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Therapeutic treatment of bleeds with FVIII can lead to an antibody response that

effectively inhibits its function. Herein, we review the factors that contribute to this

immunogenicity and possible ways to overcome it.
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INTRODUCTION

Self-non-self-discrimination is one of the basic tenets of the immune system. The general failure to
respond immunologically to antigens in our bodies is learned during ontogeny, as aptly recognized
by RayOwen in the 1940’s in seminal studies with dizygotic cattle twins which shared hematopoietic
cells during fetal development (1). Thus, these siblings failed to react to red blood cell antigens
or skin grafts of their unrelated twin because their immune systems had learned that they must
be “self ” during ontogeny. This phenomenon of “actively acquired (immunologic) tolerance” was
experimentally verified by the Nobel Prize-winning experiments of Billingham, Brent andMedawar
in mice (2). This process is specific because responses to unrelated antigens remains intact.

What happens in the case of a patient who fails to express a given human protein during
ontogeny and is then subsequently exposed? The classic case is hemophilia A and B, where patients
lack all or part of the factor VIII (FVIII) or factor IX procoagulant proteins, respectively, and
therefore have never “acquired” tolerance to that protein as “self.” Prophylactic or on-demand
treatment of bleeds with recombinant or plasma-derived FVIII can lead to an antibody response
to this human (but “foreign”) protein that effectively neutralizes or inhibits its function in the
coagulation pathway; these antibodies are called “inhibitors.”

We discuss here some recent approaches, focusing on several developed in our laboratories,
to characterize anti-FVIII immune responses and to promote durable peripheral tolerance to
exogenously administered FVIII.

FACTOR VIII IMMUNOGENICITY

Thus, while lack of tolerance (non-self) to FVIII explains its immunogenicity, there are other
factors that potentially play a role. These are listed in Table 1 and are discussed below. Clearly,
non-self-proteins tend to be recognized as foreign, as the process of c selection has not occurred.
The developing immune system simply hasn’t seen the T- and/or B-cell epitopes in the protein.
Interestingly, FVIII is usually administered to patients intravenously (i.v.), a normally tolerogenic
route to safely administer foreign antigens, yet it is highly immunogenic compared to many other
therapeutic proteins, with approximately one in four patients developing a clinically significant
inhibitor. Indeed, many foreign proteins that pass through the lymphatic or venous system into
lymphoid organs are ignored, unless they provide additional signals or so-called adjuvanticity,
often referred to as “danger” signals (3). This is because they lack properties that can stimulate
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TABLE 1 | Factors affecting the immunogenicity of human protein therapeutics.

Product-related Patient-related

Self or non-self HLA/genetics of patient

Presence of new (neo) epitopes Route of administration

Biologic (enzymatic) properties Underlying infection or pathology

Innate signaling properties Immunosuppression

Absence of regulatory epitopes Other medications

Formulation or aggregation

Glycosylation (extent and type) SNPs and other immunogenomic

variants

Post-translational modifications

including oxidation

PEGylation or other protein engineering

Organ and cell type (e.g., if delivered via

gene therapy)

the innate immune system, e.g., by interacting with Toll-like
receptors (TLR) or through other innate immune processes
either directly or indirectly. Efforts to demonstrate this property
in FVIII have included culturing of human monocyte-derived
dendritic cells (MoDCs) with FVIII, or thrombin-cleaved FVIII,
or FVIII complexed with its carrier protein von Willebrand
factor (VWF); interestingly, neither the maturation nor the
T-cell stimulatory capacity of the MoDCs were affected (4).
Skupsky et al. suggested that the biologic activity of FVIII
in the clotting cascade, which leads to accelerated thrombin
activation, provided an alternative mechanism of stimulating
innate immune signaling (5). They found that treatment of mice
with the anticoagulants warfarin or hirudin, which inactivate
thrombin, reduced the immunogenicity of human FVIII in
hemophilia A mice. In contrast, Meeks and co-workers, who
engineered human FVIII proteins having several amino acid
substitutions that neutralized its procoagulant activity, found
that the immunogenicity of these non-active FVIII proteins was
highly similar to that of active FVIII, thus leaving the role of its
biological activity leading to immunologic “danger” as moot (6).
If thrombin activation contributes to immunogenicity, then one
might expect factor IX to also be unusually immunogenic when
administered to hemophilia B patients. Inhibitor development in
hemophilia B is actually rare, but this is likely due to the fact
that most hemophilia B patients actually circulate a dysfunctional
factor IX protein. They therefore could only respond to far fewer
epitopes than patients with null mutations.

