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Over the last decades, our understanding of adaptive immune responses to solid organ

transplantation increased considerably and allowed development of immunosuppressive

drugs targeting key alloreactive T cells mechanism. As a result, rates of acute rejection

dropped and short-term graft survival improved significantly. However, long-term

outcomes are still disappointing. Recently, increasing evidence supports that innate

immune responses plays roles in allograft rejection and represents a valuable target

to further improve long-term allograft survival. Innate immune cells are activated by

molecules with stereotypical motifs produced during injury (i.e., damage-associated

molecular patterns, DAMPS) or infection (i.e., pathogen-associated molecular patterns,

PAMPs). Activated innate immune cells can exert direct pro- and anti-inflammatory

effects, while also priming adaptive immune responses. These cells are activated after

transplantation by multiple stimuli, including ischemia-reperfusion injury, rejection, and

infections. Data from animal models of graft rejection, show that inhibition of innate

immunity promotes development of tolerance. Therefore, understanding mechanisms

of innate immunity is important to improve graft outcomes. This review discusses

effects of currently used immunosuppressive agents on innate immune responses in

kidney transplantation.

Keywords: innate immunity, kidney transplantation, calcineurin inhibitors, mTOR-inhibitors, mycophenolate

mofetil, glucocorticoids

INTRODUCTION

For many years, strategies to prevent allograft rejection have focused purely on preventing
adaptive immunity. Recent evidence has increasingly indicated that pure focus on T and B cells
is not sufficient to improve long-term renal transplant outcomes (1–3). Innate immune cells
(e.g., dendritic cells, monocytes, macrophages, neutrophils, NK cells), via numerous mechanisms,
play an important role in all major immunological events following kidney transplantation (4).
During the peri-transplant period, innate immunity is activated by donor brain death, ischemia-
reperfusion injury, immunosuppression non-adherence, and infections—all of which increase risk
for acute rejection (4–6). Late post-transplant innate immune cells produce an inflammatory
microenvironment either in response to ongoing adaptive immune responses (e.g., chronic
antibody mediated rejection) or independently, that enhances chronic allograft damage (7).

Innate immune cells are activated by common mechanisms. Molecules with stereotypical
motifs produced during injury (i.e., damage-associated molecular patterns, DAMPS) or infection
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(i.e., pathogen-associated molecular patterns, PAMPs) initiate
a variety of inflammatory events, including diapedesis,
inflammatory cytokine production, and cell death (8). These
pattern recognition receptor (PRR)-mediated inflammatory
responses are necessary for microbial clearance. However,
occurring post-transplant and resulting from release of
endogenous PRR ligands, so-called “sterile inflammation,” they
can lead to severe and often irreversible graft tissue damage and
fibrosis (8, 9). Importantly, these phenomena provide a link
to adaptive immune responses through induced costimulatory
molecule expression and cytokine-mediated “help.”

Herein, we will review relevant literature regarding the
impact of the main immunosuppressive agents employed
in the maintenance phase of kidney transplantation
(calcineurin inhibitors, mycophenolate mofetil/mycophenolic
acid, corticosteroids, and mTOR inhibitors) on innate
immune responses.

CALCINEURIN INHIBITORS

Calcineurin inhibitors (CNI), such as tacrolimus (TAC, FK-
506) and cyclosporine A (CsA), still represent the mainstay of
immunosuppression in kidney transplantation. Their dominant
mechanism of action is the inhibition of Nuclear Factor of
Activated T-cells (NFAT) phosphorylation, with consequent
reduction of IL-2-mediated T lymphocyte activation and
proliferation (10, 11). CNI may also inhibit cytokines secretion
and effective antigen presentation in innate immune cells,
reducing their T cell priming capacity (12, 13). All these activities
are primarily involved in the pathogenesis of acute rejection and
other transplant-associated comorbidities.

Evidence shows that CsA blocks NFAT binding to the
inducible NO synthase (iNOS) promoter, causing a reduction
of iNOS expression and nitrite production in macrophages (14,
15). CsA can also down-regulate the enzyme cyclooxygenase-
2 (COX-2) in the kidney, which converts arachidonic acid
into prostaglandin E2 (PGE2), an inflammatory mediator
that modulates vascular permeability to expedite immune cell
recruitment (16, 17).

