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In gray matter pathology of multiple sclerosis, neurodegeneration associates with a

high degree of meningeal inflammatory activity. Importantly, ectopic lymphoid follicles

(eLFs) were identified at the inflamed meninges of patients with progressive multiple

sclerosis. Besides T lymphocytes, they comprise B cells and might elicit germinal center

(GC)-like reactions. GC reactions are controlled by FOXP3+ T-follicular regulatory cells

(TFR), but it is unknown if they participate in autoantibody production in eLFs. Receiving

human post-mortem material, gathered from autopsies of progressive multiple sclerosis

patients, indeed, distinct inflammatory infiltrates enriched with B cells could be detected

in perivascular areas and deep sulci. CD35+ cells, parafollicular CD138+ plasma cells,

and abundant expression of the homing receptor for GCs, CXCR5, on lymphocytes

defined some of them as eLFs. However, they resembled GCs only in varying extent, as T

cells did not express PD-1, only few cells were positive for the key transcriptional regulator

BCL-6 and ongoing proliferation, whereas a substantial number of T cells expressed high

NFATc1 like GC-follicular T cells. Then again, predominant cytoplasmic NFATc1 and an

enrichment with CD3+CD27+ memory and CD4+CD69+ tissue-resident cells implied

a chronic state, very much in line with PD-1 and BCL-6 downregulation. Intriguingly,

FOXP3+ cells were almost absent in the whole brain sections and CD3+FOXP3+ TFRs

were never found in the lymphoid aggregates. This also points to less controlled humoral

immune responses in those lymphoid aggregates possibly enabling the occurrence of

CNS-specific autoantibodies in multiple sclerosis patients.

Keywords: ectopic lymphoid follicle, lymphoid aggregate, T-follicular regulatory cell, meningeal inflammation,

NFATc1, progressive multiple sclerosis

INTRODUCTION

In multiple sclerosis (MS), not only lymphocytes, but also antibodies (Ab) might attack the myelin-
surrounded axons (1). Further evidence for autoaggressive antibodies in MS stems from animal
models (2, 3). Intrathecal oligoclonal immunoglobulin bands (OCB), detected by separation of CSF
proteins and not present in the corresponding serum, reflect a local B-cell response and indicate
the presence of B-cell clonal expansion in the CNS accompanying CNS inflammation. This defines
the CNS as a site of ongoing immune reactions and an environment fostering proliferation and
survival of B cells and plasma cells (PC), eventually becoming a niche for long-lived PCs (LLPC)
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(4). The antigen specificity of the OCBs is mostly unknown,
although intrathecal Abs were shown to react with self-
epitopes (5).

Besides intrathecal OCBs, elevated CSF levels of the
chemokine CXCL13 have an especially high prognostic value
for a conversion from clinically isolated syndrome to definite
MS (6, 7). CXCL13 elicits its effects by interacting with the
chemokine receptor CXCR5 and is a selective chemoattractant
for lymphocytes forming germinal centers (GC) within
follicles of secondary lymphoid organs (SLOs). GCs harbor
important steps of T cell-dependent B-cell activation, i.e.,
affinity maturation through somatic hypermutation (SMH) and
class-switch recombination (CSR), which leads to the generation
of LLPCs and memory B cells. Augmented, unrestrained GC
reactions can lead to severe autoimmune disorders, in which
auto-Abs attack various tissues. The GC reaction is conducted by
highly specialized CD4+ T lymphocytes called T-follicular helper
(TFH) cells (8, 9). They provide cognate help to GC-B cells, which
compete for TFH help by increased affinity for antigen. Like
GC-B cells, TFH cells depend on the expression of the chemokine
receptor CXCR5, to facilitate repositioning from T-cell zones
into B-cell follicles, directly promoting GC-immune responses
(10, 11).

In healthy individuals, the GC reaction is a precisely
controlled process and involves various regulatory cell types.
Notably, impaired function of thymus-derived natural FOXP3+

T cells (Treg) escalates GC responses (12). Accordingly, a special
subset of Tregs was identified in GCs, which shares characteristics
with TFH cells and was named T-follicular regulatory cells
(TFRs) (13–15). Similar to TFH, TFRs express CXCR5, ICOS,
and PD-1, but in addition, they exhibit typical Treg markers,
such as FOXP3, CD25, GITR, and CTLA-4. Both, TFRs and
TFHs express the lineage-specific transcriptional regulator BCL-
6 and especially high levels of NFATc1 (16, 17). In TFRs, as
we could show, NFATc1 facilitates homing by upregulating
CXCR5 (17). TFRs limit the magnitude of the GC reaction,
i.e., the number of GC-B cells and the quantity and quality of
secreted immunoglobulins, by direct repression of B cells (15, 18–
20). Here, they suppress CSR, SHM and antibody secretion
through altering their metabolism, but also inhibit IL-21 and
IL-4 secretion in TFH cells. Moreover, TFR cell-mediated CTLA-
4-dependent regulation of CD80 /CD86 expression on GC-B
cells restrains the number of TFH cells and vice versa the GC-
reaction (21, 22). Exploring TFRs in autoimmune diseases, blood-
circulating TFRs are reported to be lost in favor of a dramatic
increase in TFHs and IL-21 levels in systemic lupus erythematosus
patients and Sjögren syndrome, which could be connected to
disease activity (23, 24). In MS patients, a high TFH/TFR ratio
in blood also correlates with more severe disease course and—
intriguingly—with intrathecal IgG synthesis (25–27).

The finding that CXCL13 is dominantly present in CSF
of MS patients suggests an involvement of tertiary lymphoid
structures /ectopic lymphoid follicles (eLFs), eliciting GC-
like reactions. Those eLFs are generated at sites of chronic
inflammation and sustain immunopathological processes (28–
30). Indeed, sections from post-mortem brains and spinal
cords of secondary progressive MS (SPMS) patients led to the
identification of eLFs with B, T, plasma cells, and a network

of FDCs producing CXCL13, although they were not described
in relapsing-remitting MS (RRMS) and only in a lesser defined
state in primary progressive MS (PPMS) (31–34). eLFs were
recognized in close apposition with cortical subpial lesions in
deep cerebral sulci. Their occurrence associates with a poor
clinical disease course and could account for cognitive deficits
observed in progressive MS patients. Furthermore, meningeal
aggregates and parenchymal infiltrates share related antigen-
experienced B-cell clones suggesting B-cell trafficking from eLFs
to CNS tissue (35).

