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NK cells are innate lymphocytes which play an essential role in protection against cancer

and viral infection. Their functions are dictated by many factors including the receptors

they express, cytokines they respond to and changes in the external environment.

These cell processes are regulated within NK cells at many levels including genetic,

epigenetic and expression (RNA and protein) levels. The last decade has revealed

cellular metabolism as another level of immune regulation. Specific immune cells adopt

metabolic configurations that support their functions, and this is a dynamic process with

cells undergoing metabolic reprogramming during the course of an immune response.

Upon activation with pro-inflammatory cytokines, NK cells upregulate both glycolysis and

oxphos metabolic pathways and this supports their anti-cancer functions. Perturbation

of these pathways inhibits NK cell effector functions. Anti-inflammatory cytokines such

as TGFβ can inhibit metabolic changes and reduce functional outputs. Although a lot

remains to be learned, our knowledge of potential molecular mechanisms involved is

growing quickly. This review will discuss our current knowledge on the role of TGFβ in

regulating NK cell metabolism and will draw on a wider knowledge base regarding TGFβ

regulation of cellular metabolic pathways, in order to highlight potential ways in which

TGFβ might be targeted to contribute to the exciting progress that is being made in

terms of adoptive NK cell therapies for cancer.
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THE IMPORTANCE OF IMMUNOMETABOLISM

Over the past decade, the field of immunometabolism has exploded and become one of the fastest
growing research areas in immunology. We now appreciate the vast impact that metabolism has
on the fate and function of immune cells, although we are far from fully understanding it. The
metabolic status of a cell dictates the functions that it can carry out e.g., increased mitochondrial
mass and high rates of fatty acid oxidation are fundamental for memory T cells to carry out their
antigen recall response (1). Immunometabolism has reinvigorated many areas of research and
allowed older concepts to be viewed in a new light.

Importantly, immunometabolism is having an impact in the clinic. The effect that old drugs
have on the metabolism of immune cells is now being explored for the first time. For example,
metformin, which has been used to treat type 2 diabetes for many decades, works by inhibiting
complex I in the electron transport chain and hence can strongly impact immune cells that use
oxidative metabolism to carry out their functions (2). Indeed, recent research has shown that
metformin can skew T cell differentiation toward regulatory and memory T cells (3). Another
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example is the deeper understanding provided by metabolism of
how checkpoint inhibitors work during cancer therapy. Bengsch
et al. demonstrated that anti-PDL1 therapy reprogrammed
metabolism of exhausted T cells and improved several readouts of
mitochondrial structure and function as part of the mechanisms
of action of this therapy (4). It is likely that these checkpoint
inhibitors are also impacting the metabolism of Natural Killer
(NK) cells, as NK cells also express some of these checkpoint
antigens (5).

Many of the new concepts in immunometabolism have been
inspired by the more advanced field of cancer metabolism.
For nearly a century we have been aware of the metabolic
reprogramming that takes place in tumor cells (6), and this
has resulted in the development of drugs that target tumor
cell metabolism e.g., methotrexate, an inhibitor of dihydrofolate
reductase, that has been used in chemotherapy since the
1940s (7). These drugs were designed based almost exclusively
on research on tumor cell metabolism and their potential
impact on immune cells was not investigated or considered.
However, as we increasingly turn to the immune system for
new cancer therapy approaches, a trend likely to continue
given the high rewards yielded to date, cancer researchers
and immunologists need to work together to consider the
consequences of strategies proposed for synergy to be achieved.
For example, rapamycin [a mammalian target of rapamycin
complex 1 (mTORC1) inhibitor], is currently in clinical trials for
neuroblastoma (ClinicalTrials.gov; NCT01331135) and for breast
cancer (ClinicalTrials.gov; NCT02536625). We predict that this
therapy will severely inhibit NK cell and other cytotoxic immune
cell responses, which are highly dependent on mTORC1 mediate
metabolic reprogramming to carry out their functions. This is
particularly concerning for patients where antibody mediated
therapy is part of their standard treatment of care e.g., anti-GD2
therapy for high risk neuroblastoma and trastuzumab for HER2+

breast cancer, and which works in part by promoting NK cell
antibody dependent cellular cytotoxicity (ADCC) (8). We are
only now beginning to understand the off-target effects that these
metabolic cancer therapies have on the immune system and a
current goal of the field is trying to figure out ways in which
we can selectively target cancer metabolism while protecting the
anti-tumor immune response.

What is more exciting, however, is that immunometabolism
research is revealing new drug targets that may prove effective in
the treatment of a variety of human diseases. As we now know
that metabolic inhibitors such as 2-deoxyglucose (2DG) can

Abbreviations: NK, Natural Killer; mTORC1, Mammalian target of

rapamycin complex 1; ADCC, Antibody dependent cellular cytotoxicity;

2DG, 2-deoxyglucose; TCA, Tricarboxylic acid; DC, Dendritic cell; GAPDH,

Glyceraldehyde 3-phosphate dehydrogenase; ROS, Reactive oxygen species; PGC-

1α, Proliferator-activated receptor gamma coactivator 1-alpha; SREBP, Sterol

regulatory element-binding protein; IRE1, Inositol-requiring enzyme 1; TGFβR2,

TGFβ receptor 2; TGFβR1, TGFβ receptor 1; FBP1, Fructose-1,6-bisphosphatase;

AML, Acute myeloid leukaemia; MDS, Myelodysplastic syndrome; iPSC, Induced

pluripotent stem cells; SOD, Superoxide dismutase; NAC, N-acetylcysteine;

NOX4, NADPH oxidase 4; UCP2, Uncoupling protein 2; ER, Endoplasmic

reticulum; PGASMC, Preglomerular afferent arteriolar smooth muscle cells; CAR,
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inhibit the immune response, the potential for these to be used in
preventing graft rejection is under investigation, and pre-clinical
results from mouse models are very promising (9). Sukumar
et al. showed that inhibiting glycolytic metabolism in CD8+ T
cells increases the generation of memory cells and their anti-
tumor functions (10), while Fisicaro et al. showed that improving
mitochondrial fitness using antioxidants is sufficient to revive
exhausted CD8+ T cells and increase their antiviral functions
(11). In human sepsis patients, IL7 treatment increases glucose
metabolism and mTOR activity in dysfunctional T cells (12).
Overall, it seems likely that some of these immunometabolism-
derived therapies will reach clinical trials in the near future.