CsA reduces the secretion of pro-inflammatory cytokines
tumor necrosis factor (TNF)-α and IL-12 induced by LPS in
human DCs (12, 18–20) and murine Langerhans cells (21, 22).
On the other hand, CsA is able to increase the production of
anti-inflammatory IL-10 in bone marrow derived DCs (BMDCs)
and human blood-derived DCs induced by LPS (12, 18, 21).
The inhibition of IL-12 and the induction of IL-10 mediate the
ability of CsA to promote an anti-inflammatory phenotype on
these DCs with consequent differential regulation of effector T
cell subsets.

This effect could be enhanced in patients treated with anti-
thymocyte globulins. As reported by Naujokat et al. (23), DCs
are potential targets of anti-thymocyte globulins (ATGs). These
agents can bind cell surface receptors on DCs and regulate some
of their major immunological functions.

CNI have also an inhibitory effect on Toll-like receptors
(TLRs) dependent activation of monocytes/macrophages.
In monocytes/macrophages from liver transplant recipients,
therapeutic concentrations of CsA impaired IL-6 production in

response to TLR2 and TLR7/8 activation, and TNF-α synthesis
due to TLR7/8 stimulation, more than TAC (24). In renal
transplant recipients, a switch from CsA to TAC caused a
large monocytes/macrophages response, measured as TNF-α,
IL-1β, IL-6, and IL-10 production, further supporting the
higher inhibitory effects of CsA on monocytes compared
to TAC (25). The impairment of TLR function affects the
risk of graft rejection, infection, and disease recurrence
after transplantation, and the difference impact of CsA and
TAC on monocytes should be considered in the choice
of immunosuppressant therapy in order to improve the
outcomes (24).

Moreover, although there are not conclusive findings
regarding the effects of maintenance immunosuppressive drugs
on innate immunity and their impact on ischemia reperfusion,
the study of Yang et al. (26) suggested that CsA was ineffective
to control innate immunity following ischemia reperfusion
injury (IRI). In fact, this medication increased the infiltration
of Endothelin-1 (ED-1+) (a specific rat monocyte/macrophage
marker) cells in tubulointerstitium and periglomerular areas in
rat kidneys undergoing IRI. Centrally, TAC had an opposite
effect. A similar trend was seen for several inflammation
cytokines (26).

CNI may also influence immune cells by affecting their
mitochondrial function (27). In macrophages, mitochondrial
cardiolipin, ROS, and DNA trigger IL-1β secretion by activating
the NLRP3 inflammasome (28) and mitochondrial antiviral
signaling protein (MAVS) oligomerization, inducing type I
IFN production (29) and NFκB activation (30). CsA inhibits
inflammasome activation preventing mitochondrial membrane
permeability transition (MPT), thereby reducing inflammatory
cytokine secretion (28).

In neutrophils CNI are able to inhibit ROS generation
and the formation of Neutrophil Extracellular Traps
(NET) (31), causing important functional or pathological
effects. In Rag2−/− mice, lacking B and T cells, CNI
treatment induced a rapid development of Candida
albicans infections, indicating that CsA impairs specific
anti-fungal functions in innate immune cells (32). More
specifically, mice lacking calcineurin activity in neutrophils
were defective in the ability to kill Candida albicans
indicating that CsA may directly influence neutrophil killing
processes (32).

Currently, overall mortality due to fungal infections in
transplant patients varies between 25 and 80%, with Candida
and Cryptococcus species being the most commonly identified
yeasts (33).

The higher doses of immunosuppressive medications in the
first 6 months after transplantation are major causes of fungal
infections. Ex vivo studies revealed that CsA damages human
neutrophil clearance of Aspergillus fumigatus (another important
cause of post-transplant opportunistic infections) (34), and that
this effect is more evident in patients reaching high CNI trough
levels. Inhibition of neutrophils activity by CNI may be, at
least in part, responsible for increased risk of post-transplant
fungal infections.

CNI do also affect NK cells in kidney transplant recipients
(35). Zhang et al. have demonstrated that the expression levels
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of TNF-related apoptosis-inducing ligand (TRAIL) and FasL,
potent apoptosis inducers, increase in NK cells at day 5 after
transplantation, while their levels return to baseline on day 13
post-kidney transplantation (36). The authors also demonstrated
that in supernatants generated from mixed lymphocytes culture
(MLC) and on the surface of activated lymphocytes (particularly
on NK cells) there was a significant increment of the expression
of TRAIL and FasL. This condition was considerably reduced by
adding CsA (500 ng/mL) at the beginning of MLC, an effect that
could, at least in part, be implicated in the antirejection properties
of CsA (36).

