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In recent years, an aberrant gastrointestinal colonization has been found to be associated

with an higher risk for postnatal sepsis, necrotizing enterocolitis (NEC) and growth

impairment in preterm infants. As a consequence, the reasons of intestinal dysbiosis in

this population of newborns have increasingly become an object of interest. The presence

of a link between the gut and lung microbiome’s development (gut-lung axis) is emerging,

andmore data show as a gut-brain cross talkingmediated by an inflammatory milieu, may

affect the immunity system and influence neonatal outcomes. A revision of the studies

which examined gut and lung microbiota in preterm infants and a qualitative analysis

of data about characteristic patterns and related outcomes in terms of risk of growing

impairment, Necrotizing Enterocolitis (NEC), Bronchopulmonary Dysplasia (BPD), and

sepsis have been performed. Microbiota take part in the establishment of the gut barrier

and many data suggest its immune-modulator role. Furthermore, the development of

the gut and lung microbiome (gut-lung axis) appear to be connected and able to lead

to abnormal inflammatory responses which have a key role in the pathogenesis of BPD.

Dysbiosis and the gut predominance of facultative anaerobes appear to be crucial to the

pathogenesis and subsequently to the prevention of such diseases.

Keywords: gut microbiota, lung microbiota, preterm infants’ outcomes, gut-lung axis, late-onset sepsis,

necrotizing enterocolitis, growth impairment, bronchopulmonary dysplasia

INTRODUCTION

All of themicroorganisms that inhabit the human body constitutes the so-called humanmicrobiota.
The Human Microbiota Project was launched in 2008 to deepen our understanding of how the
microbiome (the whole set of microorganisms, their genomes and the environmental conditions)
influences human health and diseases. 16S ribosomal RNA (16S rRNA) sequencing allows
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characterizing the complexity of the microbial population to
study whether there is an “healthy microbiota” and potential
implications of different patterns (1).

The importance of gut microbiome is due to the role it
plays as a major interface to the external environment: it
contemporarily protects against pathogens and toxins while
housing beneficial commensal bacteria which are pivotal to
maintain homeostasis, support digestion, protect from injury,
regulate intestinal immune function (2).

Some studies (3, 4) show that at birth infants are nearly sterile
but they subsequently acquire microbial colonists. This process
progresses in the first 2–3 years of life, until reaching an “adult-
like state.” In at term newborns this evolution appears to be
driven by nutritional, immunological, hormonal and prebiotic
effect of maternal milk (5).

It is difficult to identify a “healthy” microbiota of a population
such that of preterm infants. The preterm birth is a non-
physiological condition, exposed tomany early life clinical factors
that alter the normal colonists acquisition process (6, 7).

The early life can be defined as a “critical window” during
which the occurrence of dysbiosis can impact the health of
preterm infants, especially influencing the developing immune
systems (8–10).

Moreover, Olm et al. (11) underlined as our understanding
of the habitat range and subpopulation complexity of founding
strains is impaired by methodological limitations. These authors
compared the in situ bacterial growth rates of multiple body sites
by usingmetagenomics to reconstruct the genomes of strains that
colonized the skin, mouth, and gut of two hospitalized premature
infants. The results show an overlap of strains across body sites
and imply that the premature infant microbiome is characterized
by a low total microbial diversity of the early community when
compared to full-term infants.

Anyway, in recent years, many studies regarding the features
of gut and lung microbiota of preterm infants have followed.

Gut Microbiota in Preterm Infants
Altought newborns’ gut was thought to be sterile and commensal
microbes only acquired after birth, recently growing evidences
seem to suggest that non-sterile intrauterine conditions could be
the origin of this acquisition: Aagard et al. performed a whole-
genome shotgun metagenomic study of placental specimens.
Their results showed a unique placental microbial flora that
comprises non-pathogenic commensal microbes belonging to
the Tenericutes, Firmicutes, Bacteroidetes, Proteobacteria, and
Fusobacteria phyla (12); Collado et al. reported that the amniotic
fluid hosts a distinct microbial community characterized by a
predominance of Proteobacteria (13).

Moreover, a recent microbial profiling study based on 16S
rRNA sequencing shows that regardless of the delivery mode, the
microbial population in the meconium is influenced by that in
the correspondent maternal placenta (14).

Vaginally delivered newborns directly come into contact
with vaginal microbial population and their fecal microbiota
is dominated by Prevotella and Lactobacillus (15, 16) while
newborns delivered by cesarean section are more likely to have
a microbiota dominated by microbes derived from maternal

skin, hospital environment and even hospital staff such as
Corynebacterium, Staphilococcus and Propionibacterium spp. (6,
16–18). It is also well-known that neonatal gut microbiota is
strongly influenced by food intake: stools of breast-fed are
richer of Lactobacilli and Bifidobacteria and poorer of potential
pathogens than formula-fed newborns whose stools contain a
more diverse microbial flora with a prevalence of Bacteroides,
Staphilococci, Clostridia, Enterococci, Enterobacteria (19–22).