SPECIFIC IMMUNE CELLS ADOPT
PARTICULAR METABOLIC
CONFIGURATIONS

Indeed, there is a growing appreciation of the extent to which
immunometabolism underpins many aspects of the immune
response. Different immune cells have specialized metabolic
configurations that allow them to carry out their specialized
functions. In general, these pathways provide both energy (in
the form of adenosine tri-phosphate; ATP) and biosynthetic
precursor molecules that will be required for carrying out
their effector functions. Various fuels can be used by cells
including glucose, glutamine and fatty acids. As mentioned,
memory T cells mainly engage in fatty acid oxidation. Fatty
acid oxidation involves the breakdown of cellular fatty acids into
smaller components which can then go into the mitochondria
of the cell where they feed the tricarboxylic acid (TCA) cycle
to facilitate NADH and FADH2 production (see Figure 1 for
main cell energy production pathways) which are required to
supply electrons to the mitochondria. This final process called
oxidative phosphorylation (or oxphos) consumes oxygen and
results in production of ATP. Unlike glucose, fatty acids can
easily be stored as lipid droplets within the cell. As such, memory
T cells synthesize fatty acids so that they can rapidly oxidize
the stored fatty acids which then supplies the energy required
for the recall response (13). Similarly, regulatory T cells use
fatty acid oxidation to support their long life span (14). Other
immune cells, with different functions, use alternative forms of
metabolism. At rest, most naïve immune cells carry out oxphos
to meet their homeostatic needs. Once an immune cell becomes
activated, it reprograms cellular metabolism to suit it functions.
In many cell types, this involves upregulation of glycolysis, the
key pathway in glucose metabolism. This increased glycolytic
flux supports rapid ATP synthesis in addition to production of
various biosynthetic precursors such as amino acids (15). As this
upregulation of glycolysis takes place in the presence of oxygen,
it is known as aerobic glycolysis, and is fundamental for the
functions of NK cells, effector T cells, B cells, dendritic cells
(DC), neutrophils, and M1 macrophages (16). By understanding
how these metabolic pathways support functions of the immune
response, we can aspire to unlock new ways in which to control
and regulate the immune system therapeutically.
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FIGURE 1 | Metabolism drives immune cell function. Glucose is metabolized by glycolysis, which is essential for activated NK cells, T cells, B cells, dendritic cells

(DCs), M1 macrophages and granulocytes. Pyruvate can be converted to lactate and secreted from the cell or else it can be converted to acetyl CoA which feeds into

the TCA cycle. The TCA cycle results in the production of reducing equivalents (NADH, FADH) which feed into the electron transport chain. The electron transport

chain uses the electrons supplied by NADH and FADH to pump protons across the inner membrane. This force is then used to drive ATP synthase which makes ATP.

Oxphos is important for immune cells when they are at rest, and it is also essential for activated NK cells, T cells, M2 macrophages and B cells. Acetyl CoA can

alternatively be supplied by fatty acids—this form of metabolism is important for memory cells, regulatory cells and M2 macrophages. Glutamine can feed into the

TCA cycle via glutaminolysis—this pathway is used by T cells and to a lesser extent, NK cells.

NK CELL METABOLISM

NK cells have characteristic metabolic configurations which
facilitate their functions. Oxphos is used to meet their
homeostatic needs, and after short term stimulation (6 h) oxphos
remains the dominant form of metabolism (17). However, when
activated over longer periods of time (18h+), NK cells upregulate
both oxphos and glycolysis, with their main form of metabolism
shifting to glycolysis (18, 19). This shift allows for production
of biosynthetic precursors that are needed for NK cells to carry
out their functions and may also serve to enhance their longevity
and thus their ability to function in parallel with the adaptive
immune system.

Metabolic tracing experiments have revealed that NK cells
adopt a unique metabolic configuration, whereby they use the
citrate-malate shuttle to fuel oxphos (Figure 2). Instead of cycling
citrate through the TCA cycle like most cells, they export it
to the cytosol where it is then converted to acetyl CoA and
oxaloacetate (20). The acetyl CoA can then be used for acetylation
reactions (important for innate immune training) or to produce
fatty acids, while the oxaloacetate is converted back to malate
and then shuttled back to the TCA cycle. Ultimately, this results
in the production of cytosolic NAD+, which is an essential
cofactor for the glycolytic enzyme glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), and NADH, which is fed into the
electron transport chain support ATP production. This facilitates
increases in both glycolysis and oxphos which are required for
the NK cell functional response.

At the mitochondrial level, cytokine stimulation can also
induce significant changes. Miranda et al. looked at IL2 induced
mitochondrial changes in human NK cells (21). They showed
that IL2 stimulation increased both the mitochondrial mass
and the mitochondrial membrane potential. This was dependent
on the expression of peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α), and its deletion resulted
in reduced mitochondrial mass and membrane polarization, in
addition to impaired IFNγ production. Abarca-Rojano et al.
showed that the mitochondria of NK cells depolarize upon
contact with a tumor cell, and that they reorganize themselves
to the point of contact with the cancer cell (22). It has also
been shown that mitophagy, i.e., the removal of defective
mitochondria, is essential for the development of NK cell
memory (23). Interestingly, this process occurs in a reactive
oxygen species (ROS) dependent manner.