Uptake and processing by antigen-presenting cells (APC)
is the first step in the immune response to protein antigens.
Proteolytic processing leads to presentation of peptides in
major histocompatibility complexes on the APC surface, e.g.,
dendritic cells (DC). As noted above, peptides for which no
thymic deletion has occurred may be immunogenic provided
that they can be processed and presented on MHC Class I
or Class II on mature DC, and that a T-cell receptor (TCR)
on a circulating T cell recognizes and engages the resulting
MHC-peptide complex. Interestingly, exposure to FVIII does not
provoke a CD8+ immune response in hemophilia A patients
or in murine FVIII−/− mice, whereas CD4+ T-cell help (7) is

essential for the development of high-titer anti-FVIII antibodies
(8). MHC Class II peptide presentation provides “signal one” to
effector CD4T cells in the peripheral repertoire. In contrast, it
has been proposed that many proteins may contain promiscuous
peptide sequences that preferentially activate T regulatory rather
than CD4 effectors; these have been termed “Tregitopes” (9,
10). These peptide sequences are commonly found not only
in immunoglobulins but in many infectious agents, which may
enable them to modulate and reduce the immune response to
those agents. The potential role of Tregitopes in modulating
FVIII immunogenicity, however, has not yet been established.

Last, but not least, is the physical properties of the
FVIII antigen that may influence immunogenicity, such as
post-translational modifications or physical aggregation,
especially when the antigen is stored or administered at high
concentrations. This may be due to an intrinsic or extrinsic
property of the antigen, e.g., caused by charge changes, or by
physical perturbations resulting from heating or formulation
(11, 12). Differences in glycosylation patterns, e.g., according to
the type of cell expression system, and covalent modifications
to extend protein half-life (PEGylation, fusions of FVIII with
other proteins or domains, etc.), and B-domain removal all could
affect the immunogenicity of FVIII. The recent, prospective
SIPPET study showed a significantly higher inhibitor incidence
in previously untreated patients receiving a recombinant FVIII
product, compared to plasma-derived FVIII (13). The biological
basis for this difference remains to be identified.

Beyond the above properties, one must consider additional
factors that influence immunogenicity which may be manifested
in the recipients of FVIII replacement therapy. While there is
no clear linkage to the HLA of the patient, HLA does affect
which peptides will bind to the MHC on DC. Indeed, HLA
Class II-restricted epitopes in FVIII were identified years ago
by peptide proliferation assays (14–19). Subsequent isolation of
FVIII-specific T-cell clones by classical limiting dilution (20) or
by using HLA Class II tetramers loaded with FVIII peptides
(7, 21–24) provided unambiguous identification of specific high-
avidity epitopes (25). At the level of the repertoire, one must
consider the nature of the mutation in the FVIII gene (F8) that
leads to delayed or absent pro-coagulant activity: patients with
a major deletion or other mutation precluding expression of
the FVIII protein should lack tolerance to all of the epitopes
in FVIII. On the other hand, those with missense mutations,
which generally are associated with mild or moderate severity
hemophilia A due to a partially disabled but still full-length FVIII
protein, have a lower risk of developing an inhibitor response
following FVIII infusions. In addition to FVIII mutations, other
genetic factors, as well as environmental differences including
“danger” resulting from trauma or surgery, influence the risk of
hemophilia A patients developing an inhibitor (26, 27). Meunier
et al. recently determined the frequency of FVIII-specific CD4+

T cells in the periphery of non-hemophilic blood donors and
found approximately equal numbers of memory and naïve
cells (28). Earlier studies had documented both FVIII-reactive
antibodies (29, 30) and FVIII-specific T cells (16) in healthy
control subjects. These studies demonstrated that FVIII is an
unusually immunogenic self-protein, as also indicated by the rare
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autoimmune antibody response to FVIII known as “acquired
hemophilia A.”

Several studies have suggested that hemophilia A patients
with Black African or Hispanic ancestry experience a higher
incidence of inhibitors, compared to white patients (31–33).
There are multiple naturally occurring, non-hemophilia causing
variants of the F8 gene in the human population, including
non-synonymous single nucleotide polymorphisms (ns-SNPs)
that encode amino acid variants (34). Thus, it is conceivable
that hemophilia A patients who express a dysfunctional FVIII
protein, and are exposed to a therapeutic FVIII having a different
amino acid sequence, could mount an immune response to
the neo-epitope corresponding to this amino acid sequence
(35). Although this is a plausible scenario, statistical analyses
of inhibitor incidences in patients whose F8 sequence at these
sites was known (33, 36–38), as well as tetramer-guided epitope
mapping to detect CD4+ T cells specific for these “mismatched”
sequence (36), indicated that immune responses to these
potential neo-epitopes occur rarely, if at all, and are therefore
unlikely to contribute significantly to the immunogenicity of
therapeutic FVIII.

