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Toll-like receptors (TLRs) are important mediators of chronic inflammation in numerous

autoimmune diseases, although the role of these receptors in primary Sjögren’s

syndrome (pSS) remains incompletely understood. Previous studies in our laboratory

established Myd88 as a crucial mediator of pSS, although the disease-relevant ligands

and the upstream signaling events that culminate in Myd88 activation have yet to

be established. The objective of this study was to identify specific Myd88-dependent

TLR-related pathways that are dysregulated both locally and systemically in a mouse

model of pSS [NOD.B10Sn-H2b/J (NOD.B10)]. We performed RNA-sequencing on

spleens derived from NOD.B10 mice. We then harvested salivary tissue and spleens

from Myd88-sufficient and deficient C57BL/10 (BL/10) and NOD.B10 mice and

performed flow cytometry to determine expression of Myd88-dependent TLRs. We

cultured splenocytes with TLR2 and TLR4 agonists and measured production of

inflammatory mediators by ELISA. Next, we evaluated spontaneous and TLR4-mediated

inflammatory cytokine secretion in NOD.B10 salivary tissue. Finally, we assessed

spontaneous Myd88-dependent cytokine secretion by NOD.B10 salivary cells. We

identified dysregulation of numerous TLR-related networks in pSS splenocytes,

particularly those employed by TLR2 and TLR4. We found upregulation of TLRs in

both the splenic and salivary tissue from pSS mice. In NOD.B10 splenic tissue, robust

expression of B cell TLR1 and TLR2 required Myd88. Splenocytes from NOD.B10

mice were hyper-responsive to TLR2 ligation and the endogenous molecule decorin

modulated inflammation via TLR4. Finally, we observed spontaneous secretion of

numerous inflammatory cytokines and this was enhanced following TLR4 ligation in

female NOD.B10 salivary tissue as compared to males. The spontaneous production

of salivary IL-6, MCP-1 and TNFα required Myd88 in pSS salivary tissue. Thus, our

data demonstrate that Myd88-dependent TLR pathways contribute to the inflammatory

landscape in pSS, and inhibition of such will likely have therapeutic utility.
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INTRODUCTION

Primary Sjögren’s syndrome (pSS) is an autoimmune disease
characterized by exocrine gland dysfunction and immune
hyperactivity. Patients with pSS typically experience loss of saliva
and tear production as well as serious systemic sequelae including
pulmonary and renal pathoses and B cell lymphoma (1). Salivary
gland inflammation is considered a hallmark of the disease (2),
although the inciting disease events and pathways that maintain
chronic inflammation in this tissue remain unknown. Several
studies suggest that activation of innate immunity precedes
the adaptive response in pSS (3–8). However, the specific
pathways that lead to disease initiation and progression are
poorly understood.

Recent work in our laboratory identified a key role for
the adaptor Myeloid differentiation primary response protein
88 (Myd88) in pSS pathogenesis (9). Myd88 is critical for
both innate and adaptive immune function, as most Toll-
like receptor (TLR) and Interleukin-1 Receptor (IL-1R) family
members requireMyd88 for signal transduction (10). Using a pSS
mouse model that lackedMyd88 (NOD.B10Myd88−/−), we found
spontaneous activation of Myd88-dependent pathways is crucial
for disease progression (9). While TLR and IL-1 family members
are increased in murine and human SS salivary tissue (3, 11–16),
relatively few studies have examined the functional contribution
of these pathways to salivary and systemic inflammation and
most of these have focused on the Myd88-independent agonist
TLR3 (5, 6, 17–21).

To understand the contribution of Myd88-dependent
TLR pathways to pSS pathogenesis, we first performed RNA-
sequencing (RNA-seq) on splenic tissue from NOD.B10Sn-H2b/J
(NOD.B10) females with clinical disease and C57BL/10
(BL/10) controls. We found numerous genes related to TLR
activation were altered, including those utilized in TLR2
and TLR4-mediated signaling cascades. We found TLR2,
TLR2 co-receptors (TLR1 and TLR6), and TLR4 levels were
altered in splenic and salivary B cells derived from pSS mice.
These findings carried functional significance as splenocytes
from NOD.B10 females with clinical disease were hyper-
responsive to TLR2 ligation. Moreover, treatment of pSS
splenocytes with the damage-associated molecular pattern
(DAMP) Decorin (Dcn) resulted in altered inflammatory
cytokine secretion in a TLR4-dependent manner. Of note,
Dcn induced a distinct inflammatory profile as compared to
lipopolysaccharide (LPS) in NOD.B10 splenocytes. Furthermore,
we found TLR4 ligation of pSS salivary cells resulted in
the production of inflammatory mediators, and this was
particularly pronounced in tissues derived from female
animals as compared to males. Finally, pro-inflammatory
cytokine secretion was attenuated in salivary gland tissue from
Myd88-deficient NOD.B10 mice. These data demonstrate
that specific Myd88-dependent TLRs are dysregulated in pSS
and identify Dcn as a novel mediator of inflammation in
disease. Blockade of TLR pathways may represent an innovative
therapeutic strategy for the treatment of local and systemic
disease manifestations.