CsA inhibits the NK cells proliferation in a dose-dependent
manner (37). Morteau et al. showed that ex vivo treatment of NK
cells from healthy controls with CNI inhibits their degranulation
and IFN-γ production. Similar functional impairment was
observed in NK cells from CNI-treated patients. This could have
dramatic effects on the NK cells capacity of killing transformed or
virus-infected cells and producing pro-inflammatory cytokines
and could, at least in part, explain the increased risk of
opportunistic infections and tumors of CNI-treated patients (38).

MYCOPHENOLATE
MOFETIL/MYCOPHENOLIC ACID

Currently, mycophenolate mofetil (MMF) and its active
metabolite mycophenolic acid (MPA), are the most widely used
drugs in transplantation (39, 40). MMF/MPA are considered
specific anti-lymphocytes agents, since they reduce the de
novo guanosine nucleotide synthesis by selectively inhibiting
the inosine monophosphate dehydrogenase (IMPDH), mainly
expressed by T- and B- cells (41, 42).

When exposed to MMF/MPA, monocytes show lower levels
of pro-inflammatory cytokine IL-1β and altered polarization,
with enhanced expression of surface markers (like CD163
and CD200R), generally associated with an anti-inflammatory
function (M2 phenotype) (43). Additionally, MMF/MPA-
exposed monocytes down-regulate several adhesion molecules,
like ICAM-1, and display a weaker binding to cultured
human umbilical vein endothelial cells (HUVEC) (44). Treating
HUVECs alone with MMF/MPA does not reduce the adhesion
of activated monocytes, reinforcing the idea of a direct effect of
these compounds on monocytes (45).

In a mouse model of renal IRI, MMF down-regulated TLR4
expression on monocytes surface, along with plasma level of
several cytokines (IL-6, MCP-1, and TNF-α). This resulted in
milder kidney damage, as defined by creatinine levels and
histological findings at 48 h after IRI (46).

MMF also reduces the LPS-induced expression of MHC-
II on monocyte surface, suggesting a reduced activity as
antigen presenting cells (44). In the presence of increasing
MMF concentrations, human monocyte-derived dendritic cells
(hMDDC) showed progressively less reactive phenotype. MMF
treatment lowers the expression of costimulatory molecules
(CD40, CD80, CD86), adhesion proteins (ICAM-1) and
maturation markers (CD83, CD206), and decreases the synthesis
of proinflammatory cytokines (TNF-α, IL-10, IL-12, IL-18) and

alloreactive T-cells stimulation (47). When exposed to MMF,
monocytes do also display higher rates of apoptosis (48).

MPA and MMF have similar effects on hMDDCs activation
and maturation, but MMF reduces, instead of increasing, IL-10
synthesis. This may support the concept that MPA has stronger
protolerogenic effects on monocytes compared to MMF (49). It
is likely that these effects are independent of IMPDH inhibition.

MMF/MPA have also modulating effects on NK cell activity.
Similarly to mTOR inhibitors, they significantly reduce the
proliferation of these cells and inhibit the expression of CD56,
associated with a highly reactive phenotype (50, 51). Accordingly,
NK cells treated with these agents lose their cytotoxicity against
K562 bone marrow target cells and reduced IFN-γ production
upon target encounter (50, 51).

Taking together, these data suggest that MMF/MPA impair
differentiation, maturation and function of various innate
immunity cells, whichmay represent an additional mechanism of
their immunosuppressive effects. Whether similar mechanisms
are shared with azathioprine, an antiproliferative agents with
similar antirejection effects (52), is unclear.

GLUCOCORTICOIDS

Glucocorticoids (GCs) are anti-inflammatory drugs employed in
both induction and maintenance phase of immunosuppression
after kidney transplantation. They inhibit the inflammatory
response and leukocyte migration into inflamed tissues.
They also accelerate resolution of inflammation by inhibiting
vascular permeability and leukocyte distribution/trafficking,
and by modulating death/survival and cellular differentiation
programs (53, 54).