REGULATION OF NK CELL METABOLISM

The complex metabolic configuration of NK cells requires a high
degree of regulation. As with many immune cells, several aspects
of NK cell metabolism are highly dependent on mTORC1, a
protein complex that functions as a nutrient/metabolic sensor
and coordinates protein synthesis. mTORC1 activity increases
upon cytokine stimulation of NK cells and enhances glycolytic
flux through the cells. Inhibition of mTORC1 using rapamycin
results in inhibition of cell size, nutrient receptor expression
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FIGURE 2 | NK cell metabolism. Activated NK cells metabolize glucose to pyruvate. Pyruvate is converted to acetyl CoA which is then converted into citrate. Citrate is

exported into the cytosol via SLC25A1, where it is converted into oxaloacetate and acetyl CoA. Acetyl CoA can then be used in acetylation reactions or for lipid

synthesis. Oxaloacetate is converted back in malate, resulting in the production of NAD+, and essential cofactor for glycolysis. Malate is transported back into the

mitochondria, where it is converted back into oxaloacetate, producing NADH which can then feed into the electron transport chain for ATP synthesis.

(CD71 and CD98), and glycolysis, but not oxphos (18, 19, 24).
mTORC2 is closely related to mTORC1 and they share the mTOR
kinase subunit; however, mTORC2 associates with different
subunits, has different downstream targets and is insensitive
to acute inhibition by rapamycin. Phosphorylation of mTOR
(mTORC1 and/or mTORC2), has been shown to correlate with
NK cell maturation in the bone marrow and the spleen (24).
Furthermore, Yang et al. showed that mTORC1 and mTORC2
both play a role in regulating murine NK cell maturation using
Raptor (subunit of mTORC1) and Rictor (subunit of mTORC2)
conditional knock out mice (25). Interestingly, while mTORC1
promoted mTORC2 activity, mTORC2 repressed mTORC1
activity, thus inhibiting NK cell functions and SLC7A5 (amino
acid transporter) expression (26).

Beyond mTOR signaling, NK cells have quite unique
underlying regulatory mechanisms. Sterol regulatory element-
binding protein (SREBP) is a transcription factor known
traditionally for its role in fatty acid and cholesterol synthesis.
However, in NK cells, SREBP is fundamental for the modulation
of glycolysis and oxphos. This is partly due to regulated
expression of the main transporter involved in the citrate-malate
shuttle—SLC25A1 (20). Unsurprisingly, inhibition of SREBP also
inhibits NK cell functions.

cMyc is another transcription factor that has been shown to
be essential for NK cell metabolism (27). In this setting, cMyc is
acutely controlled by the availability of amino acids. These amino

acids, glutamine in particular, are imported into the cell via the
transporter SLC7A5 where they then turn on cMyc and allow
it to regulate NK cell metabolism and function. Interestingly,
neither HIF1α nor glutaminolysis were shown to be important
for NK cell metabolism in this study, which is in contrast to
other cytotoxic lymphocytes. Dong et al. has recently shown
that inositol-requiring enzyme 1 (IRE1), an ER-nucleus signaling
protein, is essential for optimal NK cell anti-tumor and anti-viral
responses and works by directly regulating cMyc activity (28).

TGFβ

As proinflammatory cytokines such as IL2, IL12, and IL15
induce robust NK cell metabolic responses like those described
above, anti-inflammatory cytokines can also inhibit them. For
decades, many studies have reported on the negative effects that
TGFβ has on NK cell functions (29–31). TGFβ is a pleiotropic
cytokine and can play a role in a wide variety of processes,
including differentiation, migration, apoptosis, wound healing
and angiogenesis (32). While TGFβ is generally acknowledged as
a negative regulator of growth (e.g., via inhibition of cMYC and
CDKs) (33), it can also promote proliferation of certain cells (e.g.,
mesenchymal stem cells) (34).

The TGFβ canonical signaling pathway is relatively simple—
TGFβ first binds to TGFβ receptor 2 (TGFβR2), which leads
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to the recruitment, transphosphorylation and activation of
TGFβ receptor 1 (TGFβR1). TGFβR1 then phosphorylates
its downstream targets using its cytoplasmic kinase domain
to initiate the SMAD dependent signaling pathway [5].
Phosphorylated SMAD2 and SMAD3 bind to SMAD4 and the
complex then travels to the nucleus where it modulates gene
expression and directs the cells response to TGFβ. SMAD6
and SMAD7 are negative regulators of this pathway, and their
expression may be induced by SMAD4-2/3 forming a negative
feedback loop (35). Ubiquitination of TGFβ signaling molecules
is a common way in which this pathway is regulated (36).

Although there are relatively few SMAD proteins involved
in TGFβ signaling, they commonly regulate gene expression
in cooperation with hundreds of high affinity DNA-binding
transcription factors and transcription coregulators. These are
controlled by and often dependent on other signaling pathways,
resulting in highly context-dependent transcriptional responses
being controlled by signaling cross talk (37, 38).

Alternatively, TGFβ ligands can signal through non-SMAD
(“non-canonical”) signaling pathways. This entails recruitment
and activation of signaling mediators by ligand-occupied
receptors i.e., TGFβR1 and TGFβR2 (39). These pathways
include branches of PI3K-Akt signaling which activate theMAPK
pathway and mTOR, small GTPase pathway, JNK/p38 pathway,
and can be regulated by phosphatases such as PP2A (39–41).
Many of the signaling molecules in these pathways interact
directly with TGFβR1 and/or TGFβR2 e.g., TRAF6 (42, 43). Of
note, while the impact of TGFβ canonical signaling on NK cells
is well described, the effect of TGFβ non-canonical signaling on
NK cells remains largely unexplored.