However, it is not clear, to what extent eLFs in the CNS
of progressive MS patients resemble a GC reaction in SLOs
and especially, to what extent they are regulated (36, 37).
Therefore, the aim of this study was to evaluate if TFR cells are
present and we characterized the subtypes of immune cells in
lymphoid aggregates. Serial sections of post-mortem brain and
spinal cord samples of SPMS and PPMS patients were triple-
stained for specific markers. Follicle-like lymphoid aggregates
were repetitively detected, but resembled GCs or at least eLFs
only in varying extent, best matching an eLF in a memory state.
For sure, CD3+FOXP3+ Tregs were never discovered in those
aggregates, hinting to unleashed GC-like immune responses in
the CNS of progressive MS patients.

MATERIALS AND METHODS

Demographic and Clinical Data
This study was performed on a new cohort of autopsy brain
and spinal cord tissue from 11 cases with PPMS (5 female, 6
male), 22 with SPMS (19 female, 3 male), two Parkinson‘s disease
(PD) cases (1 female, 1 male) and 13 healthy control (HC, 1
female, 11 male) cases obtained from UK Multiple Sclerosis
Tissue Bank at Imperial College, London, UK (www.imperial.
ac.uk/medicine/multiple-sclerosis-and-parkinsons-tissue-bank)
(Supplementary Table 1). All procedures used by the Tissue
Bank in the procurement, storage and distribution of tissue have
been approved by the relevant National Multicentre Research
Ethics Committee (08/MRE09/31), UK, and all tissues supplied
are obtained via a prospective donor scheme. Both the donor
and next of kin have given informed consent for the use of
the donor’s brain and spinal cord material for MS research.
According to the common procedure, we analyzed sex, age of
death, age of disease onset, disease duration, brain weight, CSF
pH and death-to-tissue interval of PPMS, SPMS and control
cases. We found an earlier death of MS patients in comparison
to control cases, a strong difference in gender ratio tending
toward more female patients suffering from SPMS than PPMS,
and a loss in brain weight in SPMS patients compared to PPMS
(Supplementary Table 2).

Tissue and Lesion Classification
Tissues were pre-characterized by UK Multiple Sclerosis Tissue
Bank, treated and kept with high quality (38), allowing scanning
of the meninges and gray matter (GM) in brain and spinal
cord. Per case, 10 sections of one to four paraffin blocks
were obtained, pre-defined into normal-appearing white matter
(NAWM), normal-appearing spinal cord (NASC), chronic
active lesion (CAL), and chronic lesional spinal cord (CLSC)
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TABLE 1 | Tissue characterization, infiltration and follicle status in brain and spinal cord of progressive multiple sclerosis, Parkinson’s disease, and healthy control cases.

Case/Disease

subtype

Tissue

type

Number of infiltrated

regions

Median score of

superficial infiltration*

Median score of

parenchymal infiltration*

Total median

score of

infiltration*

Follicle status**

Surface Parenchyma Meninges Sulcus Cortex of

brain/WM of SC

WM of

brain/GM of SC

All regions Follicle

presence

Number of

follicles in

infiltrates

MS136/SPMS NAWM 0 0 – – – – – – 0/0

CAL 0 5 – – – 2.0 2.0 + 2/5

CALSC 2 0 2.0 – – – 2.0 + 1/2

MS166/SPMS NAWM 0 0 – – – – – – 0/0

CAL 0 – – – – – – 0/0

MS169/SPMS NAWM 0 0 – – – – – – 0/0

MS179/SPMS CAL 4 1 2.5 2.5 – 3.0 3.0 + 2/5

MS180/SPMS NAWM 0 0 – – – – – – 0/0

CAL 5 1 – 3.0 2.0 – 2.5 + 3/6

CALSC 6 2 3.0 3.0 – 2.0 2.5 + 4/8

MS186/SPMS NAWM 0 0 – – – – – – 0/0

CAL 0 2 – – 2.0 2.0 2.0 – 0/2

CALSC 1 1 1.0 – – 1.0 1.0 – 0/2

MS200/SPMS CAL 0 2 – – 2.0 1.0 1.5 – 0/2

MS201/PPMS NAWM 0 0 – – – – – – 0/0

CAL 0 0 – – – – – – 0/0

CALSC 3 1 2.0 1.0 1.0 – 1.0 0/4

MS202/SPMS CAL 2 4 1.5 – 3.0 2.0 2.0 + 2/6

CLSC 4 2 1.5 – – 1.0 1.0 + 1/6

MS207/SPMS NAWM 0 0 – – – – – – 0/0

CAL 3 1 – 1.0 – 2.0 1.5 + 1/4

MS211/SPMS NAWM 0 0 – – – – – – 0/0

CAL 0 2 – – – 2.0 2.0 + 1/2

MS293/SPMS CAL 0 1 – – – 1.0 1.0 – 0/1

CALSC 0 0 – – – – – – 0/0

MS313/

PPMS

NAWM 0 0 – – – – – – 0/0

CALSC 1 2 – 1.0 – 1.5 1.0 – 0/3

MS325/

PPMS

NAWM 0 0 – – – – – – 0/0

CAL 0 1 – – – 2.0 2.0 – 0/1

CALSC 0 2 – – 2.0 1.0 1.5 – 0/2

MS330/

SPMS

CAL 0 0 – – – – – – 0/0

CALSC 3 3 2.0 1.5 – 1.0 1.0 – 0/6

MS338/

SPMS

NAWM 0 0 – – – – – – 0/0

CAL 2 1 – 3.0 2.0 – 3.0 + 2/3

CALSC 1 4 – 2.0 – 1.0 1.0 + 1/5

MS340/SPMS NAWM 1 0 – – 1.0 – 1.0 – 0/1

CAL 0 6 – – – 1.0 1.0 – 0/6

MS363/PPMS CAL 0 0 – – – – – – 0/0

CALSC 1 1 – 1.0 – 1.0 1.0 – 0/2

MS383/PPMS NAWM 0 0 – – – – – – 0/0

CALSC 0 1 – – – 1.0 1.0 – 0/1

MS386/PPMS NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

MS389/SPMS NAWM 0 0 – – – – – – 0/0

(Continued)
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TABLE 1 | Continued

