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Legionella pneumophila is the causative agent of a severe pneumonia called

Legionnaires’ disease. The environmental bacterium replicates in free-living amoebae

as well as in lung macrophages in a distinct compartment, the Legionella-containing

vacuole (LCV). The LCV communicates with a number of cellular vesicle trafficking

pathways and is formed by a plethora of secreted bacterial effector proteins, which

target host cell proteins and lipids. Phosphoinositide (PI) lipids are pivotal determinants

of organelle identity, membrane dynamics and vesicle trafficking. Accordingly, eukaryotic

cells tightly regulate the production, turnover, interconversion, and localization of PI

lipids. L. pneumophila modulates the PI pattern in infected cells for its own benefit

by (i) recruiting PI-decorated vesicles, (ii) producing effectors acting as PI interactors,

phosphatases, kinases or phospholipases, and (iii) subverting host PI metabolizing

enzymes. The PI conversion from PtdIns(3)P to PtdIns(4)P represents a decisive step

during LCV maturation. In this review, we summarize recent progress on elucidating the

strategies, by which L. pneumophila subverts host PI lipids to promote LCV formation

and intracellular replication.

Keywords: Dictyostelium discoideum, effector protein, endoplasmic reticulum, host-pathogen interaction,

macrophage, pathogen vacuole, type IV secretion, vesicle trafficking

LEGIONELLA PNEUMOPHILA—AN AMOEBAE-RESISTANT
ENVIRONMENTAL BACTERIUM

Legionella spp. are obligate aerobic, Gram-negative bacteria, which are ubiquitously found in
technical and natural water systems, where they colonize different niches (1, 2). The facultative
intracellular bacteria replicate in planktonic form as well as in biofilms (3–5), and they infect
environmental predators such as nematodes (6–9) and protozoa (10–12). Complex, ecologically
relevant interactions take place in the aquatic niches inhabited by Legionella spp.; e.g., nematode
larvae rupture Legionella-infected amoebae and thus are exposed to a highly virulent form of the
bacterial pathogen (9).

Upon inhalation of contaminated water droplets, Legionella bacteria reach the lung, where
they replicate in and destroy alveolar macrophages, thus causing a potentially fatal pneumonia
termed Legionnaires’ disease (2). The clinically most relevant and best studied species is Legionella
pneumophila; yet, Legionella longbeachae is prevalent in some parts of the world, too (13).
The spread of Legionella spp. predominantly occurs through environmental sources; however, a
probable person-to-person transmission of L. pneumophila, resulting in the death of the two people
involved, was recently reported (14).
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Legionella pneumophila replicates intracellularly in amoebae
and macrophages by exploiting evolutionarily conserved
pathways (15, 16). The pathogen forms a unique, degradation-
resistant compartment, the Legionella-containing vacuole
(LCV), wherein which bacterial replication takes place.
The LCV does neither acidify nor fuse with lysosomes,
but communicates with several vesicle trafficking pathways
including the endosomal, secretory, and retrograde routes
(17–21). At later steps of pathogen vacuole maturation, the
LCV tightly and continuously associates with the endoplasmic
reticulum (ER). Small GTPases of the Arf (22, 23), Rab (24, 25),
Ran (26), and Rap (27) families regulate LCV formation and
intracellular replication of L. pneumophila. Moreover, large
GTPases implicated in eukaryotic membrane fusion and fission
play a role in L. pneumophila infection. Atlastin3 (Atl3/Sey1),
an ER tubule-resident large GTPase that catalyzes homotypic
ER fusions, promotes ER remodeling around LCVs, pathogen
vacuole expansion and intracellular bacterial replication (28).
Dynamin1-like GTPase (Dnm1l), a mitochondrial large GTPase,
mediates L. pneumophila-induced mitochondrial fragmentation
and inhibition of host cell respiration (29).

LCV formation requires the Icm/Dot (intracellular
multiplication/defective organelle trafficking) type IVB secretion
system (T4SS), which is conserved among Legionella spp.,
and in the case of L. pneumophila translocates more than 300
different “effector” proteins into host cells (30, 31). In eukaryotic
cells, the effector proteins subvert essential process such as
signal transduction, cytoskeleton dynamics and membrane
trafficking (17, 32–37). Distinct effector proteins have been
shown to target the small GTPases Arf1 (22), Rab1 (38–41)
or Ran (26, 42), the retromer coat complex (43–46), the
vacuolar H+-ATPase (47), the autophagy machinery (48–50),
or phosphoinositide (PI) lipids (35, 51, 52). Here, we focus on
how L. pneumophila subverts host PI lipids to promote LCV
formation and intracellular replication.

PHOSPHOINOSITIDE
LIPIDS—REGULATORS OF ORGANELLE
IDENTITY AND MEMBRANE DYNAMICS

Phosphoinositides are minor constituents of eukaryotic
membranes (<10% of all phospholipids), but this low abundance
class of lipids exert pivotal functions for cellular organelle
identity, membrane dynamics and vesicle trafficking (53–56).
Accordingly, the production, turnover, interconversion, and
subcellular localization of PI lipids are tightly regulated
by eukaryotic cells. The core compound of PI lipids is
phosphatidylinositol (PtdIns), comprising a diacylglycerol
(DAG) moiety and a D-myo-inositol 1-phosphate head group
facing the cytoplasmic side of membranes (Figure 1). PtdIns

Abbreviations: AMPylase, adenylyltransferase; DAG, diacylglycerol; Icm/Dot,

intracellular multiplication/defective organelle trafficking; GAP, GTPase activating

protein; GDI, guanine nucleotide dissociation inhibitor; GEF, guanine nucleotide

exchange factor; LCV, Legionella-containing vacuole; OCRL, oculocerebrorenal

syndrome of Lowe; PI, phosphoinositide; PI3/4/5K, PI 3-/4-/5-kinase; PtdIns,

phosphatidylinositol; T4SS, type IV secretion system.