FVIII is usually administered intravenously (i.v.), whereupon
it rapidly binds to von Willebrand factor, which may modify its
immunogenicity (39–41). The i.v. route is usually tolerogenic
when infusing aggregate-free proteins into mice (42). This
has been interpreted to suggest that i.v.-administered proteins
fail to activate DC and to be processed in an immunogenic
manner. However, in contrast to soluble proteins like ovalbumin,
which is not immunogenic without adjuvant, FVIII is highly
immunogenic when administered i.v. to the majority of FVIII
knockout (E16) mice (5, 43, 44). Indeed, administering FVIII
mixed with OVA can lead to an anti-OVA response, consistent
with the intrinsic adjuvanticity of FVIII (5).

Finally, one has to consider other extrinsic properties of
the host aside from HLA or other genetic factors. That is, an
underlying infection will create significant inflammation which
can tilt the response from tolerance to immunity. This would be
a potential concern if a hemophilia A patient has an indwelling
cannula which gets infected. On the other hand, a number of
medications, especially steroids, are immunosuppressive and can
tilt the immune response non-specific toward tolerance (45).
Interestingly, both murine model studies and statistical analyses
of patient outcomes indicate that immunizations do not affect
inhibitor risk (46, 47).

The immunogenicity of FVIII that results in formation
of inhibitors is a major impediment for the prevention and
treatment of bleeds. While bypassing agents, including the FVIII-
mimetic antibody emicizumab (48), or recombinant factor VIIa
(49, 50), or FEIBA (Factor Eight Inhibitor Bypassing Agent,
which is essentially a plasma-derived pro-coagulant protein
cocktail) can facilitate clotting, are critically important lifesaving
agents (51), they do not overcome the need to induce tolerance
to FVIII. In particular, FVIII remains an essential component of
the clinical armamentarium to support surgery, and to restore
hemostasis following trauma, whereas the bypassing agents may
be less efficient and/or carry a risk of thrombosis if doses are not
carefully monitored. The relative risk/benefit ratios of utilizing
FVIII vs. recently introduced novel bypass agents to control

bleeding in specific clinical scenarios will become more apparent
with further research and clinical “real world” experience.

MODULATION OF FVIII IMMUNOGENICITY

Numerous methods to induce specific tolerance have been
described for decades (52, 53). In terms of tolerance therapies to
eradicate and prevent reoccurrence of inhibitors in hemophilia
A patients, the standard clinical practice is intravenous repeated
FVIII administration, which is called Immune Tolerance
Induction (ITI). This protocol, first described by Brackmann
and Gormsen in 1977 (54), is based on the high dose tolerance
described by Mitchison in the 1960’s (55) and essentially entails
antigen overload, as well as maintaining higher trough levels
of FVIII for continuous antigen exposure. This procedure is
more often successful with patients having low tittered inhibitors
but often fails in patients with higher titers. Moreover, it is
expensive and challenging for patients and families, due to the
need for frequent (often daily) infusions. Alternative methods to
induce tolerance have primarily been tested in animal models,
and most have not reached standard clinical practice. Below is
a summary of several approaches in our labs, but it is not meant
to be inclusive.

Following on the work of Weigle and colleagues (42, 56) with
ultracentrifuged IgG as a model tolerogen, Borel utilized fusions
or haptens and antigens on IgG carriers as tolerogens (57, 58), the
latter being dependent on the presence of the IgG Fc fragment
(9, 10). This would presumably crosslink the B-cell receptor
with inhibitory Fc gamma receptors, an approach we will return
to below. Based on the tolerogenicity of IgG fusions, we used
retroviral transduction of FVIII domains with an IgG heavy chain
in B cells as a tolerogenic protocol. This platform was successful
in several autoimmune model systems as well (59–62); ironically,
this approach was dependent on MHC class 2 presentation of
peptides by B cells that led to the generation of regulatory T cells
(Tregs) for both its induction and maintenance (63, 64).

Indeed, recent development of Fc fusions of clotting factors
FVIII and FIX, designed for a longer half-life in vivo (65),
have turned out to be tolerogenic in murine models and to
induce Tregs (66, 67). This was initially supported by anecdotal
cases reports of hemophilia A patients that suggest that FVIII-
Fc is potentially tolerogenic (68–70); more highly powered
clinical trials are in progress (NCT02234323, NCT03093480, and
NCT03103542). Whether the tolerogenicity of Fc fusions is due
to the regulatory epitopes in the constant region (9, 71) that turn
on Tregs, and/or inhibitory Fc receptors (72, 73) is not clear.