Case/Disease

subtype

Tissue

type

Number of infiltrated

regions

Median score of

superficial infiltration*

Median score of

parenchymal infiltration*

Total median

score of

infiltration*

Follicle status**

Surface Parenchyma Meninges Sulcus Cortex of

brain/WM of SC

WM of

brain/GM of SC

All regions Follicle

presence

Number of

follicles in

infiltrates

CAL 2 17 2.0 1.0 2.5 2.0 2.0 + 4/19

CALSC 9 7 3.0 3.0 – 3.0 3.0 + 9/16

MS408/SPMS CAL 1 1 – 3.0 1.0 – 2.0 + 1/2

CALSC 2 0 1.5 – – – 1.5 – 0/2

MS473/PPMS NAWM 0 0 – – – – – – 0/0

CAL 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

MS478/SPMS NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

MS485/PPMS NAWM 0 0 – – – – – – 0/0

CALSC 1 0 1.0 – – – 1.0 – 0/1

MS489/SPMS NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

MS492/PPMS NAWM 0 0 – – – – – – 0/0

MS494/ NAWM 0 0 – – – – – – 0/0

CAL 0 2 – – 2.0 1.0 1.5 – 0/2

NASC 0 0 – – – – – – 0/0

MS497/SPMS CAL 0 8 – – 2.5 2.0 2.0 + 2/8

MS500/PPMS CAL 2 4 2.5 – – 2.5 2.5 – 0/6

MS503/SPMS NAWM 0 1 – – – 1.0 1.0 – 0/1

CLSC 0 0 – – – – – – 0/0

MS504/SPMS NAWM 0 0 – – – – – – 0/0

MS513/SPMS CAL 1 7 – 3.0 2.0 2.0 2.0 + 2/8

NASC 0 0 – – – – – – 0/0

C022 NAWM 0 0 – – – – – – 0/0

C025 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

C032 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

C036 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

C037 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

C039 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

C045 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

C048 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

C052 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

C054 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

C059 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

(Continued)

Frontiers in Immunology | www.frontiersin.org 4 January 2020 | Volume 10 | Article 3090

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bell et al. No TFRs in eLFs of PPSM and SPMS

TABLE 1 | Continued

Case/Disease

subtype

Tissue

type

Number of infiltrated

regions

Median score of

superficial infiltration*

Median score of

parenchymal infiltration*

Total median

score of

infiltration*

Follicle status**

Surface Parenchyma Meninges Sulcus Cortex of

brain/WM of SC

WM of

brain/GM of SC

All regions Follicle

presence

Number of

follicles in

infiltrates

C064 NAWM 0 0 – – – – – – 0/0

PD032 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – – 0/0

PD034 NAWM 0 0 – – – – – – 0/0

NASC 0 0 – – – – – 0/0

* Infiltration score 1, <30 T and/or B cells, but at least five lymphocytes; score 2, 31–60 cells; score 3, >60 mean infiltrated T and B cells per region.
** +, region with massive infiltration (score 3) plus positive staining of CD3, CD20, CD35, Ki67, and CD138; –, no or not all criteria are fulfilled.

CAL, chronic active lesional brain; CALSC, chronic active lesional spinal cord; NAWM, normal appearing white matter; NASC, normal appearing spinal cord; WM, white matter; GM,

gray matter; SPMS, secondary progressive multiple sclerosis; PPMS, primary progressive multiple sclerosis; PD, Parkinson’s disease; C, control cases.

by UK Multiple Sclerosis Tissue Bank (Table 1). Lesional
state was verified with Luxol Fast Blue (LFB) staining
for demyelination and immunostaining of CD68, detecting
microglia and infiltrating macrophages. Chronic active lesions
CAL were defined by minor inflammation in the center of the
plaque with some CD68+ macrophages, whereas chronic inactive
lesions exhibited a silent lesion center with few or no CD68+ cells
(Supplementary Figures 1A–F).

The 5-µm thick formalin-fixated paraffin-embedded (FFPE)
sections were entirely screened for infiltration via hematoxylin-
eosin staining (H&E) by a blinded neuropathologist identifying
regions of infiltration. Modified from (33), the degree of
inflammation was evaluated manually counting the number
of lymphocytes in each infiltrated region for each MS case
(Table 1): score 1, <30 lymphocytes, but at least five =

negligible; score 2, 31–60 lymphocytes = moderate; score 3,
>60 lymphocytes = abundant. For analysis of the regional
occurrence of inflammation, we categorized the infiltrated region
into parenchymal infiltration within the cortex in the brain/white
matter (WM) of the spinal cord, or WM in the brain/GM
in the spinal cord, superficial infiltration within the meninges,
or in sulci. These regions of infiltration were annotated and
further studied on consecutive sections. Follicle-like structures
(F+) were characterized by substantial infiltration (score 3)
accompanied by the detection of CD3+ T and /or CD20+ B cells
as well as Ki67+ proliferating cells, CD35+ or CD21+ FDCs, and
CD138+ plasma cells within the respective region.

Immunohistochemistry (IHC)
Consecutive, deparaffinized FFPE sections underwent a heat-
induced antigen retrieval with Citrate buffer (pH 6.0) and
were treated with peroxidase blocking buffer (Dako, #S2023),
before incubated with Antibody Diluent for 1 h at room
temperature (RT) (Dako, #S3022). Incubation with primary
antibodies followed, BCL-6 (1:50, Dako, #M7211), CD21
(1:200, abcam, ab75985), CD35 (1:200, ThermoFisher, #MA5-
13122), CD68 (1:200, Clone KiM1P, provided by S.B., Inst.
Pathology, Wuerzburg), CXCR5 (1:200, abcam, #ab225575),
FOXP3 (1:50, abcam, #ab2034), Ki67 (1:200, ThermoFisher,

#14-5698-82) or NFATc1 (1:100, BD Pharmigen, #556602) in
Antibody Diluent for 1 h at RT. Then, after washing steps,
Histostain-Plus IHC Kit (ThermoFisher, #858943) for FOXP3
and Ki67 or ADVANCE HRPTM (Dako, #K4067, -8, -9) for all
other antibodies were used for visualization by avidin-biotin
horseradish peroxidase and 3,3′-diaminobenzidine (DAB) as
substrate (Dako, #K3468). Sections were viewed with a light
microscope (Zeiss Axioskop 2). Images were acquired with
a digital camera (Olympus DP26). Positive controls included
human tonsils (Supplementary Figures 2A–H). and a follicular
lymphoma of the spinal cord (Supplementary Figures 2K–R);
negative controls were performed with secondary antibodies only
(Supplementary Figures 2I,J,S,T).