TGFβ AND NK CELL METABOLISM

While it has been known for many decades that TGFβ inhibits
the activity and functions of NK cells (30, 44, 45), the
molecular mechanisms underlying this have remained poorly
understood. Scientists are beginning to investigate these and
immunometabolism studies may help shed some light on this
topic. Viel et al. showed that while TGFβ had no effect on
the development of murine NK cells, genetic deletion of the
TGFβR2 (specifically in NK cells via Ncr1Cre mice crossed
with TGFβR2fl/fl mice) reduced tumor metastasis in two tumor
models and increased nutrient receptor expression and mTORC1
activity in IL15 stimulatedNK cells (46). In vitro, TGFβ treatment
inhibited mouse and human metabolic responses (oxphos and
glycolysis), nutrient receptor expression and mTORC1 activity.
Rapamycin treatment recapitulated most of the effects of TGFβ
treatment. In many cases, the effects of TGFβ were more potent
than those of rapamycin, yet mTORC1 deletion had more
significant effects than constitutive TGFβ signaling, suggesting
that mTORC1 is not the only pathway involved in the repression
of NK cell activity by TGFβ.

Work from our lab also investigated the effect of TGFβ on
human NK cells stimulated with cytokine (47). We showed
that NK cells stimulated with IL2 for 18 h in the presence
of TGFβ had significantly reduced levels of oxphos, maximal

respiration and glycolytic capacity. Interestingly, glycolysis was
not affected. Furthermore, the expression of CD69, CD71 and the
functional mediators IFNγ and granzyme B were also reduced
following TGFβ treatment. With the exception of granzyme
B, these effects were reversed by adding a TGFβR1 inhibitor,
suggesting that TGFβ’s impact on granzyme B is mediated by
an alternative pathway, likely one of the non-canonical pathways
that signals through TGFβR2 only. Indeed, deletion of the
TGFβR2 (specifically in NK cells) has been shown to reduce
granzyme B expression in murine NK cells (46).

In contrast to Viel et al. we observed that TGFβ had no impact
on NK cell mTORC1 activity (at 30min, 1 or 18 h). However, if
the NK cells were exposed to TGFβ for a prolonged period of time
(5 days), TGFβ reduced IL2 induced mTORC1 activity. There
are several potential explanations for the discrepancies between
these two studies. First and foremost, the vast majority of the
Viel et al. study was carried out on murine NK cells. In that
study, the impact of TGFβ on human NK cell mTORC1 activity
was evident in only some donors and was modest compared
to its effect on murine NK cell mTORC1 activity. Finally,
the timepoints (mainly 1 vs. 18 h) and cytokine stimulations
(IL15 vs. IL12/15) differed between the studies, precluding
direct comparisons.

In contrast to both above studies, there are many reports
showing that TGFβ actually activates mTORC1 (and mTORC2)
in non-immune cells. Rahimi et al. showed that TGFβ activates
mTORC1 mediated growth in fibroblasts (but not epithelial
cells), and that mTORC2 is required for TGFβ mediated
Akt signaling (48). More recently it was shown that TGFβ
promotes mTORC1 mediated GLUT1 expression and glycine
biosynthesis in human lung fibroblasts, which culminates in
collagen production and fibrosis (49). Similarly, others have
reported that TGFβ induces mTORC1 activity and subsequent
HIF1α activity and collagen expression in human kidney cells
(50, 51). Cheng et al. showed that TGFβ induced epithelial-
mesenchymal transition cell proliferation and migration is
dependent on mTORC1 in cervical carcinoma cells (52).
Indeed, it seems there is still a lot to be learned about
the relationship between TGFβ and mTORC1 (and mTORC2)
signaling. It will be interesting to see in the future whether
TGFβ affects the mTORC1 activity of different immune cells in
distinct ways.

Beyond the interplay of TGFβ and mTORC1, another study
has demonstrated the impact of TGFβ on the expression
of the anabolic enzyme fructose-1,6-bisphosphatase (FBP1)
in murine NK cells (53). FBP1 is an essential enzyme in
gluconeogenesis, a pathway which results in the generation
of glucose from non-carbohydrate substrates such as amino
acids, triglycerides and lactate. FBP1 hydrolyses fructose 1,6-
bisphosphate into fructose 6-phosphate, thus reversing the
direction of the glycolysis pathway and promoting glucose
synthesis. While gluconeogenesis is traditionally known to take
place in the liver and serve to maintain blood glucose levels,
this study showed that TGFβ treatment (24 h) increased the
expression of FBP1 mRNA in murine lung NK cells, which
induced NK cell dysfunction and tumor progression. Whether
TGFβ has such effects on other glycolytic/metabolic enzymes
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in NK cells is yet to be investigated. This could potentially
shed light on TGFβ induced metabolic defects described in the
above studies.

Recent work from our lab showed that peripheral blood NK
cells from patients with metastatic breast cancer have severely
reduced levels of metabolism and impaired mTORC1 activity
(54). Neutralization of TGFβ ex vivo restored levels of oxphos,
mTORC1 activity, nutrient receptor expression and importantly,
IFNγ production. TGFβ neutralization did not restore IL2
induced glycolysis—however, we previously reported that TGFβ
treatment had no effect on glycolysis in human NK cells (47).
Hence, TGFβ does not seem to impact oxphos and glycolysis in
the same manner. The overnight restoration of various metabolic
and functional parameters of NK cells from breast cancer patients
gives promise to the various TGFβ targeted therapies currently
in development.

POTENTIAL ROLES FOR TGFβ IN
REGULATING NK CELL METABOLISM

While research on the role of TGFβ regulating NK cell
metabolism is in its infancy, there is a vast body of literature
detailing the impact of TGFβ on metabolism in other cell types.
Given the complexity of TGFβ signaling and its pleiotropic
effects on many different cell types, these studies are unlikely
to provide a simple understanding of what is happening in
NK cells. However, they provide a strong starting point and
illustrate several molecular mechanisms which may underlie
TGFβ’s negative impact on NK cell metabolism and function.
Here, we consider some key examples of how TGFβ might
be affecting NK cell cellular metabolism and suggest ways in
which we might use this knowledge to improve immunotherapy
(see Figure 3).