Until recently, it has been thought that the anti-inflammatory
effects of GCs were linked to their ability to inhibit regulator
of genes encoding pro-inflammatory cytokines (e.g., NFκB
and AP-1) through a mechanism called “transrepression” (55).
However, additional mechanisms include: (1) transcription
of genes able to negatively interfere with the synthesis of
inflammatory mediators; (2) repression of genes mediating
immune cells activation; (3) synergism between glucocorticoid
receptor and transcription factors leading to the induction of
anti-inflammatory genes (56, 57).

Glucocorticoids may also have direct effects on innate
immune cells. In vitro, methylprednisolone-treated monocytes
show increased expression of anti-inflammatory cytokines, like
IL-10, with concomitant down-regulation of TNF-α, IL-1β,
and IL-12 (58–60). Furthermore, GC-treated monocytes show
lower expression levels of CD80 in response to inflammatory
stimuli, which impairs their antigen-presenting activity (61). In
vivo, data from methylprednisolone-treated kidney transplant
patients, show increased numbers of CD14++CD16− (classical)
and CD14++CD16+ (intermediate) monocytes, while the
CD14+CD16++ (non-classical) population is declined compared
to patients receiving CNI, MMF/MPA or mTOR inhibitor
(62). This is consistent with recent observations showing a
downregulation of TLR4 level on the surface of GC-treated
monocytes. TLR4 is a pivotal element of the monocyte activation
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during sepsis, as well as in the acquired immune response to
transplanted organs (63). GCs reduce the in vitro expression
of TLR4 and the response to endotoxin in monocytes through
the mediation of micro-RNA (MiR) 511-5p, a keystone in the
anti-inflammatory effect of GCs (64).

GC affects also DC differentiation and maturation. In fact
DC differentiated from human monocytes in presence of
dexamethasone expressed lower levels of CD83 and CD86, lower
APC function and a lower capacity to secrete TNF-α and IL-1β
induced by CD40L and LPS than untreated cells (65, 66).

It is well-known that the administration of GCs induces
neutrophilic leukocytosis, in particular by promoting
neutrophil maturation and mobilization (67), an effect that
is blocked by simultaneous inhibition of the L-selectin adhesion
protein (68, 69).

The entire neutrophil activation process is also inhibited by
GCs that reduce the expression of enzymes related to respiratory
burst, such as NADPH oxidase, iNOS and COX-2 (70–73), as well
as processes of chemotaxis, phagocytosis, and cytokines secretion
(74, 75). In neutrophils, GCs simultaneously inhibit transcription
factors related to pro and anti-inflammatory genes. The net effect
is an increase in the expression of some receptors for interleukins
and pro-inflammatory leukotrienes, such as IL1R1 and BLT1,
(76–78), as well as a reduced sensitivity to apoptosis which
increases neutrophils average life span (79).

NK are also sensitive to the effects of endogenous
glucocorticoids under stress conditions, when steroids reduce
NK cytolytic activity (80–82). Recent evidence shows that GCs
can also induce the synthesis of pro-inflammatory cytokines
through an epigenetic mechanism in NK cells. In particular, the
expression of IL-6 and INF-γ is increased, along with a greater
histone acetylation in the enhancer regions of these genes,
which are thus more easily accessible to activating transcription
factors (83, 84).

THE MAMMALIAN TARGET OF
RAPAMYCIN INHIBITORS: SIROLIMUS
AND EVEROLIMUS

The mammalian target of rapamycin (mTOR) is part of 2
different complexes (mTORC1 and mTORC2) with diverse
signaling networks. mTORC1 promotes anabolic cellular
metabolism stimulating synthesis of proteins, lipids, and
nucleotides and, at the same time, inhibits catabolic processes,
such as lysosome biogenesis and autophagy. mTORC2 controls
cell survival, cytoskeleton organization, lipogenesis, and
gluconeogenesis (85). In organ transplantation mTOR inhibitors,
Sirolimus, and Everolimus, exert their immunosuppressive
functions by preferentially inhibiting mTORC1 (86) thereby
ostensibly halting protein translation necessary for effector
T cell proliferation. Additional experimental and clinical
experience with mTOR inhibitors support that they exert effects
on graft survival, both beneficial and detrimental, in part by
acting on innate immune cells (87, 88). Via changes in antigen
presentation and costimulatory molecules, cytokine production,

and metabolic pathways, mTOR inhibitors produce extensive,
and sometimes conflicting, effects on innate immune cells.