Immunofluorescence (IF)
Consecutive, deparaffinized FFPE sections underwent a heat-
induced antigen retrieval with Citrate buffer (pH 6.0) before
they were blocked with Antibody Diluent (Dako, #S3022) for
1 h at RT. Sections were incubated with the primary antibodies
CD20 (1:200, Dako, #M0755), CD3 (1:100, Dako, #A0452), CD3
(1:50, abcam, #11089), CD4 (1:200, R&D Systems #AF-379-
NA), CD8 (1:100, Dako #M7103), CD27 (1:50, Sigma-Aldrich,
#HPA038936), CD138 (1:200, BioLegend, # 356502), CD69
(1:100, ThermoFisher, #PA5-84010), CXCR5 (1:200, abcam,
#ab225575), FOXP3 (1:100, ThermoFisher, #14-4776-82),
NFATc1 (1:100, BD Pharmigen, #556602), and/or PD-1 (1:100,
abcam, #ab52587) in Antibody Diluent for 1 h. Secondary
antibodies (1:400, all from ThermoFisher)—donkey-anti-goat
Alexa Fluor 546 (#A-11056), donkey-anti-mouse Alexa Fluor
647 (#A-31571), donkey-anti-rabbit Alexa Fluor 488 (#A-21206),
donkey-anti-rabbit Alexa Fluor 555 (#A-31572), donkey-anti-
rat Alexa Fluor 488 (#A-21208), donkey-anti-rat DyLight
550 (#SA5-10027)—were applied in PBS containing 0.05%
Tween20 and Hoechst (1:5.000, Sigma, #B2261) for 1 h at RT.
After washing with PBS, sections were embedded in Mowiol
4-88 (Roth, #0713). Positive controls included human tonsils
(Supplementary Figures 3A,D,G,J,H,P), a follicular lymphoma
of the spinal cord (Supplementary Figures 3B,E,H,K,N,Q),
and a case of primary CNS lymphoma of the brain
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(Supplementary Figures 3C,F,I,L,O,R); negative controls
were incubated with the secondary antibodies only
(Supplementary Figures 3S–D’). For quantitative analysis,
images were captured according to the pre-defined infiltrated
regions by H&E at 20-x magnification. For representative images,
confocal laser-scanning microscopy images were acquired using
a Nikon A1R + confocal microscope system equipped with an
Eclipse TI-E inverse microscope with coherent sapphire lasers
and a visible fiber laser (lines: 405, 488, 561, and 647 nm) (MBP
Communications). Plan-Apochromat 60 × NA 1.4 objectives
were used for detection in four simultaneous channels. The
system was equipped with NIS-Elements Advanced Research
Software (Nikon). Brightness was adjusted for each staining
according to the control staining using ImageJ 1.6 (National
Institute of Health).

Quantitative Analysis of Cell Subtypes
Infiltrated regions were identified bymicroscopically screening of
the H&E. If a section contained an infiltrated area, it underwent
IHC staining of BCL-6, CD21, CD35, CD68, CXCR5, FOXP3,
Ki67, NFATc1 to screen the different cell types within the
infiltrates. If the infiltrated area was positive for at least one
of these marker, it underwent IF staining and infiltration score
was determined. For a representative overview of a whole H&E
stained slide (Figure 1E), we used Pannoramic scan II 3DHistech
(Sysmex) on 40-x magnification.

IF was carried out on eight consecutive sections: (1) presence
of lymphocytes: CD3, CD20; (2) presence of T-helper and plasma
cells: CD4, CD138; (3) presence of cytotoxic and memory T
cells: CD3, CD8, CD27; (4) presence of Tregs: CD3, FOXP3;
(5) presence of TFH: CD4, CXCR5; (6) presence of further key
features of TFH: CD3, CD4, PD-1; (7) presence of NFATc1 in TFH:
CD4, CXCR5, NFATc1; and (8) presence of presumably tissue-
resident T-helper cells: CD4, CD69. We counted the absolute
number of cells with each marker within the infiltrated area
on IHC as cells per infiltrated mm2. To avoid bias, slides were
pseudonymized and evaluation was done in a standardized way:
After identification of the respective infiltrated region with the
help of H&E, single positive cells in all channels were recorded
and counted, then the double and triple positive stainings were
counted with the help of overlays in ImageJ. By doing so,
we determined the number and ratio of CD3+ and CD20+

lymphocytes, the percentage of CD3+FOXP3+ Tregs of total
CD3+ cells within the respective infiltrated region as well as
CD4+CXCR5+ TFH of CD4+ cells, and CD4+CD69+ TRM

of CD4+ cells. For FOXP3 staining, we additionally used the
module cytonuclear (Version v1.6) of the software HALO (Indica
Lab) to objectively count the FOXP3+ cells within the infiltrated
areas vs. whole brain section (excluding infiltrated areas).

Statistical Analysis
Interval-scaled data were presented as mean ± standard
deviation (SD), ordinal-scaled data as median ± interquartile
range (IQR) or as percentage of categories, and nominal-scaled
data as absolute numbers. Statistical analyses were performed
using GraphPad Prism5 version 5.0 (GraphPad Software Inc.).
Median score of the infiltrates per case was determined based

on the absolute number of lymphocytes detected by IF staining.
For scoring, IHC (percentage of total cells), and IF (percentage
of total cells, CD20/CD3 ratio) data, two-tailed Kruskal-Wallis
test with multiple comparisons, or in case of only two groups, the
two-tailed, unpaired Mann-Whitney U test were used. For the
absolute number of infiltrates in F+ vs. F-, we used Fisher’s Exact
test. For the comparison between the scores in SPMS/PPMS
in brain and spinal cord and regions of infiltration, we used
Chi-Square test. For demographic and clinical data, we used
Kolmogorow–Smirnow test to check for normal distribution
followed by one-way analysis of variances (ANOVA) with
multiple comparisons between HC, SPMS, PPMS, or in case
of only two groups, the two-tailed unpaired Student’s t-test.
To correct alpha-error inflation, a Bonferroni-based correction
was applied.

RESULTS

Ectopic Lymphoid Follicles in Progressive
MS Are Rich in CXCR5+ Lymphocytes
To extend the knowledge about lymphocyte aggregates in
the CNS of progressive MS patients (37), we evaluated
extent, regional occurrence and especially germinal center (GC)
characteristics on so far unexamined MS patients. Pre-defined
chronic active lesion (CAL) and normal-appearing white matter
(NAWM) tissue was screened blinded for infiltration based
on H&E and scored by IF staining for lymphocytes (Table 1).
75% of CAL brain and 88% of CAL spinal cord cases, but no
control cases, exhibited at least five infiltrated CD3+ and /or
CD20+ lymphocytes. As the infiltration into NAWM/NASC
(normal-appearing spinal cord) was negligible (only two regions,
both score 1), we focused on tissue with chronic lesions
for all following analyses. Median infiltration was determined
by the mean of the previously defined scores per each case
(Supplementary Figures 1G,H).