TGFβ and cMyc
As described above, cMyc is an important regulator of NK cell
function and metabolism (27). It has long been known that
one of the main ways in which TGFβ acts a growth repressor
is via inhibition cMyc (55). Indeed, TGFβ has been shown to
inhibit cMyc expression via the canonical signaling pathway
in several cell types including keratinocytes (56), tumor cell
lines (57, 58) and oligodendrocyte progenitors (59). Hence, it
is possible that TGFβ is affecting cMyc expression in NK cells
and that this is contributing to the reduced metabolism and
functions observed in (46) and (47). Interestingly, Zakiryanova
et al. recently reported reduced cMyc expression in NK cells from
human lung and gastric cancer patients. As we know that TGFβ
levels are commonly increased in patients with these cancers
(60–62), TGFβ-mediated cMyc inhibition may be an underlying
cause for the NK cell dysfunction observed in these cancers
(53, 63, 64). If this is the case, alleviating cMyc suppression
may bypass some of the inhibitory effects that TGFβ is having
on NK cell metabolism. For example, increasing the availability
of amino acids will stabilize cMyc, or inhibition of glycogen
synthase kinase 3 will reduce cMyc degradation. Both approaches
have previously been shown to increase NK cell activity and
function in mice and humans (27, 65, 66).

TGFβ itself has not been shown to directly regulate the activity
of SREBP (another essential regulator of NK cell metabolism).
However, there are several reports showing that SREBP regulates
TGFβ activity in kidney cells (67–69). Thus, it is interesting to
speculate that there may be a role for altered SREBP activity in
NK cells leading to dysregulated TGFβ activity in cancer.

TGFβ and ROS
ROS are highly reactive, oxygen containing molecules such as
O−

2 , OH
− and H2O2. They are produced in the cytosol, e.g., as a

by-product of NADPH oxidase enzymes, or in the mitochondria,

FIGURE 3 | Potential roles for TGFβ in regulating NK cell metabolism. TGFβ has been shown to impact the metabolism of various non-immune cell types. This

included reduced cMyc activity, reduced ER-mitochondrial signaling, increased ROS and reduced antioxidants, increased mitochondrial membrane potential and

increased mitochondrial mass.
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e.g., by complex 1 and 3 of the electron transport chain.
Cells express various antioxidant proteins such as superoxide
dismutase (SOD) and catalase which can convert ROS into
water and oxygen. ROS can be produced under homeostatic
conditions and are involved in many biological processes such
as redox signaling pathways and apoptosis. In murine NK cells,
they play an essential role in the generation of NK cell anti-
viral memory (23). However, excessive ROS can be very harmful
for a cell as the ROS can react with and damage various
cellular components such as DNA and protein. Excessive ROS
may also result in aberrant cell signaling through oxidative
modification of redox-sensitive signaling proteins e.g., MAPK,
HIF or NFkB (70). Recent studies showed that excessive ROS
production is associated with NK cell metabolic dysfunction
in metastatic breast cancer patients and in childhood obesity
(54, 71). Interestingly, there is significant evidence demonstrating
a connection between TGFβ and ROS production, with TGFβ
treatment stimulating ROS production in many different studies.

The ability of Treg cells to suppress proliferation of T effector
cells was enhanced by TGFβ treatment, and this was reversed
via the addition of the antioxidant n-acetylcysteine (NAC) or
by an inhibitor of NADPH oxidase (72). In part, this may be
mediated by the protein GARP, which is induced on activated
Tregs and anchors latent TGFβ to the cell surface (73). In airway
smooth muscle cells, TGFβ induced the expression of NADPH
oxidase 4 (NOX4) thus leading to cytosolic ROS production (74).
Michaeloudes et al. confirmed this result, and also showed that
TGFβ reduces expression of the cytosolic antioxidant catalase
and of the mitochondrial antioxidant SOD2 (75). In lung
epithelial cells, TGFβ signaling through the TGFβR1 has been
shown to drive mitochondrial ROS production. This coincided
with decreased complex IV activity, and inhibition of complex
IV recapitulated the effects of TGFβ in terms of ROS production
(76). Similarly, Jain et al. showed that TGFβ treatment increased
mitochondrial and cytosolic ROS in lung fibroblast cells (77). In
this case, mitochondrial ROS was produced by complex III and
stimulated the expression of NOX4, in addition to other TGFβ
target genes. Finally, in bone marrow mesenchymal stem cells,
TGFβ treatment increased production of mitochondrial ROS and
decreased expression of SOD2 (78).

Taking these studies together, it seems likely that TGFβ might
impact the antioxidant system of NK cells and that this may
be altering their function and/or metabolism. If this proves to
be true, modulating NK cells such that they are more resistant
to oxidative stress (e.g., by pre-treating with antioxidants or
overexpressing antioxidant enzymes such as SOD2) may help
them to cope with TGFβ induced ROS. Hence, in a TGFβ rich
environment such as the tumor microenvironment, modified NK
cells will be more resistant to oxidative damage and more able to
fight the tumor. Interestingly, pre-treatment of exhausted CD8+

T cells with antioxidants has been shown to restore their antiviral
activity (11) during human chronic hepatitis B infection, where
systemic increases in TGFβ have been reported (79, 80).

The interplay between TGFβ and ROS is of particular interest
in the context of murine NK cell memory where we know ROS
plays a major role (23). Here, ROS production is required for the
removal of defective mitochondria and the development of NK

cell anti-viral memory. Perhaps in this case, TGFβ might play a
positive role by stimulating ROS production in faulty NK cells
and promoting their clearance by mitophagy.