Gestational age is another pivotal influencing factor, for
different orders of reasons: preterm infants have immature
gastrointestinal and immune systems; they are precociously
exposed to extensive use of antibiotics and often long term
hospitalized; they need mechanical ventilation and usually
receive parenteral nutrition. Each one of these conditions
may produce irreversible change into the natural process of
colonization and development of the gut microbiota (23).

Particularly, in these newborns anaerobic colonization is
delayed and their stools host higher levels of Enterobacteriaceae,
Enterococcus, and opportunistic pathogens if compared with
term newborns (24–29).

Recently, Tauchi and colleagues described a delayed
Bifidobacteriaceae colonization, underlining the role of
Bifidobacterium as probiotic to induce “normal” infant
microbiota. Their data also suggest a longer predominance
of Staphilococcacae in preterm infants with an increased risk
of potentially pathogenetic methicillin resistant Staphylococcus
aureus colonization in NICU infants (30).

Korpela et al. (31) performed a study on fecal samples
from 45 preterm infants, in order to identify a pattern of
development of the intestinal microbiota. Four phases were
identified with a pattern of progression to a Bifidobacterium-
dominated composition typical of the full-term non-hospitalized
newborns. This normal-like microbiota development correlated
with post-menstrual age, was achieved also in cesarean-delivery
newborns and was favorited by administration of breast milk.
Moreover, these authors observed as among the extremely
premature infants the overgrowth of Enterococcus spp. inhibit
the normal succession, while antibiotics administration causes
temporary changes in intestinal microbiota composition that
subsequently recovers after few days.

Table 1 summarizes different categories of typical gut
microbial pattern that can be found in healthy newborns. The
principal variables that can affect the rising abundance of a
population over another are reported and it is clearly showed as
there’s not a single typical healthy microbiota, but gut microbiota
is rather a spectrum, result of all the combination of variables that
coexist in an infant.

Lung Microbiota in Preterm Infants
Lungs have historically been considered sterile in healthy people
so that they were initially omitted from the priority organ
system studied by the Human Microbiome Project; subsequent
culture independent studies demonstrated that lungs host diverse
communities of bacteria and the interest in this new field rapidly
grew since the linkage of different microbiomes with specific
respiratory diseases was observed (32).
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TABLE 1 | Summary of different categories of typical gut microbial pattern that

can be found in healthy newborns.

Gut characteristic bacterial populations in

healthy newborns

Term neonates Lactobacillus, Bifidobacterium

Preterm neonates Enterobacteriaceae, Veillonella, Enterococcus,

Staphylococcus

Breast feed Lactobacillus, Bifidobacterium

Formula feed Bacteroides, Staphylococcus, Clostridia,

Enterococcus, Enterobacteria

Vaginally delivered Prevotella, Lactobacillus

C-section Corynebacterium, Staphylococcus, Propionibacterium

We report the principal variables that can affect the rising abundance of a population

over another: the correspondence may concern either a genus (such as Staphylococcus),

either a family (such as Enterobacteriaceae). It clearly shows that there’s not a single typical

healthy microbiota, but gut microbiota is rather a spectrum, result of all the combination

of variables that coexist in an infant.

Sampling from lungs and distal airways represents a major
challenge in neonatal population because of low biomass with
bacterial loads close to the detection limit of the assays and for
the risk of contamination from upper airways (33).

Timing of colonization is debated. Mourani and colleagues
noted that only 2 of 10 tracheal aspirates of intubated preterm
infants contained detectable bacterial DNA in the first 72 h of
life, whereas all samples from the same newborns were positive
at day 7 (34). In contrast, Lohmann et al. reported that bacterial
DNA was detectable in all tracheal aspirates taken immediately
after intubation at day 1 of life from 25 preterm newborns (35) so
that it appears that colonization of the airways begins very early
or even before the delivery.

The development of lung microbiota in the preterm
infant can be affected by several factors: first of all, maternal
chorioamnionitis (which is a pivotal cause of premature
birth); then exposure to mechanical ventilation, antibiotics,
NICU environmental microbial population, feeding, gut
microbiota composition.

An aberrant gastrointestinal colonization has been found to
be associated with a higher risk for postnatal sepsis, necrotizing
enterocolitis (NEC) and growth impairment in preterm infants.
As a consequence, the reasons of intestinal dysbiosis in this
population of newborns have increasingly become an object
of interest.