MATERIALS AND METHODS

Mice
Age-matched male and female NOD.B10 and age-matched
female BL/10 mice were used (Jackson Laboratory, Bar Harbor
ME, USA). NOD.B10Myd88+/− and NOD.B10Myd88−/− mice
were previously described (9). B6.129P2(SJL)-Myd88tm1.1Defr/J
mice were purchased from Jackson Laboratories. We generated
BL/10 mice that are deficient in Myd88 by crossing BL/10 mice
withMyd88−/− mice (B6.129P2(SJL)-Myd88tm1.1Defr/J). We then
bred 10 successive generations of heterozygotes back to BL/10
mice to generate Myd88-deficient mice that are fully BL/10
(BL/10Myd88−/−). Animals were bred and maintained at the
University at Buffalo and housed in identical conditions. All
animals used in this study were at least 26 weeks of age, the
time that NOD.B10 females normally develop clinical disease
(22, 23). Mice were cared for and handled in accordance with
the institutional animal care and use committee (IACUC) and
US NIH guidelines.

RNA Sequencing
Spleens were isolated from NOD.B10 females at 26 weeks of age
and from age and sex-matched BL/10 controls. RNA was isolated
according to standard protocols using a Qiagen RNeasy kit. RNA
meeting quality standards (>8.0) were used as input for RNA-
seq using Illumina’sTru-seq low-throughput multiplex protocol.
Three biological replicates for each strain were sequenced in
parallel using an Illumina HiSeq 2500, with 50 cycle single-end
read reactions. Sequence reads were mapped to the reference
genome sequence ofMus musculus (mm10 build) using Tophat2
(PMID 23618408). Reads that aligned to the mouse genome
were counted using featureCounts. We compared the BL/10 and
NOD.B10 strains to identify the Differentially Expressed Genes
(DEGs) using the DESeq pipeline in the DESeq2 R package (24).
The DESeq2 package provides methods to test for differential
expression using the negative binomial generalized linearmodels.
The estimates of dispersion and logarithmic fold changes
incorporate data-driven prior distributions. In this analysis, we
used BL/10 mice as the reference group and identified the set of
DEGs with the Benjamin–Hochberg adjusted p < 0.05. Datasets
have been deposited in the Gene Expression Omnibus (GEO)
database under the accession number GSE136402.

Isolation and Culture of Salivary and
Splenic Tissue
Submandibular gland (SMG) tissue and spleens were harvested
following euthanasia. For RNA isolation, tissue was snap
frozen in liquid nitrogen. For primary splenocyte culture
experiments, spleens were mechanically disrupted and red
cell lysis was carried out using ACK lysing buffer (Gibco).
Cells (5 × 106 per well) were plated in 0.5mL of complete
RPMI media containing 2% FBS and cultured for 24 h in
media alone, or with media containing S. aureus peptidoglycan
(PGN) (1.25µg/ml) (Invivogen), Pam3SCSK4 (P3C4) (5 ng/ml)
(Invivogen), FSL-1 (5 ng/ml) (Invivogen), S. typhimurium,
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(0.25µg/ml) (Sigma-Aldrich), E. coli LPS B5-Ultrapure (B5-
UP) (0.1µg/ml) (Invivogen), or murine Dcn (20µg/mL, R&D
systems). TAK-242 was used to inhibit TLR4 activation (5µM,
EMD Millipore). Finally, polymyxin B (PMB) was used at
a concentration of 100µg/mL (Invivogen). Supernatants were
harvested and stored at−20◦C until use.

For primary SMG culture experiments, tissue was dispersed
enzymatically and mechanically in dispersion buffer [(DMEM-
Ham’s F12 (1:1), bovine serum albumin (1%), CaCl2 (0.2mM)
(ThermoFisher Scientific), hyaluronidase (400 U/mL) (Sigma-
Aldrich), and collagenase P (0.08 mg/mL) (Worthington
Biochemical, Lakewood, NJ, USA)] for 30min and incubated
in a shaking water bath at 37◦C. Cells were washed twice
in acini buffer (pH 7.4) (NaCl (120mM), KCl (4mM),
KH2PO4 (1.2mM), MgSO4 (1.2mM), HEPES (15MM), dextrose
(10mM), CaCl2 (1mM), and bovine serum albumin (1%)
(ThermoFisher Scientific), and plated in complete media
as previously described (25). Where indicated, cells were
cultured in the presence or absence of LPS derived from S.
minnesota (10µg/mL) for 24 h (Sigma-Aldrich). Supernatants
were harvested and stored at−20◦C until use.

Multiplex Cytokine Array
Supernatants from BL/10, NOD.B10, NOD.B10Myd88+/−, and
NOD.B10Myd88−/− SMG tissue and splenocytes were harvested
as described above. Bradford assays were used to confirm
total protein concentrations were similar in all samples
(BioRad). Multiplex cytokine arrays were performed (Quansys
Biosciences). Each sample was analyzed in triplicate.

IL-6 and TNFα ELISAs
Splenocyte supernatants were harvested following culture
for 24 h and IL-6 and TNFα levels were quantified by
ELISA (Invitrogen and BioLegend, respectively). All
samples were analyzed in duplicate in accordance with
manufacturer instructions.