TGFβ and Mitochondrial Structure and
Function
It is widely acknowledged that TGFβ plays a key role in
regulating mitochondrial apoptosis (81), and as described
above, TGFβ can stimulate mitochondrial ROS production in
a variety of cell types. However, there are many other ways
in TGFβ can modulate mitochondrial activities. TGFβ was
reported to increase mitochondrial mass in primary human lung
fibroblasts (82). In this study, TGFβ signaling via the canonical
pathway culminated in the upregulation of PGC-1α expression.
Interestingly, PGC-1α mediated increases in mitochondrial mass
and polarization has been shown to be essential for NK cell IFNγ

production (21).
Mitochondrial membrane potential is the electronegative

force across the inner mitochondrial membrane that drives
ATP production using ATP synthase. Yoon et al. reported
that TGFβ increased the mitochondrial membrane potential of
lung epithelial cells, yet interestingly did not alter secretion of
apoptotic factors from the mitochondria (76). Similarly, TGFβ
has been shown to increase mitochondrial membrane potential
in mouse kidney cells (83). Indeed, it is tempting to speculate
that the increased mitochondrial mass and membrane potential
observed in NK cells from metastatic breast cancer patients is in
part due to increased TGFβ activity (54). In breast cancer cells,
TGFβ has been shown to regulate expression of mitochondrial
uncoupling protein 2 (UCP2), a mitochondrial transporter
involved in dissipation of the mitochondria membrane potential
to facilitate heat production (84).

As discussed, NK cells treated with TGFβ have reduced levels
of oxphos and maximal respiration (47). This has also been
shown in hepatocellular carcinoma cells, where TGFβ treatment
skewed metabolism away from oxphos in order to promote
the epithelial/mesenchymal cell transition (85). Interestingly, the
expression of SLC7A5 was increased on the cancer cells in
response to TGFβ. As we know that this transporter is essential
for NK cell metabolism (27), is it possible that TGFβ may also
affect the activity of SLC7A5 in NK cells. Overall, it seems clear
that TGFβ is directly inhibiting NK cell oxphos and that this
is impacting upon their anti-tumor functions. This is likely due
to its effects on mitochondrial structure and function such as
those described above. Targeting NK cell mitochondrial structure
could help restore any TGFβ-induced mitochondrial defects.
For example, Buck et al. showed that increasing mitochondrial
fusion increases oxphos and anti-tumor functions in T cells
(86). This treatment also increased the efficacy of adoptive cell
therapy in a model of T cell lymphoma. Similarly, increasing
mitochondrial fusion has been shown to increase oxphos in TGFβ
and IL10 treated B cells (87). Another way to circumvent the
inhibitory effect of TGFβ on oxphos might be to increase the
supply of nutrients which can be metabolized by other pathways
or to promote mTORC1 activity which preferentially skews
metabolism toward glycolysis (e.g., by increasing the availability
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of amino acids), which seems to be more resistant to TGFβ’s
negative effects.

Finally, TGFβ has been shown to regulate mitochondrial-
endoplasmic reticulum (ER) calcium signaling (88). Under
normal conditions, Ca2+ is transferred from the ER to
the mitochondria where it stimulates ATP production by
increasing the activity of electron transport chain dehydrogenase
enzymes and increasing proton pumping across the inner
membrane. However, treatment of single preglomerular
afferent arteriolar smooth muscle cells (PGASMC) with
TGFβ reduces the Ca2+ release from the ER and impairs
the mitochondrial-ER coupling. Indeed, there is evidence
supporting the role of calcium in modulating NK cell functions.
NK cells from patients with a deficiency in calcium channels
have severely impaired degranulation and killing capacity
in vitro (89). Similarly, Ca2+ channel agonists/antagonists
have also been shown to inhibit NK cell degranulation and
killing capacity (90). Goodridge et al. recently showed that
interfering with Ca2+ stores reduces degranulation and
IFNγ production in human NK cells (91). It seems likely
that an interplay between Ca2+ signaling, metabolism and
function exists in NK cells. The nature of this and the
possible role that TGFβ plays in regulating this axis awaits
experimental elucidation.

NK CELL IMMUNOTHERAPY

NK cells are exploited in a variety of ways therapeutically
including as an adoptive cell therapy for cancer. Investigation of
NK cell metabolism has the potential to improve this increasingly
popular approach. While most studies on adoptive cell therapy
have focused on T cells, NK cells offer several advantages (see
Figure 4). Unlike T cells, NK cells are generally considered to not
be antigen specific, and as such it is more challenging for a tumor
to escape the NK cell immune response by antigen mutation
alone (92). Importantly, NK cells are less likely to induce graft-
vs.-host disease (93), and can positively promote a graft vs.
leukemia effect (94, 95). Similarly, NK cells are less likely to
promote cytokine release syndrome (96), which has occasionally
proven fatal in the context of T cell therapy (97).

As discussed, there is a plethora of ways in which TGFβ
is/might be impacting the metabolism of NK cells. This suggests
that by blocking the interaction between NK cells and TGFβ
we might be able to protect their metabolism and function in
TGFβ rich environments, such as those found in cancer. For
example, Yvon et al. engrafted a dominant-negative TGFβR2
onto cord blood derived NK cells, leaving them resistant to
the inhibitory effects of TGFβ treatment and more efficient at
killing glioblastoma tumor cells (98). This was also shown to

FIGURE 4 | NK cell immunotherapy. Antibody therapy stimulates NK cell ADCC activity in vivo which promotes tumor killing. Autologous cell transfer therapy involves

treating a patient’s own NK cells, while allogeneic cell transfer therapy involves treating cells from a third party—healthy donor, cord blood, stem cells, or NK cell lines.

