort of donors is selected from these biased samples,
the HLA allele distribution will closely match unknown, biased
population of blood donors rather than the target population.
To counteract this, samples can be compared to a known
distribution. We assume that the actual distribution of HLA
alleles in a population is known or can be estimated using larger
samples such as the Be the Match R© bone marrow donor registry
(13). By optimizing cohort selection to a known distribution,
rather than randomly sampling a biased sub-population, the
selected cohort of subjects will be a better match of HLA
type distribution.

For instance, we demonstrate an improvement in the JSD-
score for cohorts of 50 subjects selected using SampPick that
is 7 standard deviations below the mean score of 10-million
randomly selected cohorts of 50 each (Figure 3A). Importantly,
the cohorts of 50 generated using SampPick were constructed
from a pool of only 159 HLA typed donors. This indicates
that this tool can improve the HLA distribution efficiency
of subject selection even in the absence of large numbers of
available subjects.

A second advantage of the SampPick algorithm is the
ability to generate cohorts based on background distributions
of any type. As is seen in the case of RA patients in Korea,
the distribution of allele is different than the distribution in
healthy donors (Figures 7B,C). By using the frequencies in
this background distribution, one could use the algorithm
to select a donor cohort to more closely match Korean
RA patients. In this case, a chosen population would more
closely match the population of people who are receiving a
certain treatment.

TABLE 3 | A summary of studies that were analyzed in the testing of SampPick.

Study Size of background

distribution

Sample size in study Jensen Shannon distance

score of study population

Jensen Shannon distance score of

optimized cohort selection

FVII (18) 5,745,199 (13) 50 0.198 0.112

FVIII (19) 5,745,199 (13) 57 0.290 0.108

Psoriasis (20) 70890 (13) 90 0.603 0.168

RA Cases (21) 4280 (22) 744 0.240 N/A*

RA Controls (21) 4280 (22) 620 0.129 N/A*

Included are the size of the population used to create the sub-populations background distribution of alleles, the cohort size analyzed, and the JSD score of both the cohort analyzed

and the optimized cohort.

*These examples do not include optimized samples. They are examples of post-hoc analysis of two study samples.
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FIGURE 6 | Optimizing a cohort with donors from a different sub-population

as the population of interest. (A) A similar analysis was performed on the 90

HLA typed subjects who formed the control group of a study on the

relationship between HLA-DRB1 type and psoriasis in Iraq. The control

population being analyzed was not randomly selected and as such is very

different from a background distribution of Middle Easterners/North Africans

Donors in the United States. In addition, 1,000,000 million randomly selected

samples from a North American cohort of were selected and compared to this

same background distribution (red). One hundred optimized samples created

from these available North American samples (green) were much closer to the

target Middle Eastern/North African population even though they were chosen

from a group of general North American Donors. (B) The distribution of alleles

one of the optimized sample (blue) is much closer to the target background

distribution (green) than the control group in the study (gray).

A third advantage of the SampPick algorithm is the ability
to make donor cohorts the match a given subpopulation while
drawing from any donor pool. Two insights are gained from the
analysis of the cohort of patients from in Iraq (20) (section Is
There a Need for Our Computational Method?). First, the scores
of randomly chosen samples from a catalog of North American
donors is higher when compared to a background distribution
of alleles in a population of Middle Eastern/North African
donors, medians of 0.32 vs. 0.27 (Table 3); second, optimized
samples selected from North American donors, compared to
a Middle Eastern/North African background distribution, have
a higher score than optimized samples selected from North

American donors compared to the North American background
distribution. These results should be obvious as drawing a sample
from one distribution that would match a completely different
distribution by chance while possible; is extremely unlikely.
What is notable is that the samples from the catalog of North
American donors, optimized to match the Middle Eastern/North
African allelic frequencies outperformed random selections of
North American donors compared to the North American allelic
frequencies. This exhibits the flexibility in the allelic distribution
of donor pools while selecting a cohort matching a given sub-
population’s allelic distribution.