Moreover, recently, there’s a rising attention to the so-called
“gut-lung axis.” The presence of a link between the gut and
lung microbiome’s development is emerging. Gut and lung
microbiota are known to be pivotal in the education of host
immune system, as reported by Dang et al. (36). Both microbes
and their products participate to this complex interaction.
The intricate relationship between gut and lung microbiota
is testified by the bidirectional association of gut dysbiosis
with lung disease: Kalliomaki et al. (37) already observed an
increased abundance of Clostridia and reduced Bifidobacteria
in the gut of infants who developed early life asthma; the
review by Dang (36) also shows evidences of gastrointestinal
perturbations in patients with chronic lung disease. The “mucosal
response theory “reported by Gallacher and Kotecha (33) implies

that dendritic cells (DCs) in the intestine come into contact
with the resident microbial population; it generates signals that
result in phenotypic changes in the DCs which migrate to the
mesenteric lymph nodes where they stimulate the production of
regulatory cytokines such as IL-10, TGF-beta, INF-gamma, and
IL-6. In the mucosa-associated lymphoid tissue, DCs present the
bacterial derived antigens to T-cells, leading to their activation.
T cells then acquire homing molecules like chemokine receptor
4 (CCR-4) and chemokine receptor 6 (CCR-6). Moreover, the
activated T cells can reach the respiratory mucosa where they
promote protective and anti-inflammatory responses. Other
mechanisms of interaction have been highlighted: Short Chain
Fatty Acids (SCFA), gut microbioma derived metabolites, have
a kay role; they reach the blood stream and come to the
bone marrow were they promote hematopoiesis stimulating
the differentiation of the Hematopoietic Stem Cells (HSCs)
toward an anti-inflammatory milieu which migrates in the
airways (36).

More data show that an impairment of the lung microbiota
could be implicated in the pathogenesis of BPD.

These new evidences are increasingly interesting, since the
manipulation of maternal microbiota (during or even before
pregnancy) might influence the pregnancy outcome and the
fetal/infantile health.

OBJECTIVES

We evaluated the studies that examined gut and lung microbiota
in preterm infants and summarized emerging evidences. Our
objective was to perform a qualitative analysis of data about
characteristic patterns leading to dysbiosis in different body sites
and to evidence the actual knowledge of the role of dysbiosis
on preterm infants’ outcomes such as growing impairment,
Necrotizing Enterocolitis (NEC), Bronchopulmonary Dysplasia
(BPD) and sepsis.

MATERIALS AND METHODS

In order to identify papers considered in this qualitative
review, we performed a literature search on PubMED. The
research has been restricted to papers in English language. We
limited the search by applying the filter of age “infants” and
used the following search terms and logic: “preterm infants
microbiota,” “gastrointestinal microbiome AND Necrotizing
Enterocolitis OR NEC,” “breastfeeding AND enteral nutrition
AND Necrotizing Enterocolitis OR NEC,” “microbiota AND
growth retardation,” “intestinal microbiota AND weight gain,”
“intestinal microbiota AND growth,” “gut microbiota AND
extrauterine growth restriction,” “preterm infants microbiota
AND late onset sepsis OR LOS,” “microbiota ORmicrobiome OR
bacteria OR antibiotics OR gut AND lung OR airway OR BPD
OR Bronchopulmonary Dysplasia,” and “gut-lung axis.” No limit
about year of publication has been set, and the final search is
updated to July 2019.

To identify any articles that may have been missed during the
literature search, also reference lists of candidate articles have
been carefully checked.

Frontiers in Immunology | www.frontiersin.org 3 December 2019 | Volume 10 | Article 2910

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tirone et al. Microbiota and Preterm Infant’s Outcomes

DISCUSSION

The Preterm Gut Microbiota and Growing
Impairment
Postnatal growth failure is a frequent adverse outcome in preterm
infants that occurs during a critical developmental period. The
study of the extrauterine growth rates of extremely preterm
(EPT) infants (i.e., birth gestational age ≤27 weeks) show that
approximately half of those infants remain below the 10th
percentile in weight of the reference in utero growth rates, at the
time of neonatal intensive care unit (NICU) discharge (38, 39).

Gut microbiota, gastrointestinal tract, and immune system
maturation appear to be affected by prematurity and nutrition.
Particularly, the gut microbiota, with its distinct metabolic
capacities, plays a role in the metabolism of dietary components,
which appear to be indispensable for the host. Many factors
are involved in the variation of gut microbiota in preterm
infants, such as the hospital environment of the NICU and its
associated common clinical practices and feeding regimens, with
subsequent direct and indirect interference with energy harvest
and storage, and thereby with weight gain (40–42). Indeed, the
gut microbiota, with its complementary metabolic capacity to
human gastrointestinal enzymes, is able to provide the host with
nutrients and energy otherwise unavailable (43). It also interferes
with the host body weight management (40, 44–46) by producing
metabolites and by affecting the harvest, storage, and expenditure
of energy from food components (43, 47).