The mTOR network allows innate immune cell maturation
and costimulatory molecule expression during inflammation
(89). As might be predicted, treatment with mTOR inhibitor
impairs DCs maturation after LPS stimulation by reducing
translation, including that of MCH-II and costimulatory
molecules (90). Rapamycin hampers functional and phenotypic
maturation of DCs prompted by IL-4, LPS, or CD40 ligation
(91–93) and impairs their ability to stimulate effector T cell
proliferation. Similarly, DC development induced by fms-like
tyrosine 3 kinase ligand (Flt3L), a powerful DC growth factor, is
inhibited by rapamycin (93, 94). Accordingly, the DCs antigens
uptake activity is impaired which further contributes to damaged
allogeneic T lymphocytes stimulation (90, 95).

Conversely, mTOR inhibitors indirectly inhibit
regulation of autophagy and promote this degradation with
immunoregulatory capabilities. Importantly autophagy is a
well-known contributor to both MHCII presentation and
MHCI cross-presentation of exogenous peptides (96, 97).
Increased antigen presentation increases the risk of activating
adaptive immune responses and is an unintended and unwanted
consequence of mTOR inhibitor use. In a murine liver transplant
model, use of autophagy inhibitors improved graft and
animal survival, although whether this was mediated by MHC
presentation effects is unknown. Regardless, induction of innate
immune cell autophagy is potential counterproductive side effect
of mTOR inhibitor (98).

In immature DCs, mTOR inhibitors induce apoptosis by
blocking the granulocyte-macrophage colony-stimulating factor
(GM-CSF) signaling. Disruption in GM-CSF/PI3K/mTOR
pathway produces a pro-apoptotic state, unbalancing anti- and
pro-apoptotic mediators by reduction of the mitochondrial
membrane potential (99). In mature DCs, PI3K/mTOR
inhibition with increasing drug concentrations down-
regulates progressively several pro-inflammatory cytokines
of the monocytic/macrophagic repertoire, in parallel with the
reduction of phosphorylated Akt and p706K levels (90, 100, 101).
In addition, mTOR inhibitor causes apoptosis in both human
monocyte-derived and CD34+-derived DCs, without any effect
in macrophages or myeloid cell lines (102).

mTOR inhibitors inhibit NK cell inflammatory capabilities
by inhibiting their cytokine expressing and cytotoxic
function. In particular, rapamycin impaired growth of
the CD56brightCD16+/− NK cell subset (associated with
enhanced cytokine production) without affecting the amount
of CD56dimCD16+ cells subset (with more cytotoxic capacity).
With regards to the cytotoxic subset, mTOR inhibitors prevented
NK cell expression of NKG2A and NCR (51). Absence of
receptor ligation (if present) by target cells induces NK cell
cytotoxic activity against the target cell. Prevention of their
expression by mTOR inhibitors, therefore, impairs NK cell
cytotoxic functioning. Overall, these results demonstrate
that, mTOR inhibitors have distinct deleterious effects in
immune cells which may have important implications in
transplantation (51).
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TABLE 1 | Main effects of the immunosuppressive drugs on innate cells.

Drug Dendritic cells Phagocytes Natural Killer (NK)

CNIs Reduce LPS-induced secretion of

pro-inflammatory cytokines TNF-α, IL-12

(12, 18–20).

Impair IL-6 and TNF-α production in response

to TLR2 and TLR7/8 activation in

monocytes/macrophages (24).

Reduce the expression levels of TNF-related

apoptosis-inducing ligand (TRAIL) and

FasL (36).

Increase LPS-induced production of IL-10 in

bone marrow derived DCs (BMDCs) and

human blood-derived DCs (12, 18, 21).

Inhibit inflammasome activation preventing

membrane permeability transition (MPT) in

monocytes/macrophages (28).

Inhibit proliferation of NK cells in a

dose-dependent manner (37).

These effects may promote an

anti-inflammatory phenotype on DCs that may

lead to differential regulation of effector T cells

subsets.

Inhibit neutrophil’s reactive oxygen species

generation and the formation of Neutrophil

Extracellular Traps (NET) (31).