While polyclonal human regulatory T cells (Tregs) have been
proposed to treat autoimmune diseases and transplant rejection,
and are already in clinical trials, the frequency of specific Tregs is
very low. Moreover, the risk of non-specific immunosuppression
and viral reactivation is real (74). Expansion of specific Tregs
using peptide/APC and IL-2 has recently been achieved (75). Our
labs have approached this issue by expressing specific receptors
(or antigen) in expanded polyclonal Tregs or CD8T cells, based
on the seminal work by Eshhar (76, 77) and on clinical success
of chimeric antigen receptor (CAR) T cells as reported by June
and colleagues (78, 79). Since these studies have recently been
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published (80–83) and reviewed (52, 84), we will provide only a
brief outline of these approaches to induce immune tolerance.

Starting with Tregs purified from healthy donors, our efforts
to engineer specificity into polyclonal Tregs used retroviral
transduction of specific T-cell receptors (TCR) (80) or CARs
(scFv) (81), or even antigen (as B-cell Antibody Receptor =

BAR) (83). In the first application, we cloned TCRs from FVIII
reactive T-cell clones obtained from mild hemophilia patients
(24). These clones recognized a peptide in the FVIII C2 domain
restricted to HLA DRB1∗01:01(21,22,24). The expanded TCR-
transduced human Tregs suppressed proliferation and cytokine
production by effector CD4T cells even when the responders
were in excess. Interestingly, the TCR-transduced Tregs also
suppressed anti-FVIII B-cell responses in vitro and in vivo across
a xenogeneic barrier (80)! Interestingly, although the engineered
TCR recognizes a single peptide in the large FVIII protein,
the antibody response to other major epitopes of FVIII was
also suppressed. Thus, engineered FVIII-specific Tregs exhibit
bystander suppression, an effect also seen with a TCR specific
for a myelin peptide in a model of multiple sclerosis, an effect
which appears to be due to uptake of IL-2 produced by effector T
cells (85).

TCR-transduced Tregs are MHC class II restricted, thus
limiting their eventual utility only to patients sharing the same
HLA allele. Therefore, in the second approach, we collaborated
with Anja Schmidt and Christoph Königs in Frankfurt, who
provided a single chain Fv (scFv) that recognized the FVIII A2
domain. Like the CARs used in cancer therapy, these recognize
conformational determinants and are not MHC restricted.
Transduction of one of these scFv, called ANS8, into human
Tregs also led to significant suppression of anti-FVIII responses
in vitro and in vivo. Extensive dose response comparisons have
not been performed as yet with these two types of engineered
Tregs; the advantages (and disadvantages) of these specific
Tregs are discussed elsewhere (Scott DW, Molecular Therapy
submitted 2019).

Lastly, we hypothesized that it might be possible to directly
target FVIII-specific B cells by expressing FVIII domains on the
surface of Tregs. We refer to these as BAR Tregs, reflecting the
fact that surface IgM/IgD on B cells react with these antigens.
This was successfully achieved with both human BAR Tregs that
expressed FVIII A2 and/or C2 domains and suppressed anti-
FVIII responses in vitro and in vivo (83). The target of these
BAR Tregs was proven to be the B cell, based on cell mixing
experiments (83). Interestingly, in an allergy model, the target
may also include sensitized mast cells, based on results of passive
anaphylaxis experiments (86).

An alternative approach utilized transduced cytotoxic CD8T
cells expressing the targeted FVIII domains (82), as was done
by Ellebrecht et al. with desmoglein 3 for possible therapy of
pemphigus vulgaris, a devastating skin disease (87). [They refer
to their antigen-expressing CD8T cells as chimeric autoantigen
receptor T cells (CAAR)].Whether they are called BAR or CAAR,
the cytotoxic T cells are highly specific and do not display
bystander effects. There are situations when such specificity and
lack of bystander effect might be necessary to carefully target part
of a large antigen, but Tregs might be preferred if one doesn’t
know the targeted domains, and in the case of largemulti-domain
protein antigens such as FVIII.

Finally, a nanoparticle approach has been developed that
can provide an alternative to engineered cellular therapies for
tolerance; nanoparticles have also been used for drug delivery
and vaccine development (88). Such nanoparticles can contain
drugs such as rapamycin and are delivered with the target antigen
(either attached or concomitantly) and presumably are taken
up by dendritic cells, which act as tolerogenic APC and induce
Tregs (89, 90). The use of rapamycin-containing nanoparticles
for tolerance was successfully used by our group for FVIII
(91), and by others for modulating autoimmunity (89) or the
immune response to therapeutic immunotoxins, which are highly
immunogenic (92, 93).

Several other approaches, in addition to the above strategies,
are being developed to promote tolerance to FVIII. These include
hepatic gene therapy, oral tolerance, and trans-placental delivery
of FVIII. These are discussed more comprehensively in a recent
review (84).

DISCUSSION

In conclusion, while there are multiple factors that influence
the immunogenicity of therapeutic proteins, novels approaches
such as those described here have the potential to modulate such
immunogenicity. Time will tell which of these approaches may
become cost-effective clinical therapies in the future.
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