The association between the gut microbiota, growth, and

development in early life has been investigated by some studies

in preterm infants (41). Of particular interest is the study of

Grier et al. (42). These authors identified in preterm infants

three phases (P1, P2, and P3) that correspond to the three states
of the microbiota with distinct metabolic functions. Significant
associations were found between nutrition, microbiota phase,
and preterm infant growth (42). The microbiota analysis showed
that P1 is associated to a low level of initial diversity with a
predominance of facultative anaerobes. The transition out of P1,
which could be identified with transition from meconium to
normal postnatal stool, was characterized by increasing diversity
and abundance of obligate anaerobes with a shift to fermentation-
based metabolism in P3. A role of Paneth cells (PCs) AMPs
in the modulation of the shift toward a community dominated
by obligate anaerobes was suggested by the increase in the
number of PC around a post-menstrual age (PMA) of 29 weeks,
corresponding to the transition from P2 to P3. According to
others studies (48, 49), Bifidobacterium, an Actinobacterium
involved in the development and maintenance of the healthy
infant gut microbiota, was significantly associated with lipid
and protein intake in P3 as testified by its increased abundance
with increased lipid in the diet and decreased abundance with
greater amounts of protein. Moreover, an increased abundance
of Bifidobacterium was also significantly associated with the use
of corticosteroids and H2 receptor antagonists in P3. In addition,
Proteobacteria resulted significantly associated with lipid intake,
Firmicutes with protein and Actinobacteria, Proteobacteria, and
Firmicutes with carbohydrates (42).

In contrast to these findings, in the study of Blankstad
et al. (50), where the relationship between a fortified diet
(with more energy, protein, fat, vitamin A, arachidonic acid
and docosahexaenoic acid) and the intestinal microbiota
development has been evaluated, Bifidobacterium was more
represented among infants with standard nutrient supply and it
was associated with an improved weight gain and, consequently,
with overall better growth. Anyway, the authors postulated
that the lower abundance of this bacterial genus in infants
receiving the “fortified” nutrient supply could be explained as
a consequence of a concomitant greater abundance of other
microbes, and not necessarily less Bifidobacterium as a direct
effect. Moreover, in this study (50), while the initial richness
after birth did not appear to be influenced by nutrition, the
maintenance of richness was observed only in the preterm infants
who were fed with the fortified diet if compared with the standard
nutrient supply. After the postnatal peak, all infants showed a
decreased of microbial diversity, regardless of diet fortification.

Specific bacterial families and genera resulted to be associated
with weight gain at 1 month of age also in the study of
Arboleya et al. (41), with a correlation of growth rates and
the levels of Enterobacteriaceae and Streptococcus at 2 days
of age and of Bacteroides-group at 10 days of age. Moreover,
some bacterial genera such as Staphylococcus and Enterococcus
were negatively associated with weight gain, while Weissella
was positively associated with weight gain in preterm infants
(41). Concerning Weissella, there are interesting evidences that
this genus could influence food digestion and energy harvest
in infants (40, 43, 45). This aspect should be further explored,
considering that lactobacilli, to which order Weissella belongs,
are used as probiotics.

The results of a recent study (51), show that infants fed
with the mother’s own milk (MOM) had a greater abundance
of Bifidobacterium and Bacteroides, each of that seems to be
protecting against morbidities like NEC. Moreover, feeding
primarily MOM was related to an increased gut microbiota
diversity that had previously been related to healthier outcomes
in VLBW infants and that resulted associated to a superior
growth in comparison with infants fed with donor human milk.

Li et al. (52) demonstrated that preterm infants with growth
failure have a distinct intestinal microbiome’s profile when
compared to infants with normal growth at postnatal days 1
and 28. At both time points, the sole highly abundant taxa
in the EUGR group was the genus Parabacteroides, which is
a gram-negative, anaerobic, non-spore forming genus. Some
species of that genus turn out high quantities of acetic acid and
propionic acid (53). Intestinal epithelial cells (IECs) can absorb
these short fatty acids that can also enter the blood circulation,
influencing the storage of sugar in muscle, liver, and fat. Also,
the brain appears to be reached by acetic acid, with subsequent
loss of appetite, and leading to reduced food intake (54). Thus,
weight gain might relate to an excessive colonization of genus
Parabacteroides in the intestinal tract of VLBW infants.

The study results of Yee et al. (55), complement previous
data, showing an abundance of Proteobacteria in the preterm
infants’ microbiome (56, 57). These authors described a negative
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correlation between infant weight gain during hospitalization
and the relative abundances of Klebsiella and Staphylococcus.
Both of these taxa are associated with known pathogens so that
their enrichment could be a sign of dysbiosis, finally associated
with reduced infant weight and length gain.

A deficit in anabolic metabolism of glucose and other non-
lipid energy source, resulting in a greater reliance on fatty acids
to satisfy metabolic demands, has been proposed in preterm
infants with growth failure fromYoung et al. (58) From their data
emerged an alteration of themicrobiotamaturation characterized
by low diversity, persistent dominance of Enterobacteriaceae,
and a deficiency of strictly anaerobic taxa such as Veillonella
in preterm infants with postnatal growth failure. These infants
also demonstrated a “metabolic signature,” showing an increased
lipolysis and fatty acid oxidation, with gain in multiple fatty
acids, acylcarnitines, glycerol, and β-hydroxybutyric acid, that is
distinctive of a fasted state.

Considering all the evidences reported (briefly summarized
in Table 2), the knowledge of the mechanisms leading the
infant microbiota to alter nutritional efficacy appears of great
importance in the aim of predicting, preventing and treating
growth failure in preterm infants.