Putative regions with infiltrations were identified by H&E
(Figures 1A,C), stained for CD3 and CD20 lymphocytes on
serial sections (Figures 1B,D), and infiltration scores determined
[adapted from Howell et al. (33)]. As reported before (31, 32),
we found GC-like structures that are typically characterized
by an accumulation of cells (Figures 1E,F), which could be
identified as CD3+ T and CD20+ B cells (Figure 1G). We
were also able to detect CD4+ cells, negative for CD138 (PCs;
Figure 1H), but positive for CD3, specifying T-helper cells
(Figure 1I). In addition, we found CD3+CD27+ memory T
cells as well as CD3+CD8+ cells, the latter not co-staining
for the memory marker CD27 (Figure 1P). Only few Ki67+

proliferating cells (Figure 1J), but many CD35+ (Figure 1K)
as well as some CD21+ (Figure 1L) were present in these
aggregates. CD35 and CD21 are commonly used to identify
follicular dendritic cells (FDCs), but can also be expressed
on B cells. CD68+ macrophages (Figure 1M) manifested
ongoing inflammation. The presence of BCL-6+ (Figure 1N)
and especially the abundance of CXCR5+ cells (Figure 1O)
underlined the definition as eLFs.
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FIGURE 1 | Ectopic lymphoid structures in progressive MS are characterized by infiltration of lymphocytes, FDCs and plasma cells. (A) Parenchyma of FFPE sections

of brain and spinal cord of progressive MS patients were screened for infiltrated regions by H&E staining. (B) IF staining for CD3+ T cells and CD20+ B cells on serial

(Continued)
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FIGURE 1 | sections were used to determine the infiltration score. Score 0, no or <5 lymphocytes; score 1, at least five but <30 lymphocytes; score 2, 31 to 60

lymphocytes; score 3, more than 60 lymphocytes. (C) Meninges and sulci of FFPE sections of brain and spinal cord of progressive MS patients were screened for

infiltrated regions by H&E staining. (D) IF staining for CD3+ T cells and CD20+ B cells on serial sections were used to determine the infiltration score. Score 0, no or

<5 lymphocytes; score 1, at least five, but <30 lymphocytes; score 2, 31 to 60 lymphocytes; score 3, more than 60 lymphocytes. (E) Whole slides were screened for

infiltration on H&E, representative infiltration area depicted in the box (F), and serial sections were stained, depicted in the box (G–O). eLFs are characterized by (G)

CD3+ T cells and CD20+ B cells, (H) CD4+ T cells and CD138+ plasma cells, (I) CD3+ T and CD3+CD4+ T helper cells (J) Ki67+ proliferating cells, (K) CD35+ and,

(L) CD21+ FDCs, (M) CD68+ macrophages as well as (N) BCL-6+ and (O) CXCR5+ GC-like lymphocytes. (P) CD3+CD8+ cytotoxic T cells as well as some

CD3+CD27+ memory T cells were also present in eLFs. Scale bars (A–D), (F) indicate 100µm; (E) indicates 2,000µm; (G–P) indicate 50 µm.

SPMS Is More Severely Affected Than
PPMS and Exhibits eLFs-Defining
Aggregates
To reveal any relevance for disease scores, we directly compared
the infiltrates in primary and secondary progressive MS (PPMS
and SPMS) patients (Figure 2A). Infiltrates of all scores were
detected in patients with either form of progressive MS and
scores of the brains of SPMS vs. PPMS exposed a similar score
pattern. In the spinal cord sections, however, infiltrates tended
toward more severe scores under SPMS (X2(6) = 13.77, p =

0.032, d = 0.641). Overall, we found a moderate effect in the
distribution of regions between brain and spinal cord, tending
toward more superficial infiltration (meninges and sulcus, brain:
29%; spinal cord: 56%) in spinal cord (X2(3) = 21.19, p < 0.001,
d = 0.793), while the distribution pattern of the region of the
infiltrates was similar between SPMS and PPMS (Figure 2B). Of
note, we assume that in general the infiltration is more noticeable
in the superficial regions as in the parenchyma, because the latter
one encompasses a larger area than the meninges and sulcus.

To define lymphocyte aggregates as eLF /GC-similar, they
had to reach score 3 and stain positively for CD3, CD20, Ki67,
CD138, plus CD35/CD21 (39 found), thereafter termed F+.
Besides FDCs also B cells express CD35 and /or CD21, but
since CD35+ cells were usually more abundant than CD20+ B
cells, we considered at least part of the CD35+ cells as FDCs.
This interpretation is in line with former studies detecting such
lymphoid aggregates (32). When the aggregates did not fulfill
all criteria, but showed at least score 2, they were called F- (44
found). Interestingly, 50% (11/22) of the SPMS cases exhibited
at least one GC-like structure (Table 1), whereas none could be
detected in PPMS. As published before, but not reproduced in
other studies, disease duration shortens fromM = 31.18 years in
F- cases to M = 18.18 years in F+ SPMS, pinpointing follicle-
associated SPMS cases to more severe disease [t(20) = 3.72,
p =0.001, Figure 2C]. Age of death was similar between the
patients of our cohort. The F+ eLFs in SPMS cases, but not the
F-, were predominantly located within the meninges and sulci
[X2(3)= 8.38, p= 0.039, d= 0.670, Figure 2D]. In sum, CXCR5-
rich eLFs weremost prominent withinmeninges and severity was
enhanced in SPMS patients’ spinal cord as compared to PPMS.

No TFRs Exist in eLFs, Whereas NFATc1+

TFHs Are Enriched
Next, we evaluated if the identified lymphoid aggregates in the
CNS of SPMS patients could be properly controlled. Follicle-
like structures were again screened on H&E (Figure 3A) and
antibodies established on tonsils and follicular lymphoma of

the spinal cord (Supplementary Figure 2). We found only
4/38 follicle-like structures positive for BCL-6, but each of
them exhibited CXCR5 (Figure 3B). However, not a single
FOXP3+ cell, i.e., a regulatory T cell was found (Figure 3C),
although our control stainings were able to detect FOXP3+ cells
(Supplementary Figures 2G,Q).

To reveal the phenotype of—unsuppressed—TFH in eLFs, we
focused on CXCR5 and NFATc1, which could be abundantly
detected in follicle-like structures (Figure 3D). When comparing
all markers between F- and F+ (Figure 3E), we detected an
increase of percentage of CD35+ cells of total lymphocytes in
F+ (M = 19.05) compared to F- infiltrates (M = 15.41). Rise
in Ki67 and CD21 in F+ was only subtle compared to F- (Ki67,
F-, M = 1.54; F+, M = 1.89; CD21, F-, M = 5.67; F+, M =

3.51). The amount of BCL-6+ cells per mm2 was very low in
both, F- and F+, without any relevant differences. We found a
small increase in CXCR5 in F+ (M = 14.72) compared to F- (M
= 20.11), but with high inter-individual variations. Interestingly,
we revealed a striking elevation in frequency of NFATc1+ cells per
total lymphocytes in F+ (M = 16.36) compared to F- infiltrates
(M = 7.15, U = 307.0, p = 0.043), pointing to more typical TFH

in F+ lymphoid aggregates.