Flow Cytometry
Flow cytometry was performed as previously described (9).
Briefly, SMG cells and splenocytes were dissociated as described
above. Cells were incubated in Fc block [(Cd16/32, clone
2.4G2), BD Biosciences] and were treated with the following
antibodies as indicated: B220 (clone RA3-6B2, BD Biosciences),
TLR1 (clone CB225, BD Biosciences), TLR2 (clone 6C2, BD
Biosciences), TLR4/Md2 (Clone MTS510, BD Biosciences), and
TLR6 (clone C1N2, BD Biosciences). Data were acquired using
a Fortessa (BD Biosciences) and analyzed using FlowJo software
(BD Biosciences).

Statistics
All statistical analyses were performed using GraphPad Prism
software. Data were analyzed by Mann–Whitney or one-
way ANOVA with the Tukey’s multiple comparisons tests
as indicated.

BarGraph
Gene ontology bargraph was generated in R (26), using the
ggplot2 (27) package. The top 1,000 differentially enriched genes

in NOD.B10 spleens were used as input for gene ontology
analysis on the DAVID website version 6.8 (28, 29) using default
settings. The KEGG (30–32) pathway output was then imported
into R and re-formatted to generate the resulting bargraph.

RESULTS

TLRs and TLR-Related Pathways Are
Dysregulated in NOD.B10 Mice
In order to better define the genetic differences between pSS mice
and healthy controls, we performed RNA-seq based expression
profiling of spleens isolated from female NOD.B10 mice with
clinical disease and age and sex-matched BL/10 controls (n =

3 each). Differential gene expression analysis focusing on the
top 1,000 genes enriched in the NOD.B10 mice compared to
control animals revealed enrichment of genes associated with
immune activation, including T cell receptor signaling pathways,
cytokine-cytokine receptor interactions and ECM (extra-cellular
matrix)-receptor interactions (Figure 1A). We next mined our
RNA-seq dataset and identified a number of DEGs associated
with TLR-related signaling pathways (Figure 1B) and cytokines
and chemokines that are expressed as a consequence of
TLR activation (Figure 1C). These data indicate a role for
dysregulated TLR signaling pathways in the pathogenesis of pSS.

Expression of TLR1, TLR2, TLR6, and TLR4
Is Altered in Splenic and Salivary Tissue
From NOD.B10 Females
Since we found that genes associated with TLR2 and TLR4
signaling were altered in NOD.B10 splenic tissue, we performed
flow cytometry to evaluate expression of these receptors.
We examined TLR2 and its co-receptors TLR1 and TLR6,
as well as TLR4 on splenic B cells derived from BL/10,
BL/10Myd88−/−, NOD.B10Myd88−/−, and NOD.B10 females (n
= 4 each). We focused our analyses on B cells because B cell-
intrinsic TLR expression is critical to the development and
progression of other autoimmune diseases (33–35). We found
that levels of TLR2 were significantly increased on NOD.B10
splenic B cells as compared to those derived from BL/10
controls (p < 0.0001) (Figure 2B). We then assessed levels
of these receptors in the Myd88-deficient strains. We found
that the percentage of splenic B cells expressing TLR1 and
TLR2 was diminished significantly in BL/10Myd88−/− animals
compared with the parental strain (p = 0.02 and p < 0.0001,
respectively) (Figures 2A,B). Furthermore, the percentage of
splenic B cells expressing TLR2 was diminished significantly
in NOD.B10Myd88−/− animals compared to NOD.B10 mice
(p < 0.0001) (Figure 2B). Significantly, the percentage of
NOD.B10Myd88−/− B cells expressing TLR1, TLR6, and TLR4
were similar to the BL/10 control strain (Figures 2A,C,D) and
the percentage of B cells expressing TLR2 was diminished in
NOD.B10Myd88−/− females as compared to the healthy BL/10
animals (p = 0.009) (Figure 2B). Thus, the percentage of splenic
B cells expressing TLR2 and TLR2 co-receptors is higher in
NOD.B10 animals as compared to BL/10 controls. Moreover,
Myd88-deficient NOD.B10 splenic B cells demonstrate TLR1,
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FIGURE 1 | TLR-related genes are dysregulated in splenic tissue derived from NOD.B10 mice. Spleens were harvested from NOD.B10 females with clinical disease (n

= 3) and age and sex-matched BL/10 controls (n = 3) and RNA-sequencing was performed. Bargraph showing the KEGG pathway terms represented in the top

1000 genes enriched in NOD.B10 mice. Dotted line represent the boundary for p = 0.05 (A). Heatmap visualizations showing the relative expression levels of selected

DEGs involved in TLR-related signaling pathways (B) and cytokines and chemokines (C) that were enriched in NOD.B10 splenic tissue.
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TLR2, and TLR6 expression levels that are similar to or even
lower than those observed in B cells derived from healthy
BL/10 controls. We then examined TLR4/MD2 expression and
observed no difference in B cell TLR4 expression between the
Myd88-deficient animals from either strain as compared to the
parental controls.