The Preterm Gut Microbiota and NEC
Necrotising EnteroColitis (NEC) is a major cause of mortality
and morbidity in premature newborns; it affects 7% of
newborns with birth weight <1500 g, of whom 20–30% dies
(2). It is characterized by submucosal hemorrhage and oedema,
neutrophilic infiltration of the intestinal wall, disruption of
intestinal villus architecture and finally full thickness necrosis or
intestinal wall perforation (59). Typically, the involved newborn
presents with abdominal distension, bloody stools and feeding
intolerance, while pneumatosis intestinalis and portal venous gas
are characteristic abdominal radiological findings (60).

The pathogenesis of the disease is unclear but probably
multifactorial: enteral feeding, intestinal ischemia and aberrant
microbial colonization are the principal involved factors.

Initial exposition to microbes and their metabolic products
is normal part of development with a largely unexplored
effect on immune system. Breastfeeding is known to protect
against NEC (61, 62): the reason is that breastfeeding
facilitates colonization by a balanced commensal flora which
contrasts bacterial overgrowth; instead formula feeding is
associated with harmful gut bacterial proliferation (63). Preterm
infants early come into contact with different environmental
microbic species and are also precociously exposed to antibiotic
therapies which have shown to reduce the diversity of infant
microbiota; moreover, perturbations in the composition of infant
microbiota may let pathogenic microbes prevail over commensal
species (64).

A broad spectrum of microbes has been involved in the
pathogenesis of NEC across multiple studies. According to recent
evidences certainmicrobial population such as Bifidobacteria and
Lactobacilli are protective, while Clostridia, Enterobacteriaceae,
and Staphylococcus have been associated to the development of
the disease (65).

Emerging data suggest that a predominance of Proteobacteria
is strictly associated with NEC. Wang et al. (66) showed that
infants in the NEC group have more than 50% of gut bacterial
colonization represented by the Gammaproteobacteria genera
such as Cronobacter sakazakii, Klebsiella sp., and Escherichia
coli. This result was not found in the healthy newborns. The
same pattern of gut microbiota has been reported by other
authors (57, 67).

But in the stool of infants with NEC are often found
also coagulase-negative staphylococci (CoNS) from the phylum
Firmicutes (68) and Clostridium spp. with the associated toxin
(69). In the past, this last microbe, that is part of the

TABLE 2 | Summary of the changes in microbial resident population observed in the different pathologic conditions and the underlying pathogenetic mechanisms.

Change in microbial populations Pathogenetic mechanisms involved

BPD Decreased abundance of Lactobacillus, reduction in the bacterial

community turnover with increasing time from birth, decreased

colonization by Staphylococcus in the first days after birth, increased

colonization by Ureaplasma

A decreased abundance of protective species allows a relative overgrowth of

potentially pathogen microbial populations; moreover, Ureaplasma-colonized

newborns present peripheral blood leukocytosis and less severe RDS but early

radiographic and histologic changes typical of BPD

EUGR Low diversity, persistent dominance of Enterobacteriaceae, and a

paucity of strictly anaerobic taxa including Veillonella compared to

infants with appropriate growth. Relative abundance of Klebsiella and

Staphylococcus. Increased rate of Parabacteroides.

Nutritional efficacy is dramatically affected by infant dysbiosis. In particular,

Parabacteroides produce acetic and propionic acid that reach the blood

circulation, affecting the storage of sugar in muscle, liver, and fat; acetic acid is

also involved in reduced food intake due to loss of appetite.

LOS Decreased bacterial diversity with a predominance of Proteobacteria

and Firmicutes, whereas Bifidobacteria are usually found in healthy

controls. A strong relation with Fusobacteria and Tenericutes has also

been described.

Gut microbiota can translocate across a dysfunctional or immature intestinal

barrier, overwhelm neonatal immune system and cause sepsis; moreover,

intestinal dysbiosis is supposed to alter local and systemic immune function.

Natural prebiotics, such as raffinose, inhibit the growth of potentially pathogenic

bacteria and promote proliferation of Bifidobacterium.

NEC Decreased bacterial diversity with increased rate of Clostridia,

Enterobacteriaceae, and Staphylococcus are frequently observed; a

predominance of Proteobacteria (such as Escherichia coli and

Klebsiella) is considered strictly associated with the pathogenesis of the

disease.

Antibiotics pressure and enteral feeding generate changes in gut microbiota

which may lead to an overgrowth of potential pathogens; moreover, LPS of

Gram Negative activates TLR-4 and premature gut reacts with an exaggerated

cytokine mediated inflammatory response, which may be due to a deficient

expression of inhibitors of the NFkB pathway.

BPD, Bronchopulmonary Dysplasia; EUGR, Extra-Uterine Growth Restriction; LOS, Late-Onset sepsis; NEC, Necrotising Enterocolitis.
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commensal microbiome of preterm infants, was associated with
the progression of NEC (70, 71).