Detected CD4+ Cells Are CD3+ T Cells, but
Neither Express PD-1 or Foxp3
Before further investigating NFATc1 expression in follicular
T cells, we wished to verify the CD4+ cells as TFHs /TFRs
by simultaneous IF stainings of CD4 with CD3 and PD-1
(Figures 4A–E). Staining was established on tonsils, follicular
lymphoma of the spinal cord and PCNSL of the brain
(Supplementary Figures 3G–I). Although the presence of CD3
on all detected CD4+ cells clearly indicated T-cell identity, the
complete absence of PD-1 questions the differentiation into
TFH as they emerge in GCs of secondary lymphoid organs.
CD3+CD4+ T cells could also be Tregs. To again search for
Tregs within the lymphoid aggregates, the same region as
before (meningeal part of the spinal cord of SPMS patient)
was screened on further serial sections for CD3 and FOXP3
co-expression (Figures 4F–I). Still, we could not detect any
FOXP3+ cells, although Tregs were provable in human tonsils
and follicular lymphoma (Supplementary Figures 3M,N), while
not on PCNSL tissue (Supplementary Figure 3O).

Foxp3+ Cells Are Sparse in the CNS of
Progressive MS Patients
The total absence of presumable TFRs was puzzling. Before and
in line with literature, we had clearly detected CNS-resident
Tregs in mice diseased with experimental autoimmune disease
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FIGURE 2 | CXCR5-rich lymphoid aggregates are most prominent within meninges of SPMS patients. (A) Percentage of score infiltration in SPMS and PPMS in CAL

brain and spinal cord. SPMS brain infiltrates, n = 78; SPMS spinal cord, n = 48; PPMS brain, n = 9; PPMS spinal cord, n = 13. Chi-square test, X2(6) = 13.77, p =

0.032, d = 0.641. (B) Percentage of regional infiltration in meninges, sulcus, cortex of the brain/WM of the spinal cord and parenchyma of the brain/GM of the spinal

cord in CAL SPMS and PPMS. SPMS, n = 145; PPMS, n = 15; brain, n = 96; spinal cord, n = 64. Chi-square test for SPMS vs. PPMS, X2(6) = 1.02, p =0.799, d =

0.168; Chi-square test for brain vs. spinal cord, X2(3) = 21.19, p < 0.001, d = 0.793. (C) Disease duration in years in follicle-like structures (F+) vs. other infiltrates (F-)

in SPMS. F-, M = 31.18, SD = 9.05, n = 11; F+, M = 18.18, SD = 7.26, n = 11; unpaired t-test, t(20) = 3.72, p = 0.001. (D) Absolute number of infiltrates in

meninges, sulcus, cortex of brain/WM of spinal cord, WM of brain/GM of spinal cord in follicle-like structures (F+) vs. other infiltrates (F-) of SPMS cases. F-, n = 44,

F+, n = 39; X2(3) = 8.38, p = 0.039. ***p < 0.001.

(39), and at least a few CD4+ FOXP3+ cells were found
in early active brain lesions of human MS patients (40). To
get an idea on the overall presence of Tregs in the CNS of

progressive MS patients, we screened for FOXP3+ cells on the

complete brain and spinal cord sections of our cohort. We

chose an unbiased measure for cytoplasmic and nuclear staining
and established the setting on Treghi follicular lymphoma
located in the spinal cord (Figures 5A,B). Assuring, also the
automated detection did not discover any FOXP3+ cells within
the infiltrated areas. Furthermore, across the progressive MS
tissue, we found at themost two FOXP3+ cells per section, always
located in the parenchyma, but most patients’ CNS emerged

as entirely FOXP3 negative (Figures 5C,D). The machine-
assisted counting revealed the striking difference per section or
area between follicular lymphoma and progressive MS patients
(Figures 5E,F). In sum, not only are Tregs absent in lymphoid
aggregates, but also overall rare in the CNS of progressive
MS patients.

NFATc1 Is Predominantly Cytoplasmic in
TFH Cells
In follicular T cells of secondary lymphoid organs (SLOs),
NFATc1 is highly expressed and nuclear, i.e., constitutively active,
which in TFRs is necessary to upregulate CXCR5 and home to
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FIGURE 3 | Follicle-like structures of SPMS brains are devoid of FOXP3 expression, but exhibit NFATc1+ cells. (A) Representative meningeal follicle-like structure of

SPMS spinal cord, which was screened based on H&E staining and characterized by >60 lymphocytes (score 3), detection of Ki67+, CD35+/CD21+, and CD138+

cells on serial sections, termed F+. F–, if no or not all criteria were fulfilled. (B) Follicle-like structures could be characterized by CXCR5+, (C) but not by FOXP3+ cells.

(D) NFATc1+ cells were present in follicle-like structures. (E) IHC stainings of Ki67, CD35, CD21, BCL-6, CXCR5, and NFATc1 were quantified as frequency of total

cells in follicle-like structures (F+) and less defined infiltrates (F-). Ki67: F-, M = 1.52, SD = 3.73, n = 45; F+, M = 1.89, SD = 3.55, n = 38; Mann Whitney test, U =

734.0, p =0.161. CD35: F-, M = 15.41, SD = 22.95, n = 22; F+, M = 19.05, SD = 14.75, n = 21; Mann Whitney test, U = 159.0, p = 0.081. CD21: F-, M = 5.68,

SD = 10.63, n = 21; F+, M = 3.51, SD = 5.60, n = 20; Mann Whitney test, U = 183.5, p = 0.488. BCL-6: F-, M = 0.32, SD = 1.08, n = 44; F+, M = 0.49, SD =

1.62, n = 38; Mann Whitney test, U = 803.0, p = 0.642. CXCR5: F-, M = 14.72, SD = 17.24, n = 30; F+, M = 20.11, SD = 15.73, n = 29; Mann Whitney test, U =

319.0, p = 0.080. NFATc1: F-, M = 7.15, SD = 11.68, n = 28; F+, M = 16.36, SD = 21.46, n = 31; Mann Whitney test, U = 307.0, p = 0.043. Scale bars A-D

indicate 100µm. *, p < 0.05.

GCs (17). To tackle the follicular nature of CD4+ T cells in
the lymphoid aggregates, we performed IF stainings of CD4,
CXCR5 together with NFATc1, again after having established
detection on tonsils, follicular lymphoma of the spinal cord, and
PCNSL of the brain (Supplementary Figures 3P–R). We found
CD4- and CXCR5-single positive cells and a good number of
CD4+CXCR5+ cells. Here, clear NFATc1 expression resembled
CD4+CXCR5+ TFHs (Figures 6A–E). Unexpectedly, however,
NFATc1 was located within the cytoplasm, indicating a less active
state. In SLOs like tonsils, cytoplasmic NFATc1 characterized
inter-follicular cells, whereas NFATc1 appeared nuclear, i.e.,
activated, within GCs (Figure 6, upper right inlays). Taken
together, lymphoid aggregates were devoid of TFRs as well as
PD-1+ TFHs, while the augmented expression of NFATc1 in
CD4+CXCR5+ TFH-like cells was restricted to the cytoplasm.