In clinical studies it may often be impractical to use HLA
typing as an acceptance or rejection criterion. In addition, specific
HLAs may be more frequent in certain disease populations.
Further, the risk of developing NABs varies for different
therapeutics. This makes it difficult to justify selection of subjects
based on their HLA. Nonetheless, as HLA typing becomes more
accessible, there is value in evaluating the HLA distribution in
the trial cohorts and any deviation between the study population
from the population that will be treated. This information can
contribute to the totality of the evidence used to evaluate the
immunogenicity risk of a therapeutic or a class of products,
which includes experience with similar proteins, presence of a
comparable endogenous protein, results from non-clinical ex
vivo studies, etc. Post-marketing, patients with HLA alleles not
included in the clinical study but adjudged high-risk based
on secondary non-clinical evidence could be monitored more
carefully, bringing us closer to personalized medicine.

Another potential application of SampPick is during the
development of generic peptides. Peptides smaller than 40
amino acids are considered small molecule drugs and not
biologics. In the US, once regulatory protection expires, it may
be possible to develop generic copies of synthetic peptides,
however; concern about their immunogenicity potential can
preclude their licensing in the absence of clinical trials. In
some instances, when the immunogenicity of the product is
well-understood, bio-analytical studies can provide sufficient
information to establish that the generic versions do not pose
an increased immunogenicity risk in the absence of clinical
trials (5). Such approaches require multiple bioanalytical, in
silico, and in vitro immunological assessments and commonly
include assays (e.g., ELISpot assays, T-cell proliferation assays
and DC-T assays) that use human PBMC (10). To ensure that
these methods provide a meaningful assessment of clinical risk
it would be advantageous to use cells from a cohort of donors
that is representative of the population that will receive the
drug. Such a cohort can be aided by using SampPick to select
the donors. Catalogs of banked HLA typed blood and PBMC
samples are readily available and we have demonstrated that it
is possible to use one such catalog with a listing of 159 donors
to generate a cohort of 50 with HLA frequencies comparable
to those observed in the US population (Figure 4). Finally,
it is increasingly recognized that some HLAs are associated
with specific diseases (28) and can have an impact on the
responses to medications (31, 32). In studies designed to identify
or validate such associations SampPick could prove to be a
useful tool.
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FIGURE 7 | Comparing case and control samples to a sub-population without using optimization. (A) An analysis of the relationship between HLA-DRB1 alleles and

rheumatoid arthritis (RA) cases in Korean patients show another use for this program. Similarly, sized samples were made for both the 744 RA cases (red) and 620

controls (blue) based on the distribution of HLA-DRB1 Alleles in the Korean population. These samples were created by drawing random alleles from the background

population weighted by the calculated frequencies and are expected to be very similar to the background distribution. These samples still have some distance from

the background distribution. (median scores of 0.062 and 0.067, respectively). The control (blue dashed line) is much closer to the background distribution than the

cases (red dashed line) indicating that the control group is a better match to the background distribution. (B,C) While (A) shows that there is a difference between the

cases and control groups, output from SampPick show that the frequency distribution of the control group (B, green) match up with the background distribution of

alleles in the Korean population (B, gray). The over-representation of certain alleles in the cases group (C, green), specifically DRB1*04:05 and DRB1*09:01 is easily

identifiable in this graph.

One potential drawback to SampPick is that it is used on
a single feature in our test cases, HLA-DRB1. This is not a
problem when working under the assumption that there is
a genotype that is the main driver of a systemic response;
however, this could be an issue when using this method in
other situations. For instance, it has been demonstrated (33)
that for peptides derived from the Dengue Virus the overall
magnitude of CD4+ T cell responses is higher in HLA-DRB1
compared to other HLA class II alleles. However, when antigens
(proteins) encoded by the Dengue polyprotein were tested, for
some of the proteins the magnitude of CD4+ T cell response
was higher for HLA-DQ or HLA-DP. Thus, in designing
experiments for cases where alleles other than HLA-DRB1 are

of interest our software allows addition of a functionality for
the creation of individual features describing combinations of
multiple alleles. This extension of the software is described in the
documentation and enables the users to optimize populations for
other biallelic traits, haplotypes or phenotypic traits which may
find applications in pharmacogenomic studies. It is worth noting
that the increasingly smaller joint frequencies of combinations
of alleles or traits will most likely require larger sample sizes to
ensure adequate coverage of genotypic combinations.