Concerning this aspect, it is known how bacterial products
are recognized via Microbial Associated Molecular Patterns
(MAMPs) by Pattern Recognition Receptors (PRRs) and in
particular by the more studied Toll Like Receptor (TLRs)
expressed on the intestinal mucosa: this interaction results
in the activation of Nuclear Factor- kappa B (NFkB) and
its inflammatory pathway and caspases. These propagate the
apoptosis and induce the production of cytokines (INF-1,
TNF-alfa, IL-1, IL-6, IL-8) via activation of transcription genes
(72). TLRs are pivotal to maintain the equilibrium between
adequate inflammatory response and homeostasis, performing
crucial functions like regulation of cell proliferation and growth,
antimicrobial agents secretion, and control of the barrier
function (2).

After birth MAMPs start to interact with TLRs; moreover
Lipopolysaccharide (LPS) of GramNegative activates TLR-4 (73).

Premature gut reacts to the TLR-4 activation with a
more accentuated cytokine mediated inflammatory response
if compared to a full-term gut; IL-8 is especially involved
in neutrophil chemotaxis increase and inflammation, leading
in most severe cases to tissue injury and NEC (74, 75).
This exaggerated inflammatory response may be due to a
deficient expression of inhibitors of the NFkB pathway (76,
77). Commensal bacteria seem to have a beneficial role in the
repression of the continuative stimulation occurring in the infant
gut by blocking the degradation of NFkB inhibitors; they also
contribute to the neonatal gut homeostasis generating a low-level
stimulation of TLR-4 (78, 79) (Table 2).

Probably, a single pathogen entirely responsible for NEC will
never be isolated, since there is not a single microorganism
predictive of the risk of NEC. Reasonably, it is the limited
diversity of the whole microbiota and the rising abundance
of pathogenetic bacteria to be together responsible for the
premature susceptibility to NEC (66).

Moreover, a better comprehension in this field is reached
considering the influence of gut microbiota on the host
immune system.

The Preterm Lung Microbiota and BPD
A so called “gut-lung axis,” that is a connection between
the development of the gut and lung microbiome, has been
described (80).

Commensal bacteria in the gut and lungs are necessary
for the normal development of the immune homeostasis
(80). Therefore, microbial dysbiosis may lead to abnormal
inflammatory responses, which are referred to the pathogenesis
of BPD.

Airways of the newborn develop during pregnancy
influenced by amniotic fluid, placenta, and vagina with its
own microbiome (12, 81).

The described lung microbiome at birth evolves over the first
weeks and months of postnatal life (82).

Several factors are involved in the development of the lung
microbiome. Among them, chorioamnionitis, transplacental
infection, or abnormal colonization appear to be able to

create an inflammatory process, first step in the pathogenesis
of BPD (83). Exposure to prenatal and postnatal antibiotics,
respiratory support devices, sepsis, feeding and nutrition,
concurrent development of the intestinal microbiome, and
the surrounding environmental microbiome, can also be also
implicated (82, 84, 85).

In order to support the important role of intrauterine
infection as determinant of preterm labor and neonatal diseases,
already in 2005 the presence of 16S rRNA was higher in
samples of placenta, fetal membranes and cord blood serum from
mothers presenting with preterm prelabor rupture of membranes
(pPROM) or in spontaneous idiopathic preterm labor, and in the
BALF samples or gastric aspirates of their newborns, collected
within 24 h of life. BALF samples from these newborns showed
a reduction of the prevalence of Lactobacillus and a decrease in
α-diversity, suggestive for a state of precoscious disbiosys (86).

Most studies described the presence of an airway microbiome
early at birth dominated by Staphylococcus and Ureaplasma (87,
88) and a longitudinal change in the first weeks of life with
increasing bacterial loads (34, 35, 89, 90). Lal et al. described the
composition of the airway microbiota by analyzing the tracheal
aspirates of newborns in the first day of life: a predominance of
Firmicutes and Proteobacteria and the presence ofActinobacteria,
Bacteroidetes, Tenericutes, Fusobacterium, Cyanobacteria, and
Verrucomicrobia was observed, without differences between
preterm and full term infants (89). Anyway, other authors didn’t
find adequate bacterial DNA for successful sequence analysis
in the tracheal aspirates of 8/10 preterm infants, to sustain the
sterility of the airways of intubated preterm infants at birth, with
the evidence of a subsequent bacterial colonization after the first
3 days of life (34).

It seems difficult to compare studies about airway microbiome
for clinical and methodological heterogeneity. However, the
airway colonization pattern appears to be also influenced by
lung diseases, particularly by evolution on BPD. In infants who
developed BPD compared with those who did not, differences in
abundance and a decreased bacterial diversity have been reported
(90) (Table 2).

In a study on 94 preterm infants, Wagner et al. found
that those who developed severe BPD acquired less initial
Staphylococcus and high Ureaplasma in the first days after birth
(90). A possible explanation is that Ureaplasma intrauterine
exposure downregulates the host response to acute LPS exposure
in the preterm sheep model (91). Moreover, host bactericidal
activity is related to functional complement and seems to be
directly correlated to gestational age (92) (Table 2).