The Predominance of B Cells Is a Hallmark
of eLFs
Of note, not every follicle-like structure exhibited CD4+CXCR5+

T cells (only 78%), but the number of infiltrates was moderately
associated with follicle-like structures [Figure 7A, X2(1) = 4.55,
p = 0.048, d = 0.505]. However, the mean percentage of
CD4+CXCR5+ T cells of total CD4+ cells in two stainings did
not show any relevant difference between F- (M = 15.57) and F+
(M = 17.01) (Figure 7B). To propose the source of heightened
cell numbers in F+, we found a moderate increase in CD20/CD3

ratio in F+, indicating the supremacy of CD20+ B cells in those
lymphoid aggregates (Figure 7C, F-,M = 0.279; F+,M = 0.381,
U = 525.5, p= 0.042). Therefore, the presumable eLFs exhibited
not only an increased number of CD35+ cells, likely FDCs,
and TFH-like cells with cytoplasmic NFATc1, but also a boosted
CD20/CD3 ratio.

CD4+CD69+ Cells Are Enriched in eLFs
Absence of Tregs /TFRs and heightened B-cell frequency would
predict an uncontrolled, overactive GC reaction. Nevertheless,
CD4+CXCR5+ T cells exhibited NFATc1 in the cytoplasm and
expressed only little BCL-6 and no PD-1, wherefore the lymphoid
aggregates might meanwhile be the source for memory cells (41).
Hence, we lastly studied whether follicles were associated with
CD4+CD69+ cells, suggesting tissue-resident memory CD4+ T
cells (TRM). Since we verified the identity of CD4+ to be CD3+ T
cells on one example of eLF (Figures 4A–D) and the presence of
CD3+CD27+, but CD8− memory T cells (Figure 1P), putative
TRM helper cells were identified by co-staining of CD4 and
CD69 on serial sections (Figures 8A–D). Indeed, we found a
moderate increase in percentage of CD4+CD69+ cells in the
total amount of CD4+ cells in F+ (M = 7.92) when compared
to F- (M = 5.70) (Figure 8E, U = 434.0, p = 0.028). This
finding indicates that the lymphoid aggregates /eLFs in the
CNS of SPMS patients eventually became a source not only
for LLPCs most likely producing auto-antibodies, but also most
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FIGURE 4 | Follicle-like structures of SPMS brains exhibit CD3+CD4+ T cells, which neither express PD-1 nor FOXP3. (A–E) IF staining of CD3, CD4 and PD-1 reveal

CD3+CD4+PD-1− T-helper cells in progressive MS. Inserts in the upper right corners show magnification of the white box. (F–I) IF staining of CD3 and FOXP3 on

serial sections of a representative meningeal follicle-like structure in SPMS (same region as Figure 3). CD3+ T cells, but no FOXP3+ cells were detected. Inserts show

magnification of the white box. Scale bars indicate 100µm, inserts 10µm.
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FIGURE 5 | Quantification of FOXP3 staining on brain and spinal cord of progressive MS and follicular lymphoma. The module cytonuclear v1.6 (Halo, Indica Lab) was

used to define FOXP3+ in follicular lymphoma (A,B) and applied on progressive MS tissue (C,D). Representative raw images detecting FOXP3+ staining (A,C) and the

mark-up (yellow, low positive; red, highly positive) are depicted (B,D). (E) Absolute number of FOXP3+ cells per whole section in follicular lymphoma (M = 200849)

and across progressive MS samples (M = 0.176, n = 36) as well as (F) FOXP3+ cells per tissue area in mm2 are counted in follicular lymphoma (M = 767.71) and

across all available progressive MS samples (M = 0.00051, n = 36). Note, that in 83% of the samples (n = 30) no FOXP3+ cells were detected, in 11% samples (n =

4) one FOXP3+ cell within parenchyma, in 6% of samples 2 FOXP3+ cells within parenchyma. Scale bars indicate 50µm.

likely for memory TFH and CD4+ TRMs that might account
for the less active state of TFH in spite of the absence of
TFR cells.

DISCUSSION

Being intrigued by the detection of lymphoid aggregates, which
resemble germinal centers (GCs), in post-mortem material of
progressiveMS patients (31, 32) and knowing about the relevance
of follicular regulatory T-cells (TFRs) in GCs (17, 42), we set
out to inquire if those ectopic lymphoid follicles (eLFs) inhabit
TFRs. In fact, also in this new cohort of progressive MS patients,
we could find eLFs—defining them by the combined presence
of CD3+ T cells, CD20+ B cells, Ki67+ proliferating, CD35+

or CD21+ (FDCs?) cells and parafollicular CD138+ PCs as

well as a minimum of 61 lymphocytes—in around half of all
SPMS cases. However, no Tregs and therefore no TFRs could be
detected in eLFs of SPMS patients or in lesser-defined lymphoid
aggregates of PPMS and SPMS patients. In GCs of secondary
lymphoid organs (SLOs), TFRs repress TFH and GC-B cells (15,
18–22). Accordingly, the total absence of TFRs and the succeeding
unrestrained T-cell help to low-affinity, poly-reactive or even
autoreactive B cells must lead to overshooting GC reactions and
the occurrence of CNS-specific autoantibodies in MS patients. In
line, PCs have been detected scattered in the CNS parenchyma
of remitting-relapsing and secondary progressive MS patients,
but in SPMS patients predominantly at the periphery of B-cell
follicles /eLFs (31, 43).

It is increasingly clear that loss of Treg number and /or
function is implicated in a wide variety of autoimmune and
chronic inflammation settings. If this is due to loss of FOXP3
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FIGURE 6 | CD4+CXCR5+ TFHs mark positive for cytoplasmic NFATc1. (A–E) Consecutive IF staining of CD4, CXCR5 and NFATc1 on serial sections of follicle-like

structures in SPMS (same region as Figures 3, 4E–H). Inserts show magnification of the white box. (F) NFATc1 appears to be cytoplasmic in MS brains, compared to

nuclear localization within tonsillar GCs (left insert) and cytoplasmic predominance in inter-follicular cells (right insert). Scale bars indicate 100µm, inserts 10µm.
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FIGURE 7 | B cells enrich in lymphoid aggregates. (A) Absolute number of infiltrates that were positive for TFH in follicle-like structures (F+) and less defined infiltrates

(F-). Fisher’s exact test, N = 76, X2(1) = 4.55, p = 0.048, d = 0.505. (B) Mean percentage of TFH cells defined as CD4+CXCR5+ cells of CD4+ cells in two serial

FFPE sections of follicle-like structures (F+) and less defined infiltrates (F-) in SPMS brains and spinal cords. F-, M = 15.57, SD = 17.13, n = 39; F+, M = 17.04, SD