Finally, we examined TLR expression on NOD.B10 B cells
in SMG tissue. Of note, we could not compare these levels to
B cells derived from salivary tissue of BL/10 controls, as these
animals do not have significant B cell infiltration of salivary
tissue at 26 weeks of age (22). Interestingly, we found salivary
B cells from NOD.B10 mice expressed lower levels of TLR1 and
TLR2 than splenic B cells (p < 0.0001 for each comparison)
(Figures 2A,B), while the percentage of B cells expressing TLR6
and TLR4 was elevated in B cells derived from salivary B cells
as compared to those from splenic tissue (p = 0.2 and p =

0.001, respectively) (Figures 2C,D). These findings suggest TLR
expression is dysregulated in B cells in pSS andmay be influenced
by tissue-specific cues within the microenvironment.

Splenocytes Derived From NOD.B10 Mice
Are Hyper-Responsive to TLR2 Ligation
We next sought to determine whether the heightened expression

of TLR2, TLR2 co-receptors, and TLR4 in splenic B cells

carried functional significance. To this end, we first harvested
splenocytes from NOD.B10 females with clinical disease and
age and sex-matched BL/10 controls. We incubated cells with
2 different TLR4 agonists. We used LPS derived from S.
typhimurium, an agonist that primarily activates TLR4 (36). We
also stimulated cells with an ultrapure LPS that only activates
TLR4 (B5-UP derived E. coli 055:B5) (37). We found that
both agonists resulted in robust IL-6 secretion from BL/10
and NOD.B10 splenocytes, although there were no differences
observed between the 2 strains when cells were stimulated
with either S.typhimurium or B5-UP LPS (p = 0.3 and 0.2,
respectively) (Figure 3A).

We then stimulated splenocytes with TLR2 agonists. We
first used PGN derived from S. aureus. This ligand primarily

activates TLR2, although it is also reported to signal via NOD1
and NOD2 (38). Therefore, to examine activation of specific
TLR2 binding partners, we stimulated cells with Pam3CSK4,
a synthetic triacylated lipopeptide that activates TLR1/TLR2
heterodimers or FSL-1, a synthetic diacylated lipopeptide that
has specificity for the TLR6/TLR2 heterodimer (39, 40). We
found that both PGN and Pam3CSK4 stimulation resulted
in heightened IL-6 secretion in splenocytes derived from
NOD.B10 animals as compared to BL/10 controls (p = 0.002
and 0.009, respectively) (Figure 3B). Interestingly, we saw no
difference in IL-6 production when we stimulated cells with
FSL-1 (p = 0.6), suggesting that this TLR2 hypersensitivity was
primarily a result of TLR1/TLR2 ligation rather than TLR2/TLR6
interactions (Figure 3B). Therefore, NOD.B10 splenocytes are
hyper-responsive to TLR2 agonists.

The DAMP Dcn Modulates Inflammatory
Cytokine Production in a TLR4-Dependent
Manner
Although pSS patients exhibit increased incidence of infections
compared to the general population, it is likely that TLR
activation in pSS is not solely mediated by microbial infection
(41). Therefore, we sought to determine whether DAMPs
promote inflammatory cytokine secretion and activate
lymphocytes in the context of pSS. To this end, we stimulated
splenocytes with the DAMP Dcn, as this ECM molecule
is degraded in salivary tissue from NOD.B10 mice with
disease (42). To confirm that this effect was not a result of
endotoxin contamination, cells were treated concomitantly
with PMB. We found that incubation of BL/10 and NOD.B10
splenocytes with Dcn resulted in secretion of TNFα, but
IL-6 production was not seen (Figure 4A). We also analyzed
LPS (S. typhimurium) treated cells and observed robust
IL-6 and TNFα secretion as expected (Figure 4A). We
then sought to determine whether Dcn-mediated TNFα
production was dependent on TLR4. We incubated cells with
the TLR4 inhibitor TAK-242 (43) and found that treatment

FIGURE 2 | TLR expression is increased in splenic B cells from NOD.B10 mice in a Myd88-dependent manner and differs from that seen in salivary B cells. Spleens

were isolated from female BL/10, BL/10Myd88−/−, NOD.B10, and NOD.B10Myd88−/− mice (n = 4 each) and SMG tissue was isolated from NOD.B10 females (n = 4

each). Flow cytometry was performed to assess expression of (A) TLR1, (B) TLR2, (C) TLR6, and (D) TLR4 on B220+ B cells. Significance was determined using a

one-way ANOVA with the Tukey’s multiple comparisons tests. Mean and SEM are shown (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001).
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FIGURE 3 | NOD.B10 splenocytes are hyper-responsive to TLR2 ligation. Spleens were isolated from female NOD.B10 mice with clinical disease (n = 8) and age and

sex-matched BL/10 controls (n = 10). Splenocytes were cultured as indicated, supernatants were collected, and IL-6 ELISAs performed. All samples were analyzed in

duplicate and results of two independent experiments are shown. Significance was determined using the Mann-Whitney test. Mean and SEM are shown (**p ≤ 0.01).

with TAK-242 abrogated TNFα secretion (Figure 4B). Of
note, incubation with a TLR2 neutralizing antibody in the
presence of Dcn did not diminish TNFα secretion (data
not shown).