Additionally, the efficacy of this algorithm is dependent on
the sample from which to draw from. While we have shown that
cohorts with HLA distributions representing racially different
populations can be created using the same pool of donors, it is
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preferable to use a pool of donors that is similar to the desired
population. This is shown in the comparison of the two examples
of sample optimization (Figures 6A, 7A). A sample of North
American donors was used to generate two cohorts: (i) Matching
the HLA distribution of the North American population and
(ii) matching the HLA distribution of the Middle Eastern/North
African population. We obtained lower JSD scores for the former
compared to the latter (0.108 vs. 0.168).

In summary, we have described the development of a
computational tool, SampPick, that can be used to assess the
distribution of HLA frequencies in cohort of subjects as well
as to generate a cohort that is closely matched vis-à-vis HLA
frequencies to a target population. We have also provided several
examples showing that SampPick could prove useful during the
selection of patients or blood donors to improve the development
of protein therapeutics, therapies that target the immune system
and in clinical studies that evaluate these products. The use of this
tool can facilitate the translation of results from ex-vivo studies
and clinical trials to the patient population.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

JM and OY conceptualized and designed the study under the
supervision of HY and ZS. Data acquisition was performed by
JM and OY. Software and data visualizations were created by JM.

Writing of the original draft was performed by DV, JM, OY, and
ZS. Editing and review of the manuscript was performed by DV,
JM, HY, OY, and ZS.

FUNDING

This project was supported in part by an appointment to
the Research Participation Program at CBER, US Food
and Drug Administration, administered by the Oak
Ridge Institute for Science and Education through an
interagency agreement between the US Department of Energy
and FDA.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Loren Gragert for
helpful discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2019.02894/full#supplementary-material

Software is available for download at: https://www.github.
com/fda/SampPick.

Supplementary Table 1 | The weighted and scaled frequencies of HLA-DRB1

variants in the North American population.

REFERENCES

1. Philippidis A. Top 15 best-selling drugs of 2018. Genet Eng Biotechnol News.

(2019) 39:16–17. doi: 10.1089/gen.39.04.07

2. Mahlangu JN, Weldingh KN, Lentz SR, Kaicker S, Karim FA, Matsushita T,

et al. Changes in the amino acid sequence of the recombinant human factor

VIIa analog, vatreptacog alfa, are associated with clinical immunogenicity. J

Thromb Haemost. (2015) 13:1989–98. doi: 10.1111/jth.13141

3. Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ, Martin-Dupont P,

et al. Pure red-cell aplasia and antierythropoietin antibodies in patients

treated with recombinant erythropoietin. N Engl J Med. (2002) 346:469–75.

doi: 10.1056/NEJMoa011931

4. Ridker PM, Tardif JC, Amarenco P, Duggan W, Glynn RJ, Jukema

JW, et al. Lipid-reduction variability and antidrug-antibody

formation with bococizumab. N Engl J Med. (2017) 376:1517–26.

doi: 10.1056/NEJMoa1614062

5. US Food and Drug Administration. ANDAs for Certain Highly Purified

Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA

Origin, Guidance for Industry. Silver Spring, MD: US Food and Drug

Administration (2017).

6. Kalden JR, Schulze-Koops H. Immunogenicity and loss of response to

TNF inhibitors: implications for rheumatoid arthritis treatment. Nat Rev

Rheumatol. (2017) 13:707–18. doi: 10.1038/nrrheum.2017.187

7. Rosenberg AS, Sauna ZE. Immunogenicity assessment during the

development of protein therapeutics. J Pharm Pharmacol. (2018) 70:584–94.

doi: 10.1111/jphp.12810

8. Sauna ZE, Lagasse D, Pedras-Vasconcelos J, Golding B, Rosenberg AS.

Evaluating andmitigating the immunogenicity of therapeutic proteins. Trends

Biotechnol. (2018) 36:1068–84. doi: 10.1016/j.tibtech.2018.05.008

9. US Food and Drug Administration. Immunogenicity Assessment for

Therapeutic Protein Products. US Food and Drug Administration (2014).

10. Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De

Groot AS. T-cell dependent immunogenicity of protein therapeutics:

Preclinical assessment and mitigation. Clin Immunol. (2013) 149:534–55.

doi: 10.1016/j.clim.2013.09.006

11. Williams TM. Human leukocyte antigen gene polymorphism and

the histocompatibility laboratory. J Mol Diagn. (2001) 3:98–104.

doi: 10.1016/S1525-1578(10)60658-7

12. Golding J, Northstone K, Miller LL, Davey Smith G, Pembrey M. Differences

between blood donors and a population sample: implications for case-control

studies. Int J Epidemiol. (2013) 42:1145–56. doi: 10.1093/ije/dyt095

13. Gragert L, Madbouly A, Freeman J, Maiers M. Six-locus high resolution

HLA haplotype frequencies derived from mixed-resolution DNA typing

for the entire US donor registry. Hum Immunol. (2013) 74:1313–20.

doi: 10.1016/j.humimm.2013.06.025

14. Python Core Team. Python: A Dynamic, Open Source Programming Language.

Amsterdam: Python Software Foundation (2015). Available online at: https://

www.python.org

15. R Core Team. R: A Language and Environent for Statistical Computing.

Vienna: R Foundation for Statistical Computing (2019). Available online at:

https://www.R-project.org/

16. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York, NY:

Springer-Verlag (2016). doi: 10.1007/978-3-319-24277-4_9

17. Hunter J. Matplotlib: a 2D graphics environment. Comput Sci Eng. (2007)

9:90–5. doi: 10.1109/MCSE.2007.55

18. Jankowski W, McGill J, Lagasse HAD, Surov S, Bembridge G,

Bunce C, et al. Mitigation of T-cell dependent immunogenicity by

reengineering factor VIIa analogue. Blood Adv. (2019) 3:2668–78.

doi: 10.1182/bloodadvances.2019000338

19. Kempton CL, Payne AB. HLA-DRB1-factor VIII binding is a risk factor for

inhibitor development in nonsevere hemophilia: a case-control study. Blood

Adv. (2018) 2:1750–5. doi: 10.1182/bloodadvances.2018019323

Frontiers in Immunology | www.frontiersin.org 13 December 2019 | Volume 10 | Article 2894

https://www.frontiersin.org/articles/10.3389/fimmu.2019.02894/full#supplementary-material
https://www.github.com/fda/SampPick
https://www.github.com/fda/SampPick
https://doi.org/10.1089/gen.39.04.07
https://doi.org/10.1111/jth.13141
https://doi.org/10.1056/NEJMoa011931
https://doi.org/10.1056/NEJMoa1614062
https://doi.org/10.1038/nrrheum.2017.187
https://doi.org/10.1111/jphp.12810
https://doi.org/10.1016/j.tibtech.2018.05.008
https://doi.org/10.1016/j.clim.2013.09.006
https://doi.org/10.1016/S1525-1578(10)60658-7
https://doi.org/10.1093/ije/dyt095
https://doi.org/10.1016/j.humimm.2013.06.025
https://www.python.org
https://www.python.org
https://www.R-project.org/
https://doi.org/10.1007/978-3-319-24277-4_9
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1182/bloodadvances.2019000338
https://doi.org/10.1182/bloodadvances.2018019323
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


McGill et al. Matching Sample Cohorts to Subpopulation

20. Zalzala HH, Abdullah GA, Abbas MY, Mohammedsalih HR, Mahdi BM.

Relationship between human leukocyte antigen DRB1 and psoriasis in Iraqi

patients. Saudi Med J. (2018) 39:886–90. doi: 10.15537/smj.2018.9.23156

21. Lee HS, Li W, Lee A, Rodine P, Graham RR, Ortmann WA, et al.

Microsatellite typing for DRB1 alleles: application to the analysis of HLA

associations with rheumatoid arthritis. Genes Immun. (2006) 7:533–43.

doi: 10.1038/sj.gene.6364325

22. Huh JY, Yi DY, Eo SH, Cho H, Park MH, Kang MS. HLA-A, -B and -DRB1

polymorphism in Koreans defined by sequence-based typing of 4128 cord

blood units. Int J Immunogenet. (2013) 40:515–23. doi: 10.1111/iji.12067

23. Faviel González-Galarza F, Louise Takeshita YC, Eduardo Santos JM,

Kempson F, Maria Helena Maia T, et al. Allele frequency net 2015 update: new

features for HLA epitopes, KIR and disease and HLA adverse drug reaction

associations. Nucleic Acids Res. (2014) 43: D784–8. doi: 10.1093/nar/gku1166

24. De Groot AS, Scott DW. Immunogenicity of protein therapeutics.

Trends Immunol. (2007) 28:482–90. doi: 10.1016/j.it.2007.