This effect on neutrophil activity may be

responsible for increased risk of

post-transplant fungal infections.

Inhibit degranulation and IFN-γ production (38).

MMF/MPA Lower the expression of costimulatory

molecules (CD40, CD80, CD86), adhesion

proteins (ICAM-1) and maturation markers

(CD83, CD206) (47).

Inhibit IL-1β production and enhance the

expression of surface markers of M2

phenotype (CD163 and CD200R) in

monocytes (43).

Reduce proliferation of NK cells and inhibit the

expression of CD56 (50, 51).

Decrease the synthesis of proinflammatory

cytokines (TNF-α, IL-10, IL-12, IL-18) (47).

Down-regulate adhesion molecules, like

ICAM-1 in monocytes and inhibit their

adhesion to endothelial cells (44).

Reduce cytotoxicity against K562 bone marrow

target cells and IFN-γ production upon target

encounter (50, 51).

MMF reduces IL-10 synthesis (49). Down-regulate TLR-4 expression on

monocytes surface in a mouse model of

Ischemia reperfusion injury resulting in milder

kidney damage (46).

Reduce the LPS-induced expression of MHC-II

on monocyte surface (44).

Induce apoptosis in monocytes (48).

GCs Reduce the production of TNF-α, IL-1β

induced by CD40L and LPS (65, 66).

Increase expression of anti-inflammatory

cytokines (IL-10) with concomitant

down-regulation of TNF-α, IL-1β, IL-12 in

monocytes (58–60).

Reduce NK cytolytic activity (80–82).

Inhibit the LPS-induced up-regulation of

costimulatory molecules (e.g., CD40, CD80,

CD83, CD86, and MHC-II) (65, 66).

In monocytes GCs reduce the expression of

CD80 in response to inflammatory stimuli which

impairs their antigen-presenting activity (61).

Through an epigenetic mechanism GCs induce

the synthesis of pro-inflammatory cytokines

(83, 84).

DC differentiated in the presence of GC are not

able to induce the proliferation of allogeneic

CD4T cells (65, 66).

In kidney transplant patients, increase the

number of CD14++CD16- and

CD14++CD16+ monocytes while the

CD14+CD16++ population is declined

compared to patients receiving CNI, MMF/MPA

or mTOR inhibitor (62).

Down-regulate TLR4 expression on the surface

of monocytes and their response to endotoxin

(64).

Inhibit activation process of neutrophils by

reducing the expression of NADPH oxidase,

iNOS, COX-2 (70–73).

Reduce chemotaxis, phagocytosis and

cytokines secretion in neutrophils (74, 75).

Increase the expression of some receptors for

interleukins and pro-inflammatory leukotrienes

such as IL1R1 and BLT1 in neutrophils

(76–78).

Reduce sensitivity to apoptosis which

increases neutrophils average life span (79).

mTOR

inhibitors

Impair DC maturation after LPS stimulation by

reducing translation, including that of MHC-II

and costimulatory molecules (90).

In LPS-stimulated human monocytes reduce

chemokines synthesis such as MCP-1,

RANTES, IL-8, and MIP-1 (103).

Inhibit NK proliferation and cytotoxicity

capacity (51).

Prevent phenotypic and functional maturation

induced by IL-4, LPS, or CD40 ligation (91–93).

(Continued)
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TABLE 1 | Continued

Drug Dendritic cells Phagocytes Natural Killer (NK)

Inhibit DC development induced by Flt3L (93).

Impair antigen uptake contributing to damage

allogeneic T lymphocytes stimulation (95).

Induce the up-regulation of pathways involved

in production of nitric oxide, reactive oxygen

species and IL-12 in macrophages (105).

Inhibit the shift toward an overall

NKG2A+KIR-NCR+ phenotype and maintain

an overall NKG2A-KIR+NCR+/– (51).

Disinhibit autophagy that contributes to both

MHCII presentation and MHCI

cross-presentation of exogenous peptides

(96, 97).

Induce apoptosis in immature DC by blocking

GM-CSF signaling (99).

Increase surface expression of chemokine

receptor CCR7 promoting DC migration into

lymphoid tissue (108).