To determine whether Dcn induced secretion of additional
pro-inflammatory cytokines in the context of pSS, we harvested
splenocytes from NOD.B10 females with clinical disease and
those derived from age and sex-matched BL/10mice (n= 5 each).
Cells were incubated with media alone, Dcn in combination
with PMB, or S. typhimurium LPS and cytokine multiplex arrays
were performed on the supernatants (Figure 4C). Strikingly,
we found that Dcn reduced production of both Macrophage
Inflammatory Protein-1α (MIP-1α, also called CCL3) and
Monocyte Chemotactic Protein-1 (MCP-1, also called CCL2)
in splenocytes derived from NOD.B10 females (p = 0.02 and
0.02, respectively). In contrast, MIP-1α secretion by NOD.B10
splenocytes was increased in the presence of LPS (p = 0.008),
while secretion of MCP-1 by NOD.B10 splenic cells did not differ
between cells treated with media or LPS (p = 0.8). Of note,
these findings were specific for pSS, as there was no difference
in production of MIP-1α or MCP-1 between BL/10 cells treated
with media alone or Dcn (p = 0.7 and 0.1, respectively).
Finally, we examined RANTES (also termed CCL5) secretion in
BL/10 and NOD.B10 splenocytes. We found that Dcn promoted
RANTES secretion in BL/10 splenocytes as compared to cells
incubated withmedia alone, although the difference did not reach
significance (p = 0.06). Interestingly, Dcn did not alter RANTES
secretion in NOD.B10 splenocytes (p = 0.2), although RANTES
levels were elevated in supernatants derived from unstimulated
NOD.B10 splenic cells as compared to those derived from BL/10
cells animals (p = 0.03). Of note, RANTES was induced in both
BL/10 and NOD.B10 splenocytes treated with LPS (p = 0.008
and 0.008, respectively). Finally, Dcn did not alter secretion
of IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-10, IL-12p70, or IL-17 in
either BL/10 or NOD.B10 splenocytes (Supplemental Figure 1).
Thus, Dcn-mediated signals are distinct from those induced by

LPS in NOD.B10 splenocytes, and TLR4 activation by decorin
may be an important endogenous mediator of inflammation
in pSS.

Strong Constitutive and LPS-Induced
Cytokine Secretion Is Observed in SMG
Tissue Isolated From Female NOD.B10
Mice
Next, we sought to determine whether NOD.B10 salivary cells
exhibited spontaneous and TLR4-induced cytokine secretion.
We harvested SMG tissue from female NOD.B10 mice with
clinical disease (n= 3). SMG tissue from age-matched NOD.B10
males was used as a control (n = 3), since slower disease
progression is observed in males (23). Cells were pooled and
cultured for 24 h in the presence or absence of LPS and the
supernatant harvested.

We found female SMG cells secreted higher spontaneous
levels of IL-6, IL-17, MCP-1, TNFα, and RANTES as compared
to those derived from males and we observed little spontaneous
inflammatory cytokine expression in the male SMG cells.
LPS treatment resulted in heightened IL-6, IL-17, TNFα, and
RANTES in female salivary tissue. When stimulated with LPS,
male SMG cells were also responsive, secreting elevated levels
of IL-6, MCP-1, and RANTES, although levels secreted were
reduced as compared to females. Importantly, female SMG cells
were hyper-responsive to LPS stimulation, as levels of IL-17 and
TNFα increased in SMG tissue derived from females, but did
not change in the male samples (Figure 5). Statistical analyses
from 3 independent experiments are shown in Table 1. Taken
together, these data show that NOD.B10 SMG cells secrete
pro-inflammatory cytokines spontaneously and this secretion is
further enhanced in the presence of LPS. Moreover, the effect
of TLR4 agonism is more pronounced on female SMG tissue as
compared to male.
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FIGURE 4 | Dcn and LPS induce distinct inflammatory outcomes in NOD.B10 splenocytes via TLR4. Splenocytes were isolated from NOD.B10 females (n = 6) with

clinical disease and age and sex-matched BL/10 controls (n = 3). (A) Cells were cultured in media alone, Dcn and PMB, or S. typhimurium LPS alone or with LPS and

PMB. Supernatants were harvested and assayed for IL-6 and TNFα by ELISA. (B) Splenocytes from NOD.B10 females with clinical disease were cultured with the

indicated inhibitors and controls and the supernatants harvested. TNFα was measured by ELISA. Combined results of at least 3 independent experiments are shown.

All samples were analyzed in duplicate. (C) Splenocytes were isolated from NOD.B10 females (n = 5) with clinical disease and age and sex-matched BL/10 controls (n

= 5). Cells were cultured in media alone, Dcn and PMB, or S. typhimurium LPS for 24 h. Supernatants were harvested and MIP-1α, MCP-1, and RANTES levels were

quantified by cytokine multiplex array. All samples were evaluated in triplicate. Significance was determined using the Mann–Whitney test. Mean and SEM are shown

(*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, N.S., non-significant).