These NK cells can be manipulated ex vivo pharmacologically or genetically such that they have enhanced anti-tumor functions and then infused into the patient.

iPSC, induced pluripotent stem cells.
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be effective in the breast cancer setting in vitro (99). Similarly,
Daher et al. deleted the TGFβR2 in PBMC-derived NK cells using
CRISPR-CAS9, rendering them resistant TGFβ and more able
to combat a xenograft model of myeloid leukemia (100). We
predict that these genetic modifications also enhanced NK cell
metabolism, and that this supported the improved anti-tumor
immune responses recorded.

While autologous (targeting a patient’s own NK cells) NK
cell transfer has proven to be safe and well tolerated (101), the
most promising anti-tumor responses have been reported with
allogeneic (third party) NK cell therapy. This is perhaps because
autologous NK cells from cancer patients are often dysfunctional
compared to NK cells from healthy individuals. In the case of
allogeneic therapy, there have been many promising reports in
recent years demonstrating the potential of the treatment. In
poor prognosis acute myeloid leukemia (AML) patients, NK
cell infusions in combination with high dose chemotherapy and
IL2 infusion resulted in in vivo expansion of NK cells and
complete hematologic remission in 5 out of 19 patients (102).
Similar results were more recently shown in elderly high risk
AML patients (103), and in high-risk myelodysplastic syndrome
(MDS), and again in AML patients (104), where alloreactive
NK cells were found in the periphery of all patients and
in the bone marrow of some. In neuroblastoma, high doses
of NK cell infusions followed by anti-GD2 immunotherapy
improved progression free survival, and patient NK cells had
increased NKG2A expression (105). In all studies, NK cell
infusions were well tolerated, with no reported toxicities.
These NK cells were primarily sourced from haploidentical
donors i.e., matched for HLA on one chromosome (typically a
related donor).

Future Directions
Indeed, we are in an exciting era of cellular therapy, and basic
research such as that described herein will play an essential role
in allowing us to harness these new technologies optimally. With
the recent advances in genetic engineering, the future possibilities
for NK cell immunotherapy are unlimited. Chimeric antigen
receptor (CAR)-NK cells are undergoing intense research and
are being tested currently in numerous clinical trials for various
hematological and solid malignancies (Table 1). So far studies
on CAR-NK cells, which have a modified version of surface
receptor(s) that allow them to target tumorsmore efficiently, have
been very promising.

Li et al. engineered iPSC derived NK cells and T cells
to express a CAR construct consisting of the transmembrane
domain of NKG2D, the 2B4 co-stimulatory domain (CD244),
and the CD3ζ signaling domain (106). These highly active CAR-
NK cells and CAR-T cells both exhibited enhanced anti-tumor
activity in a murine model of ovarian cancer compared to
their non-CAR counterparts. However, the CAR-T cell therapy
had significant toxicities which the CAR-NK cell therapy did
not e.g., sustained increases in plasma IFNγ, TNFα, and IL2
levels, and pathogenic organ damage in infiltrated organs. At
day 70 post treatment, 4/5 mice which received CAR-NK cell
therapy were still alive, vs. just 1/5 mice which received CAR-T
cell therapy. Similarly, Quintarelli et al. transduced CD19 into

TABLE 1 | CAR-NK cell clinical trials.

Cancer type

Anti-CD22 CAR NK cells Refractory B-cell lymphoma

Anti-CD19 CAR NK cells Refractory B-cell lymphoma

Anti-CD19/CD22 CAR NKCELLS Refractory B-cell lymphoma

Anti-Mesothelin CAR NK cells Epithelial ovarian cancer

Anti-PSMA CAR NK cells Castration-resistant prostate cancer

CAR-NK cells targeting NKG2D

ligands

Solid tumors

ROBO1 CAR-NK cells Solid tumors

BCMA CAR-NK 92 cells Multiple myeloma

Anti-CD33 CAR-NK cells Acute myelogenous leukemia, AML,

AML with maturation, AML without

maturation

Anti-CD19 CAR-NK cells ALL, CLL, Follicular lymphoma,

Mantle cell lymphoma, B-cell

prolymphocytic leukemia, Diffuse

large cell lymphoma

BiCAR-NK cells (ROBO1 CAR-NK

cells)

Pancreatic cancer

BiCAR-NK/T cells (ROBO1

CAR-NK/T cells)

Malignant tumor

Current clinical trials that involved CAR-NK cells. CD22 and CD19, B cell receptors;

Mesothelin, protein expressed in mesothelial cells; PSMA, prostate-specific membrane

antigen; ROBO1, roundabout homolog 1; BCMA, B-cell maturation antigen; CD33,

myeloid cell antigen; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia.

ex vivo expanded healthy donor NK cells (107), thus allowing
them to specifically target transformed B cells. Transfusion
of CAR-CD19-NK cells resulted in 100% overall survival vs.
20% for CAR-CD19-T cells in a xenograft model of leukemia
in immunodeficient mice. Furthermore, cord blood derived
CAR-CD19-NK cells, also transduced with IL15, significantly
prolonged survival in a xenograft model of lymphoma (108).
There is potential to engineer these CAR-NK cells further to
include a modification that boosts metabolism (e.g., increased
mTORC1/GAPDH/SLC25A1) or reduces susceptibility to TGFβ
(such as those described above).

An important consideration when contemplating new cancer
therapies is the economical and physical feasibility of them.
Isolation of NK cells from PBMC or stem cells is costly and time-
consuming. As such, there is renewed focus on generating “off the
shelf ” NK cell therapies i.e., a relatively unlimited, generic supply
of NK cells that can be banked and then infused into patients
when needed. There are several biotechnology companies
actively pursuing this therapeutic approach. Interestingly, this
idea seems to be moving in the opposite direction to the popular
model of “personalized medicine.” NK-92 is a transformed
cell line derived from a human NK cell lymphoma patient,
and they are known to spontaneously kill cancer cells via
direct cytotoxicity and cytokine production. NK-92 cells have
also been Food and Drug Administration (FDA) approved
for use in clinical trials in 2017 (109). Since then, NK-92
infusions have proven to be well tolerated with only minor
toxicities reported in clinical trials for lymphoma and multiple
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myeloma (110) and advanced renal cell cancer and melanoma
patients (111).