07.011

25. Bergstrom TF, Josefsson A, Erlich HA, Gyllensten U, Recent origin of HLA-

DRB1 alleles and implications for human evolution. Nat Genet. (1998) 18:237–

42. doi: 10.1038/ng0398-237

26. Buhler S, Sanchez-Mazas A. HLA DNA sequence variation among human

populations: molecular signatures of demographic and selective events. PLoS

One. (2011) 6:e14643. doi: 10.1371/journal.pone.0014643

27. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J,

et al. A high-resolution HLA and SNP haplotype map for disease association

studies in the extended human MHC. Nat Genet. (2006) 38:1166–72.

doi: 10.1038/ng1885

28. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat

Rev Immunol. (2018) 18:325–39. doi: 10.1038/nri.2017.143

29. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated

Annealing. Read Computer Vis. (1983) 220:671–80. doi: 10.1126/science.220.

4598.671

30. Atsma F, Veldhuizen I, Verbeek A, de KortW, de Vegt F. Healthy donor effect:

its magnitude in health research among blood donors. Transfusion. (2011)

51:1820–28. doi: 10.1111/j.1537-2995.2010.03055.x

31. Bharadwaj M, Illing P, Theodossis A, Purcell AW, Rossjohn J, McCluskey

J. Drug hypersensitivity and human leukocyte antigens of the major

histocompatibility complex. Annu Rev Pharmacol Toxicol. (2012) 52:401–31.

doi: 10.1146/annurev-pharmtox-010611-134701

32. Mosaad YM. Clinical role of human leukocyte antigen in health

and Disease. Scand J Immunol. (2015) 82:283–306. doi: 10.1111/sji.

12329

33. Grifoni, Moore E, Voic H, Sidney J, Phillips E, Jadi R, et al. Characterization

of magnitude and antigen specificity of HLA-DP, DQ, DRB3/4/5 restricted

DENV-specific CD4+ T cell responses. Front Immunol. (2019) 10:1568.

doi: 10.3389/fimmu.2019.01568

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 McGill, Yogurtcu, Verthelyi, Yang and Sauna. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Immunology | www.frontiersin.org 14 December 2019 | Volume 10 | Article 2894

https://doi.org/10.15537/smj.2018.9.23156
https://doi.org/10.1038/sj.gene.6364325
https://doi.org/10.1111/iji.12067
https://doi.org/10.1093/nar/gku1166
https://doi.org/10.1016/j.it.2007.07.011
https://doi.org/10.1038/ng0398-237
https://doi.org/10.1371/journal.pone.0014643
https://doi.org/10.1038/ng1885
https://doi.org/10.1038/nri.2017.143
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1111/j.1537-2995.2010.03055.x
https://doi.org/10.1146/annurev-pharmtox-010611-134701
https://doi.org/10.1111/sji.12329
https://doi.org/10.3389/fimmu.2019.01568
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	SampPick: Selection of a Cohort of Subjects Matching a Population HLA Distribution
	Introduction
	Methods
	Obtaining the Background Distribution of HLA DRB1 Alleles
	The Source of HLA Typed Donors
	The Jensen-Shannon Distance
	Simulated Annealing
	Parameter Testing

	Results
	Workflow and Description of Computation Tool
	Optimizing Number of Iterations, Size of Replacement Sub-set, and Cohort Size for Simulated Annealing
	Performance of the Computational Method and the Range of JSD Scores
	The Diminishing Returns of Increasing Sample Size
	Is There a Need for Our Computational Method?
	Assessing the Distribution of a Donor Cohort for an ex vivo Study of Inhibitor Development to Factor VIIa (FVIIa) Analogs Created to Reduce Immunogenicity
	Assessing a Cohort Used in a Clinical Study for Association of HLAs With Neutralizing Antibodies to Factor VIII (FVIII)
	Comparing the Distribution of HLA Variants in a Biased Cohort, Randomly Selected Individuals, and a Cohort Optimized Using SampPick
	Evaluating the Distribution of HLA Variants in Cohort of Subjects With Rheumatoid Arthritis (RA) Using SampPick


	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