Myd88-Deficient NOD.B10 Mice Exhibit
Attenuated Proinflammatory Cytokine
Secretion
Next, we sought to determine whether the heightened cytokine

secretion observed in female SMG tissue was dependent on

Myd88. Previous studies in our lab found that salivary gland

inflammation is diminished inNOD.B10 females that lackMyd88

and these animals are protected from loss of salivary flow (9). To
determine whether Myd88 was a key mediator of spontaneous
inflammatory cytokine production in salivary tissue, we cultured
SMG cells from NOD.B10Myd88+/− and NOD.B10Myd88−/−

females and harvested the supernatant. Since NOD.B10 and
NOD.B10Myd88+/− females secrete similar levels of IL-6 (data not
shown) we compared NOD.B10Myd88+/− SMG supernatants (n
= 6) to those of littermate control NOD.B10Myd88−/− females
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FIGURE 5 | NOD.B10 SMG tissue exhibits spontaneous secretion of pro-inflammatory mediators that are enhanced in the presence of LPS. NOD.B10 female mice

with clinical disease (n = 5) were euthanized and SMG tissue harvested and pooled. Cells were cultured in the presence or absence of LPS for 24 h and the

supernatant harvested. (A) IL-6, (B) IL-17, (C) TNFα, (D) MCP-1, and (E) RANTES were assessed by cytokine multiplex array. All samples were analyzed in triplicate

and results from one of three independent experiments are shown. Significance was determined using Mann–Whitney test. SEM is shown (*p ≤ 0.05, **p ≤ 0.01,

***p ≤ 0.001, ****p ≤ 0.0001, N.S., non-significant).

TABLE 1 | Statistical analyses of NOD.B10 multiplex array results (Figure 5).

Cytokine Female Male Unstim LPS

Unstim vs.

LPS

Unstim vs.

LPS

Female vs.

Male

Female vs.

Male

IL-6 • p = 0.005

• p = 0.3

• p < 0.0001

<0.0001

<0.0001

N.D.

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

IL-17 • p = 0.009

• p = 0.001

• p = 0.1

0.4

0.4

N.D.

0.7

0.01

0.03

0.005

<0.0001

0.005

TNFα • p = 0.04

• p = 0.004

• p < 0.0001

0.4

0.02

N.D.

0.002

<0.0001

<0.0001

0.0002

< 0.0001

< 0.0001

MCP-1 • p = 0.4

• p = 0.03

• p = 0.01

0.0006

0.009

N.D.

0.0005

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

RANTES • p = 0.003

• p = 0.0003

• p = 0.002

0.03

0.03

0.2

0.002

<0.0001

0.001

<0.0001

<0.0001

0.03

1, 2, and 3, independent experiments; N.D., none detected.

(n = 6) for the multiplex array studies. We assayed a panel of
inflammatory mediators and found that IL-6, MCP-1, and TNFα
were decreased in supernatant derived from Myd88-deficient

mice (p = 0.004, 0.03, and 0.03, respectively) (Figures 6A–C).
Interestingly, we found no differences in levels of RANTES,
IFNγ, IL-17, IL-4 or IL-1β between the NOD.B10Myd88+/− and
NOD.B10Myd88−/− females (Figures 6D–H). These data indicate
that Myd88-dependent signaling pathways contribute to the
production of specific inflammatory cytokines in the context
of pSS.

DISCUSSION

Previous work by our group demonstrated that Myd88 is
essential for pSS disease development in NOD.B10 mice
(9). However, the specific signals that rely on Myd88 for
induction of inflammation in the context of pSS remained
unknown. To identify putative Myd88-dependent pathways
that are dysregulated in pSS, we performed RNA-seq and
identified dysregulation of many pathways associated with
immune activation, including TLRs and TLR-related networks
in NOD.B10 spleens. We then examined expression of TLR2,
TLR2 co-receptors, and TLR4 and found differences in
expression of these receptors in salivary and splenic tissue.
Moreover, splenocytes derived from pSS mice exhibited hyper-
responsiveness to TLR2 agonists as compared to those from
BL/10 controls. Treatment of NOD.B10 splenocytes with the
DAMP Dcn modulated inflammatory cytokine production via
TLR4. Of note, inflammatory outcomes induced by Dcn were

Frontiers in Immunology | www.frontiersin.org 8 January 2020 | Volume 10 | Article 2963

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kiripolsky et al. TLR Activation Contributes to Inflammation in pSS

FIGURE 6 | IL-6, MCP-1, and TNFα is decreased in SMG tissue derived from NOD.B10Myd88−/− females. SMG tissue was harvested from NOD.B10Myd88+/− and

NOD.B10Myd88−/− mice (n = 6 each). Tissue was dissociated, cultured for 24 h, and the supernatant harvested. Cytokine multiplex arrays were performed for (A) IL-6,

(B) MCP-1, (C) TNFα, (D) RANTES, (E) IFNγ, (F) IL-17, (G) IL-4 and (H) IL-1β. Each sample was analyzed in triplicate. Significance was determined using the

Mann–Whitney test. Mean and SEM are shown (*p ≤ 0.05).

distinct from those mediated by LPS in pSS. We found pSS
salivary tissue exhibited spontaneous cytokine secretion that was
further enhanced by TLR4 ligation. Finally, production of many
of these pro-inflammatory cytokines in salivary tissue required
Myd88. Taken together, these data suggest TLR2 and TLR4-
mediated signaling networks drive chronic inflammation in the
context of pSS.