NK-92 cells may be genetically engineered such that they
have enhanced anti-tumor properties. For example, Yang et al.
engrafted a dominant negative TGF?R2 onto NK-92 cells (112)
rendering them insensitive to TGFβ. Once transferred to a mouse
model of lung cancer, there was reduced tumor proliferation
and lung metastasis, while the modified NK-92 cells produced
more IFNγ, all of which culminated in increased survival rates.
Similarly, Wang et al. genetically engineered the TGF?R2 such
that the extracellular and transmembrane region remained intact,
yet the intracellular signaling region consisted of intracellular
domain of the activating receptor NKD2GD. These NK-92
cells then had enhanced IFNγ production, increased killing
capacity in vivo and reduced the differentiation of CD4+ T
cells into Treg cells (113). Beyond TGFβ signaling, NK-92
cells are also amenable to CAR engineering. Oelsner et al.
transduced NK-92 cells with CD19 and human CD3ζ. These
CAR-NK-92 cells were able to kill tumor cells which their
parent cells were resistant to. Furthermore, and in contrast to
their non-CAR counterparts, they inhibited progression of an
in vivo model of lymphoma (114). Indeed, the potential to
develop these NK-92 cells as “off the shelf ” immunotherapy
is immense. Basic research which unveils how cancer impacts
NK cells, and how metabolism and cytokines such as TGFβ
play into this, will allow us to unlock the full potential of these
novel technologies.

Reimagining NK Cell Mediated Antibody
Therapy
NK cell targeted therapy has been in use in the clinic since
Rituximab was given FDA approval in 1997 for the treatment of
lymphoma. Rituximab, in addition to other antibody therapies
such as anti-GD2 and Trastuzumab (for neuroblastoma and Her-
2+ breast cancer, respectively), bind to their cognate tumor
antigens upon infusion into the patient. NK cells then bind to the
Fc region of the antibody via CD16 which initiates ADCC and
subsequent killing of the tumor cell. While they have improved
survival of these cancers significantly, there is still much room for
improvement. For example, combining Herceptin with paclitaxel
or with Adriamycin plus cyclophosphamide increased overall
survival of HER2+ breast cancer patients from 17–41 and
42–56%, respectively (115). While this was a great medical
advancement, 41 and 56% overall survival rates are still quite
poor. Further, there are many patients who do not respond at
all to antibody treatment. As we recently showed that NK cells
are metabolically dysfunctional in breast cancer patients (54), we
can seek to devise ways to combine current antibody treatments
with approaches to increase the metabolism and thus function
of the NK cells, thereby improving overall effectiveness of the
treatment. One possibility is to harvest patient PBMC, expand
the NK cells and increase their metabolism e.g., by inclusion
of an inhibitor of TGFβ signaling in cultures. Cells can then
be reinfused back into the patient along with antibody therapy.
Indeed, TGFβ has been shown to inhibit human NK cell ADCC
(30), so we can expect these treated autologous NK cells to also

have boosted ADCC activity, which is essential for the antibody
therapy to work.

There is also the possibility to accept the fact that patient
immune cells are dysfunctional, and to instead use allogeneic
adoptive NK cell therapy to mediate the ADCC required for
effective antibody mediated therapy. While allogeneic donor
NK cells are one possibility, CAR-NK cells could also be an
excellent tool in this setting. Jochems et al. engineered NK-
92 cells to express the high affinity CD16 receptor (116).
These CAR-NK-92 cells then had increased anti-tumor activity
and had higher rates of ADCC when used with Herceptin,
Cetuximab, and Pertuzumab in vitro. Targeting metabolism to
improve function and survival of these allogeneic cells in a
hostile cancer environment in vivo might extend the therapeutic
window prior to their eventual rejection. We predict that cell
models such as CAR-NK-92 cells could be effective in the
treatment of cancers which currently use antibody therapy
in their first line of treatment (breast cancer, lymphoma,
neuroblastoma etc.). If CAR-NK-92 cells could be developed as
“off the shelf ” treatment, co-treatment of patients with antibody
and CAR-NK-92 cells might become a reality in the years
to come.

CONCLUDING REMARKS

Immunometabolism has reinvigorated many aspects of
immunology and raised many questions that are now under
active investigation. We now know that metabolic dysfunction
of immune cells is a key mechanism underlying many human
pathologies, including autoimmune disease, infection, obesity
and cancer. It is clear that TGFβ treatment inhibits NK
cell function and metabolism. In mice, this is mTORC1
dependent, yet in humans it seems that only chronic TGFβ
treatment is mTORC1 dependent. Indeed, the interplay between
TGFβ and mTORC1 warrants further investigation. It will
be exciting to discover what impact TGFβ might have on
other important aspects of mitochondrial biology such as ROS
production/signaling, mitochondrial dynamics, ER and calcium
signaling and much more. Lessons from the literature on other
cell types suggest that TGFβ might impact all of these currently
unknown aspects of NK metabolism.

The advances that have beenmade in adoptive cellular therapy
and genetic engineering in recent years will no doubt pave
the way to new immune therapeutic strategies that are tailored
according to cancer type, stage, genotype, immune infiltration
and increasingly important, metabolism. Future work must
focus on unraveling the molecular pathways that connect these
once distant fields of immunology and metabolism, so that
we can piece together the best ways to successfully translate
immunometabolism to the clinic.
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