= 15.85, n = 37. Mann Whitney test, U = 635.0, p = 0.369. (C) CD20/CD3 ratio in follicle-like structures (F+) and less defined infiltrates (F-) based on IF co-staining

of CD3 and CD20. F-, M = 0.28, SD = 0.33, n = 39; F+, M = 0.38, SD = 0.34, n = 37; Mann Whitney test, U = 525.5, p = 0.042. *p < 0.05.

expression, those cells are called ex-Tregs and they have
been linked to susceptibility for MS (44). Since preliminary
experiments (data not shown) indicated some circulating
CD4+CXCR5+FOXP3+ cells in lumbar punctures, i.e., the CSF
of living SPMS patients, it is possible that such TFR cells lose
FOXP3 expression—becoming ex-TFRs—and their suppressive
capacity when homing to eLFs. In general, the scarcity of Tregs
in the CNS of progressive MS patients (our data here) as well
as in early active MS lesions is in contrast with the detectability
of some Tregs in the CSF (40). The pro-inflammatory cytokine
milieu might be causative, as for example high levels of IL-6
can induce loss of FOXP3 expression of Tregs in vivo (45, 46).
Interestingly, dysfunctional ex-TFR cells have been described in
an animal model just now (47), but nothing is known about
human ex-TFRs, what would lead to FOXP3 downregulation and
what could be the consequence.

Experimental autoimmune encephalomyelitis (EAE),
a rodent model sharing features with MS, revealed not
only that the pro-inflammatory CCR6-directed Th17 cells
enter the CNS via the choroid plexus, a distinct meningeal
structure (48), but also are involved in eLF induction
(49, 50). Strikingly, both Th17 and Foxp3+ T cells can
acquire TFH cell-like characteristics when migrating to
mouse Peyer’s Patches of the intestine (51, 52). Whether
the inflamed CNS in humans provides environmental cues
for transdifferentiation of Th17 as well as Foxp3+ T cells to
TFHs stays unresolved. At least, both CD4+ T-cell types display
a great magnitude of plasticity with pathogenic potential in
humans (53).

Before, we had shown that encephalitogenic T cells rely on
NFATc1 and NFATc2 expression and activity (39). Furthermore,
the high abundance of NFATc1 expression in lymphoid
aggregate-situated TFHs was reminiscent of GCs in mice
and men (16, 17), describing eLFs now better than less

defined lymphoid aggregates. In contrast to constitutive nuclear
expression of NFATc1 in GCs (17), however, NFATc1 was mostly
cytoplasmic and presumably inactive like in interfollicular T
cells of SLOs. Since NFATc1 transactivation is necessary for
the induction of CXCR5 in TFRs (17), they could lose CXCR5
expression in such a scenario and not—or no longer—be present
in eLFs.

Nevertheless, cytoplasmic NFATc1 is untypical for classical
TFHs and better describes interfollicular T cells (17). Chronic
stimulation of CD8+ or CD4+ T cells leads to exhaustion
and anergy, respectively, a measure to protect the organism
from unlimited immune responses. In both T-cell types,
NFAT proteins, being directly downstream of T-cell receptor
(TCR) signaling, are key to the response (54, 55). We
showed in a mouse model of chronic LCMV infection
that restraining the TCR→NFATc1→IRF4 axis by IRF4
heterozygosity redirected exhausted CD8+ T cells to memory-
like CXCR5+CD8+ T cells (56). In the CNS of SPMS
patients, we found CD3+CD8−CD27+ memory T cells and
especially CD3+CD4+CXCR5+BCL6lo/− PD-1− TFH cells. The
latter is the phenotype of circulating memory TFH cells (16,
41, 57). Intriguingly, also primary TFHs of SLOs persist as
memory T cells in the outer follicle after the collapse of the
GC (58). Upon re-exposure with the antigen, they expand
within reactive follicles and spread via the lymphatic flow.
In the CNS, such CXCR5+ memory TFH and TRM cells
could disseminate via lymphatic vessels, which connect the
cerebrospinal fluid to the deep cervical lymph nodes (59). This
setting enables a smoldering humoral immune response over the
entire CNS.

The presence of—uncontrolled—lymphoid aggregates in
proximity to the meninges is in agreement with the assumption
that those structures promote auto-antigen-specific adaptive
immune responses that exacerbate chronic disease. Again,
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FIGURE 8 | eLFs of brain and spinal cord exhibit more CD4+CD69+ cells. (A–D) Consecutive IF co-staining of CD4 and CD69 in follicle-like structures of SPMS

brains and spinal cords. Inserts show co-localization of CD4+ cells with CD69 suggesting tissue-resident T cells in a representative meningeal eLF of SPMS spinal

cord (same region as Figures 3, 4E–H, 5). Scale bar indicate 100µm, scale bars of the inserts indicate 10µm. (E) Percentage of tissue-resident cells defined as

CD4+CD69+ cells of CD4+ cells in follicle-like structures (F+) and less defined infiltrates (F-) in SPMS brains and spinal cords. F-, 5.70, SD = 10.67, n = 38; F+, M =

7.92, SD = 9.39, n = 32; Mann Whitney test, U = 434.0, p = 0.028.

different from GCs of SLOs and more like a primary follicle or
a collapsed eLF with memory TFH cells, we found very limited
expression of the transcriptional key regulator BCL-6 as well as
only few Ki67+ proliferating cells, suggesting that they are in
a resting state. In addition, CD21+ cells were sparse and the
CD35+ did not abundantly reach-out to a typical FDC network.
Some of them might even be GC-B cells or FDC precursors
(60, 61). Actually, the role of FDCs can be fulfilled by other cell
types in eLFs, like either monocytes/macrophages or fibroblasts
produce CXCL13 under eLF forming conditions (62, 63). This
all is in line with the fact that fully developed eLFs with FDCs,

compartmentation into a light and dark zone, an excess of GC-
B cells over TFHs as well as the presence of “true”, i.e., active
CD4+CXCR5+BCL-6+ TFHs are rare in human autoimmune
diseases (64). Since T cells of inflamed tissues can still provide
cognate help to GC–B cells in unstructured, FDC-negative
infiltrates, we envisage a transient conversion from F- to F+ eLFs,
the latter composed with FDCs and CXCR5+ TFHs in SPMS. Of
note, the relative frequency of CD4+CXCR5+ TFHs was similar
in less defined (F-) aggregates as in eLFs, suggesting that GC-like
reactivity is hallmark in the CNS of progressive forms ofMS. Still,
at time of death, germinal center reactivity might have come to
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a halt. Nonetheless, this leads to the assumption that for both
progressive forms, SPMS and PPMS, therapeutic targeting of B
or TFH cells could be promising. An awareness for intrathecal
LLPCs (4) and TRMs increases the treatment options. At last,
finding a way to revive Tregs /TFRs in the inflamed CNS promises
so far unappreciated benefits.
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