While the ligands that drive disease progression in pSS remain
unknown, activation of TLR signaling pathways by DAMPs plays
a definitive role in many autoimmune diseases, including
lupus, rheumatoid arthritis, and scleroderma (44–46). DAMPs
are endogenous molecules that are released upon necrosis
or due to damage from tissue injury (45, 47, 48). In healthy
individuals, activation of TLR pathways via DAMPs results in
inflammatory gene expression which mediates tissue repair (49).
However, in individuals with autoimmunity, activation of these
pathways by DAMPs can result in release of pro-inflammatory
cytokines which further perpetuate an inflammatory
response (45, 47, 49).

Of relevance to the current study, elevated levels of proteolytic
degradation of two DAMPs that are normal constituents of the
ECM (Dcn and biglycan) are reported in salivary gland tissue
from NOD.B10 mice (42). Proteoenzymatic digestion of these
DAMPsmay release them from the ECM in soluble form, thereby
making them accessible as ligands for TLRs (50). This TLR
activation may then promote inflammatory cytokine secretion
by numerous cell types, ultimately leading to further ECM
degradation (49, 51–53). Both TLR2 and TLR4 are activated
by numerous DAMPs (48). While a previous study found Dcn
induced cytokine secretion via TLR2 and TLR4 in macrophages
(54), our work revealed that Dcn signals through TLR4, but not
TLR2, to induce TNFα in NOD.B10 splenic tissue. Thus, it is
possible that differences exist in signaling cascades activated by

Dcn in a cell-type specific manner and these could be altered in
the context of pSS.

It is important to point out that the animals examined in this
study are 26 weeks of age, the time at which the animals display
clinical disease. Several studies demonstrate key differences in
the immune response that vary depending on disease stage.
Accordingly, data suggest the innate response is activated early
in disease, and that activation of the innate response results in
engagement of the adaptive (3, 4, 55–58). Thus, it is likely that
the role of the Dcn-induced TLR-mediated signaling may vary
depending on the disease stage. For example, an inciting disease
event may lead to tissue damage within exocrine glands that
results in the release of soluble ECM molecules including Dcn.
These DAMPs could then bind to TLRs expressed by salivary
gland epithelial cells and tissue resident immune populations,
thereby driving production of pro-inflammatory mediators and
facilitating the recruitment of innate and adaptive cells into the
salivary tissue (59). This paradigm is supported by studies of
kidney pathoses, as DAMP-mediated recruitment of Th1 and
Th17 cells is mediated by TLR2 and TLR4 interactions (60).
Since most cells recruited to the salivary tissue express TLRs (8),
this may lead to a continuous cycle of unremitting inflammation
and further tissue destruction. As tissue breakdown continues,
Dcn levels may become elevated systemically, as is observed
for the related DAMP biglycan in SLE patients (44), and this
may be a mechanism contributing to the systemic disease
manifestations observed in pSS. Thus, blockade of these signals
early in the course of diseasemaymitigate both local and systemic
disease severity.

Furthermore, our data suggest that tissue-specific TLR
expression mediates distinct pSS disease manifestations. We
focused our initial analyses on salivary and splenic B cells, as the
importance of TLR activation of B cells in other autoimmune
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diseases is evident (61). In pSS, the significance of B cell-
intrinsic TLR signaling is poorly understood (62). Interestingly,
expression of TLR4 and TLR6 was higher while levels of TLR1
and TLR2 were diminished in B cells derived from NOD.B10
SMG tissue as compared to B cells derived from the spleen.While
the reasons for this are unclear at present, it is possible that
differences in the microenvironment of the SMG and the spleen
may govern B cell TLR expression in these tissues. Importantly,
although the regulation of TLR2 and TLR4 is complex, it is well-
established that receptor-ligand interactions initiate downstream
signaling pathways that regulate TLR expression in an autocrine
manner (51, 53, 63). These TLRs may be up- or downregulated,
depending on the specific ligand encountered (51). This elaborate
regulatory network provides an elegant feedback loop that allows
for the modulation of inflammation. However, in autoimmunity
these networks may be triggered inappropriately, thereby leading
to chronic activation and subsequent tissue damage.

In pSS, splenic and salivary cells are hyper-responsive to
TLR2 and TLR4, respectively, suggesting an important role
for DAMP-induced inflammation in disease in both immune
cells and salivary epithelium. Our findings are consistent with
those in humans, as TLR2, TLR4, and TLR6 are upregulated
in salivary tissue of pSS patients and pSS peripheral blood
cells are hyper-reactive to ligation by TLR4, TLR2, and TLR2/6
agonists (LPS, peptidoglycan, and zymosan, respectively) (16).
Furthermore, our work demonstrates that Dcn modulates
inflammation in NOD.B10 splenocytes. These findings have
important implications for disease pathogenesis, as it is possible
that circulating B cells that have high TLR4 expression could
encounter soluble decorin within pSS salivary tissue (16). TLR
ligation by this DAMP could then promote inflammation and
further tissue destruction through secretion of cytokines such
as TNFα and possibly RANTES (16, 53). Interestingly, work in
a lupus model demonstrates that overexpression of biglycan, a
DAMP that is related to Dcn, induces similar levels of TNFα
in spelenic tissues as were observed in our pSS mice (44). It is
important to point out that Dcn also attenuated production of
specific pro-inflammatory mediators in NOD.B10 splenocytes,
as production of both MIP-1α and MCP-1 was mitigated in the
presence of Dcn. Thus, further work is needed to understand this
potentially dichotomous role of Dcn in pSS.