Lohmann and Lal described changes in the relative abundance
of Proteobacteria and Firmicutes but with conflicting data on the
preponderance of one or the other (35, 89).

Lohmann et al. (35), at time of intubation, showed a lower
bacterial diversity (in terms of lower species count and Shannon
diversity index) in newborns who subsequently developed BPD
than in those who did not. Concerning the evolution of the
lung microbiota, these authors showed a trend to an increase
in Firmicutes and a decrease in Proteobacteria in infants who
developed BPD in contrast to the relatively diverse and stable
community in the non-BPD group. At the genera level, in both
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groups Acinetobacter was the predominant genus, but its relative
abundance decreased longitudinally in the BPD group, while an
increasing amount of Staphylococcus andKlebsiellawas observed.
Anyway, the changes in bacterial composition do not correlate
with the levels of inflammatory cytokines, leaving unanswered
the question of the clinical relevance of such findings.

The study of Lal et al. (89) present methodological differences
and the airway microbiome of infants after diagnosis of BPD
was compared to that of full term newborns matching for post-
menstrual age. In contrast to the findings of Lohmann et al., the
analysis shows an increase in the phylum Proteobacteria and a
decrease in the phyla Firmicutes and Fusobacteria in association
with BPD diagnosis. When compared with ELBW newborns and
full-term infants,Gamma Proteobacteria resultedmore abundant
whereas Alpha Proteobacteria were in lower abundance in BPD
infants. At the genus level, the most abundant Proteobacteria in
BPD patients were Enterobacteriaceae.

An interesting finding was the decrease in Firmicutes
such as Lactobacillus in airway microbiome of infants with
chorioamnionitis and in preterm infants who went on to develop
lung disease (90). This could be an important finding for the
association of BPD and chorioamnionitis. Previously, a beneficial
role of Lactobacillus in other airway diseases has also been
reported (93–95).

There are lots of potential determinants of the airway
microbiome, but it is difficult to determine whether these changes
are causal or established because of a change in treatment or in
other factors that lead to BPD.

Even if an association of “antibiotics induced dysbiosis” with
BPD has been reported (90), apparently, there are no significant
differences in the initial specimen between infants who received
empiric antibiotic treatment and those who did not (89). The
comparison of the airway microbiome of infants whose mothers
received prenatal antibiotics and the infants of mothers who
didn’t show differences either (90).

The variability in treatments among preterm infants,
especially related to antibiotic administration appears to be able
to influence these findings (90).

Even if studies which demonstrate a link between dysbiosis
and BPD exist, there is a lack in the description of a causal
relationship between airway injury during development and
respiratory colonization with microorganisms.

Further metabolic analysis of the lung microbiota, including
metagenomic, and metabolomic assessments, are necessary
to define their role as the cause of lung injury sequence
and inflammation.

The Preterm Gut Microbiota and the Risk
of Late Onset Sepsis
It is known that many of the organisms that are responsible
for late onset sepsis (LOS) in extremely preterm infants,
including staphylococci, arise from the intestinal tract (96).
Indeed, several studies carried out in extremely preterm infants,
have demonstrated the presence of organisms in the feces prior to
or concurrent with the onset of LOS which resulted to be caused
by the same organism (82, 97, 98).

Puri et al. evaluated infants exposed to intra-amniotic
infection and suggested a causative role of specific alterations in
the early neonatal microbiome in the development of later sepsis
or death (99).

These authors associated an aberrant gastrointestinal
colonization with chorioamnionitis or funisitis. The analysis of
meconium samples from extremely preterm infants showed,
according to the results reported by Moles et al. (100), a definite
flora in the first week of life dependent on the exposition to
chorioamnionitis or funisitis. A restricted set of taxa was studied
in reference to LOS, with a strongest correlation to later sepsis
with Genus Sneathia (Phylum Fusobacteria) and bacteria family
(Phylum Tenericutes) (99).

Data reported from other authors suggest that in preterm
infants is a dysbiosis instead of a predominance of potential
pathogens to be associated with sepsis (97) (Table 2). In their
case control study, Mai et al. (101) found a predominance of
Firmicutes in stool samples of newborns with LOS, while Madan
et al. (102), by analyzing the early fecal samples of preterm infants
with a gestational age between 24 and 27 weeks, highlighted a
decreased bacterial diversity with a prevalence of Proteobacteria
and Firmicutes (Staphylococcus).

Korpela et al. (31) correlated the risk of sepsis with a
disrupted intestinal microbial development in preterm infants,
characterized by a predominance of aerobic cocci and a
reduction of bifidobacterial. In their cohort of preterm newborns,
Enterobacter was abundant in some sepsis cases, but it was
detected also in many cases not developing sepsis.