An essential innate immune cell role involves production
of cytokines. The mTOR inhibitors have pleiotropic effects
that depend on the cells and circumstances studied. In
LPS-stimulated human monocytes, mTOR inhibitors reduce
several pro-inflammatory chemokines synthesis such as MCP-
1, RANTES, IL-8, and MIP-1 (103). Fine-needle aspiration
biopsy (FNAB) samples (containing mononuclear cells together
with kidney parenchymal cells) obtained from kidney transplant
recipients receiving sirolimus showed lower synthesis of many
proinflammatory cytokines, including IL-6 and MCP-1, and
higher production of TGF-β than samples from patients whose
regimen contained MMF (104). Conversely, switch from a CNI
based to a mTOR inhibitor-based regimen may worsen post-
transplant inflammation. Gene expression profile on kidney
samples showed the upregulation of pathways involved in
production of NO, ROS, and IL-12 in macrophages and the
activation of the adaptive immune response. Histological analysis
confirmed a higher macrophages infiltration (105). Similarly,
after shift from CsA to Sirolimus, the transcriptomic analysis
on peripheral blood leucocytes showed a significant enrichment
in pro-inflammatory pathways related to NFκB and specific
transcripts for monocyte and NK cells (106). It is noteworthy that
the concomitant administration of mTOR inhibitors and GCs
seem to cause a state of innate immune cell hyper-responsiveness,
as if GCs action is override by the inhibition of mTOR (107).

mTOR inhibitor modulation of innate immune cells may
contribute to a pro-tolerogenic state in the early phases of
transplantation. Sordi et al. (108) showed that sirolimus, at
clinically relevant concentrations and in contrast to calcineurin
inhibitors, enhances the expression of CCR7 on the surface
of human and mouse derived DCs with consequent expedite
migration of DCs into lymphoid tissue. This condition may
promote the tolerogenic effect of mTOR inhibitors, because these
immune cells may reach appropriate T cell areas in the lymphoid
tissue (109). Recent evidence challenged long-held notions that
immunological memory is a feature exclusively for adaptive
immunity. Evidence in monocytes showed that beta-glucan (a
fungal antigen) experienced monocytes developed epigenetic
changes spurred by accumulation of a cholesterol intermediate,
mevalonate (110). Epigenetic changes were dependent on

activation of mTOR to induce necessary downstream metabolic
and histone changes. Importantly, using a strategy that included
innate immune targeting rapamycin loaded nanoparticles,
Braza et al. prevented macrophage trained immunity and
extended graft survival indefinitely. These findings lead to
an intriguing possibility that short term myeloid-specific
nanoimmunotherapy that targets mTOR inhibitor in post-
transplant may extend graft survival by preventing trained
immunity generation (111).

There are controversial data about the impact of the m-TOR
inhibitors on the regulation of I/R injury-related innate immune
system in kidney transplantation. Several authors have suggested
that these drugs may impair recovery of kidney function (112–
114) because of an anti-proliferative effects on tubular cells and
an hyper-expression of several pro-inflammatory cytokines (e.g.,
IL1-β, IL-12, TNF-α) and an inhibition of the production of anti-
inflammatory cytokines as IL-10. On the contrary, Macedo et al.
have reported that m-TOR inhibitors may protect from innate
immunity activation (115). In particular the inhibition of mTOR
may induce resistance to phenotypic maturation of DCs induced
by inflammation and may facilitate the production of regulatory
tolerogenic DCs.

CONCLUSIONS

In the past, great strides in allograft survival prolongation
were attributed to successful suppression of adaptive immune
responses (Table 1). A great body of literature, both clinical and
basic science, attests to profound and diverse effects of modern
immunosuppressive agents on innate immune cells. To make
further progress improving transplant outcomes requires a more
complete understanding of these effects and attempts to blunt
current insufficiencies or vulnerabilities. As an example, clinical
trials using monoclonal antibodies against innate immune
receptors TLR2 (NCT01794663) and/or TLR4 (NCT01808469)
to prevent delayed graft function and innate immune cell based
therapies (including administration of regulatory macrophages
and tolerogenic DCs) (116) may lead to new therapeutics
that become standard of care to decrease the need for, or
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even completely replace, current immunosuppression regimens.
These efforts to enlarge the post-transplant armamentarium by
targeting innate immune cells will ideally lead to prolonged
allograft function and minimized immunosuppression that
extend allograft longevity without overly immunosuppressing
and endangering the patient.
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