MIP-1α, MCP-1, and RANTES are important mediators of
immune cell chemotaxis. Indeed, MIP-1α is secreted by most
hematopoietic cells and binds CCR1 and CCR5. MIP-1α recruits
immune cells to sites of inflammation, specifically T cells,
monocytes, dendritic cells (DCs), and natural killer (NK) cells
(64). More recent work revealed that MIP-1α induces chemotaxis
of T follicular regulatory (Tfr) cells and promotes interactions
between antigen-specific B cells and Tfr cells (65). MCP-1 is a
ligand for CCR2 and is expressed by diverse cell types, including
epithelium and macrophages (66). CCL2 drives recruitment of
monocytes/macrophages, memory T cells, and NK cells (66). In
addition, RANTES is produced by many cells types, including
T cells and binds to CCR1, CCR3, and CCR5 to mediate
chemotaxis of T cells, DCs, eosinophils, NK cells, and mast cells
to inflamed tissues (67). Lastly, a mouse model that overexpresses
TNFα in salivary tissue specifically develops robust sialadenitis
reminiscent of that seen in SS patients (68). Thus, Dcn-induced

dysregulation of cytokines and chemokines in the context of pSS
likely alters the immune response, including the recruitment of
both innate and adaptive cells to sites of inflammation in disease.

Previous work by our group demonstrated Myd88 is crucial
for pSS development in NOD.B10 mice (9). The present study
extends these findings, as we demonstrated that Myd88 controls
expression of TLR1 and TLR2 in splenic B cells. Furthermore,
Myd88 is required, at least in part, for spontaneous production of
IL-6, MCP-1, and TNFα within the salivary tissue. Importantly,
numerous studies show Myd88 is essential for DAMP-mediated
inflammation (44, 60, 69, 70). Our findings suggest that
the attenuated disease phenotype observed in the Myd88−/−

NOD.B10 model may be due to reduced activation of DAMP-
mediated TLR signaling networks (9). While further data are
needed to identify the specific DAMPs, and whether these are
interactions are driven by exocrine-gland destruction specifically,
our work suggests that ligation of TLR4 by Dcn may be a novel
underlying source of inflammation in pSS.

Here we show LPS and Dcn induce secretion of distinct pro-
inflammatory cytokines, as Dcn only induces TNFα, while LPS
induces both IL-6 and TNFα. Moreover, LPS induces significant
MIP-1α secretion while secretion of this cytokine is diminished
by Dcn in NOD.B10 splenocytes (Figure 4). These data are
consistent with the literature, as DAMPs and PAMPs that bind
the same TLR can induce divergent signaling outcomes (53).
Specifically, while ligation of TLR4 with either a DAMP or a
PAMP resulted in NF-κB activation in macrophages, ligand-
dependent differences were observed in both cytokine secretion
and phosphoproteomic profile (53). While the reasons for these
differential signaling outcomes are incompletely understood,
it is likely that different TLR agonists facilitate recruitment
of specific adaptor molecules that direct distinct signaling
outcomes. For example, LPS activation of TLR4 requires both
MD-2 and CD14, while the DAMP tenascin-C does not (71).
Another factor that likely contributes to the specificity of the
response is the ligand-induced conformational changes of the
TLR itself, as different LPS chemotypes result in the formation
of either monomeric or dimeric TLR4 complexes (72). While
the aforementioned study did not assess downstream signaling
events in depth (72), it is possible that DAMPs and PAMPs
may induce distinct conformational changes in cognate TLRs
that fine-tune the inflammatory response. Further studies are
needed to determine the exact mechanisms governing signaling
outcomes by exogenous and endogenous agonists that bind the
same TLR.

In conclusion, we established that TLR1, TLR2, TLR6, and
TLR4 are differentially expressed in splenic and salivary B cells of
NOD.B10 mice and expression of TLR1 and TLR2 is attenuated
in the absence of Myd88. Importantly, splenocytes from pSS
mice are hyper-responsive to TLR2 ligation and female NOD.B10
salivary tissue shows heightened inflammatory cytokine secretion
in the presence of LPS. In addition, production of IL-6, TNFα,
and MCP-1 requires Myd88 in salivary tissue. Finally, Dcn may
represent a novel mediator of TLR-induced inflammation in pSS,
as this ECM molecule modulated production of inflammatory
mediators in splenocytes. Thus, our work suggests an important
role for activation of TLR2 and TLR4 both locally and
systemically in pSS.
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Supplemental Figure 1 | Splenocytes were isolated from NOD.B10 females (n =

6) with clinical disease and age and sex-matched BL/10 controls (n = 3).

Splenocytes were isolated from NOD.B10 females (n = 5) with clinical disease and

age and sex-matched BL/10 controls (n = 5). Cells were cultured in media alone,

Dcn and PMB, or S. typhimurium LPS for 24 h. Supernatants were harvested and

(A) IL-1α, (B) IL-1β, (C) IL-2, (D) IL-4, (E) IL-5, (F) IL-10, (G) IL-12p70, and (H)

IL-17 levels were quantified by cytokine multiplex array. All samples were

evaluated in triplicate. Significance was determined using the Mann–Whitney test.

Mean and SEM are shown (∗∗p ≤ 0.01).
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