These data support two possible hypothesis: the translocation
across the intestine to blood could be the cause of sepsis or,
alternatively, since in some cases the organism responsible of
sepsis is not detected in the intestine before the onset of sepsis, it
is possible that an intestinal dysbiosis could be responsible for an
alteration of the local and systemic immune function (101, 102).

An aberrant immune function could be involved also in the
connection between chorioamnionitis, intestinal dysbiosis, and
increased susceptibility to LOS. Indeed, a decreased function of
the anti-inflammatory T-regulatory cell subset has been found in
preterm infants of mother with a diagnosis of chorioamnionitis
and/or funisitis (103) (Table 2).

Stewart et al. performed a study showing the association of
the gut microbiome and metabolome with the pathogenesis of
LOS (104). The gut microbiome of infants with a diagnosis of
LOS appeared to be specific for each patient and highly dynamic
trough time. Moreover, the identification of one of the most
abundant operational taxonomic units in the gut microbiota at
diagnosis of LOS with the pathogen in the blood, suggested
the translocation trough the gut epithelium as a first element
in the pathogenesis of LOS. On the other hand, control infants
showed a predominance of Bifidobacteria, a taxa that is correlated
with some metabolites including raffinose, sucrose, and acetic
acid. Among them, a significant role as prebiotic, able to inhibit
the growth of potential pathogenic bacteria and to enhance the
presence of Bifidobacterium spp. (105–107), is conducted by
raffinose. It is a α-galactosyl (α-GAL) oligosaccharide that is
fermented in the gut by bacteria containing the α-GAL enzyme.
While it is reduced in LOS infants before the diagnosis and
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increased after treatment, in control infants its concentration is
constantly high (104).

Neonatal microbiota has been studied also in relation to GBS
sepsis, which represents a global problemwith an estimate overall
incidence of about 0.5/1,000 live births. To date, intrapartum
antibiotic prophylaxis (IAP) represents a good strategy which
lead to a decrement in the incidence of early-onset sepsis (EOS)
while LOS rates remained unchanged (108–110).

The route of infection in EOS is well-known, implicating the
vertical transmission of GBS from the colonized maternal vaginal
tract to the infant at birth. In many cases, bacteria entry the
respiratory tract trough the aspiration of contaminated fluids,
resulting in sepsis or pneumonia during the first days of life
(111). The route of infection in LOS is less well-understood.
Particularly, it is unknown how the colonization remains stable
from the first contact with GBS until the disease onset. Also
in this case, there are data that show as an aberrant co-
development of microbiota and host immunity represent a risk
for GBS LOS, rather than genetic variations in immune genes
alone (112). Affected infants show a decreased presence of
anaerobic Bacteroides and Bifidobacterium spp., while aerobic
Enterobacteria appear to be increased, when compared to non-
septic twin controls (113).

Those observations, together with the evidence of a reduction
of intestinal Bifidobacterium density in infants whose mothers
received IAP, stress how clinicians should be careful in the
usage of antibiotics in the early period of life (114). Consistent
with this observation, in preterm infants an empirical antibiotic
treatment results to be associated to a 3-fold higher risk for
LOS caused by various pathogens including GBS in preterm
infants (115).

Both the depletion of competitive microbes and a delayed
immune cell maturation and dysbiosis with the subsequent
emergence of pathogenic bacteria, represent a possible way by
which antibiotics can influence the microbiome composition.

Recently, concerning the immunological implications,
Josefsdottir et al. (116) observed as in antibiotic-treated
mice the microbiota is the cause of neutropenia and general
depletion of hematopoietic stem cells across multiple lineages.
Newborns represent a sensitive population also for its smaller
granulocyte pool that may further propagate the negative effects

of antibiotics (117), and for the immaturity of phagocytes and
adaptive immune cells that reduced the strength to fight against
pathogens. Hence, while the adult immune system can respond
to a pathogen invasion through the muco-cutaneous barrier, the

neonatal immunity may be overwhelmed, resulting in bacterial
spread and sepsis.

CONCLUSIONS

The analysis of the knowledge about the preterm infant’s
microbiota and its relationship with clinical outcomes,
show that facultative anaerobes dominated the preterm
infant gut, including Enterobacteriaceae, Enterococcus, and
Staphylococcus. These are communities that count commonly
antibiotic-resistant organisms.

Microbiota plays a key role in the establishment of the gut
barrier andmany data suggest its immune-modulator role. For all
these reasons, the understanding and the prevention of dysbiosis
is crucial for the prevention of diseases such as sepsis, NEC and
BPD, but may also impact growth rates, immune function, and
the risk for various chronic diseases and conditions.

Differences in patient population or care/feeding practices
are to take into account in the analysis of the studies
conducted in this field. Future studies should be addressed
in order to explore differences in the gut/lung microbiota
in sub-selected populations, based on specific treatments and
probiotic administration. Moreover, concerning the actual
acknowledgment about the relation between gut microbiota
and the onset of LOS, a deepen description of this link
could lead to realized screening approaches able to drive early
intervention for the prevention of LOS in the high-risk preterm
infants population.
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