FIGURE 1 | Chemical structure of phosphoinositide lipids. The core moiety of

phosphoinositide (PI) lipids is phosphatidylinositol (PtdIns), comprising

diacylglycerol (DAG), and D-myo-inositol 1-phosphate. The inositol head group

is reversibly phosphorylated by organelle-specific PI kinases and PI

phosphatases at the positions 3, 4, and/or 5, giving rise to seven different

mono- or poly-phosphorylated derivatives.

can be reversibly phosphorylated at the positions 3, 4, and/or
5 of the inositol ring, giving rise to seven different mono- or
poly-phosphorylated derivatives (53–56). These reactions are
catalyzed by organelle-specific PI metabolizing enzymes (PI
kinases and PI phosphatases), the activity of which controls
compartmentalization and vesicle trafficking within the
cell (57, 58).

PI lipids, jointly with small GTPases in their active GTP-
bound form, recruit peripheral membrane proteins harboring
distinct PI-binding motifs, such as the PH, PX, FYVE,
ENTH/ANTH, or FERM domains (59). Hence, lipid-protein
co-incidence detection, along with specific adaptor proteins,
determines organelle identity and vesicle trafficking routes in
eukaryotic cells (54, 60). PI-metabolizing enzymes are usually
recruited to the cytoplasmic side of cellular membranes by
small GTPases; e.g., the endosomal small GTPase Rab5 recruits
and activates the class III phosphatidylinositol 3-kinase (PI3K)
to produce PtdIns(3)P from PtdIns (61). The small GTPases
themselves are localized and activated by specific guanine
nucleotide exchange factors (GEFs), which concomitantly
displace the guanine nucleotide dissociation inhibitor (GDI)
protein from the small GTPase, thus allowing the membrane
association of the GTPase. To switch off the signal, the
inactivation of small GTPases is catalyzed by specific GTPase
activating proteins (GAPs) (61).

The different PIs preferentially localize to distinct subcellular
compartments and pathways [(53, 54, 62); Figure 2].
Accordingly, PtdIns(4)P and in particular PtdIns(4,5)P2 are
enriched at the plasma membrane, where PtdIns(3,4,5)P3 and
PtdIns(3,4)P2 transiently accumulate upon signal transduction
events and during phagocytosis. PtdIns(3)P is the “signpost” PI
lipid of the endocytic pathway, and is enriched on phagosomes
and early endosomes, as well as on autophagosomes and
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FIGURE 2 | Subcellular distribution of phosphoinositides. The subcellular distribution of phosphoinositide lipids is primarily arranged around the cellular dichotomy of

the secretory and endocytic vesicle trafficking pathways. In the secretory pathway, PtdIns(4)P is synthesized in the endoplasmic reticulum (ER) and Golgi apparatus,

localizes to secretory vesicles, and finally accumulates at the plasma membrane, where it is converted to PtdIns(4,5)P2 and, transiently, to PtdIns(3,4,5)P3. In the

endocytic pathway, PtdIns(3)P decorates early endosomes and the tubular endosomal network (TEN), and is converted to PtdIns(3,5)P2 on multivesicular bodies

(MVB), late endosomes and lysosomes (LYS).

multivesicular bodies, which like late endosomes and lysosomes
are also decorated with PtdIns(3,5)P2. PtdIns(4)P is the
hallmark PI lipid of the secretory pathway and predominantly
localizes to the Golgi apparatus and secretory vesicles
(53, 54, 56, 62). This PI lipid is formed from PtdIns on the ER and
together with PtdIns(3)P also regulates phagosome-lysosome
fusion (63).

On certain compartments and along some vesicle trafficking
pathways, distinct PIs are functionally coupled, i.e., the
product of a given PI-metabolizing enzyme is the substrate
of a subsequent modification. This occurs, e.g., in the
endocytic pathway, where PtdIns(3)P is phosphorylated to
yield PtdIns(3,5)P2, as well as in the secretory pathway, where
PtdIns(4)P serves as the precursor of PtdIns(4,5)P2 at the plasma
membrane. In turn, PtdIns(4,5)P2 is phosphorylated by class I
PI3K to transiently yield PtdIns(3,4,5)P3 during phagocytosis.

EUKARYOTIC PI KINASES IMPLICATED IN
UPTAKE AND ENDOCYTOSIS OF
L. PNEUMOPHILA

PtdIns(3,4,5)P3 and PtdIns(3)P are produced by class I or class
III PI3Ks and are major regulators of phagocytosis or the
endocytic pathway, respectively. Using the haploid social soil
amoeba Dictyostelium discoideum, genetic and pharmacological
disruption of class I PI3Ks indicated that these kinases are largely
dispensable for uptake of wild-type L. pneumophila, but required
for uptake of an icm/dot mutant strain (51, 64). Moreover, using

D. discoideum producing a fluorescent probe for PtdIns(3,4,5)P3,
live-cell microscopy revealed that this PI lipid accumulated at
bacterial entry sites and was cleared within approximately 40 s
after uptake, regardless of whether the amoebae were infected
with wild-type or icm/dot mutant L. pneumophila. In parallel,
plasma membrane PtdIns(4,5)P2 disappeared from the uptake
sites (65).

Similar to amoebae, the uptake of L. pneumophila wild-type,
but not the icm/dot mutant strain by replication-permissive
human U937 macrophage-like cells was not affected by the class
I PI3K inhibitor wortmannin (66, 67). In contrast, wortmannin
or LY294002 inhibited the uptake of wild-type as well as icm/dot
mutant L. pneumophila by non-permissive murine J774A.1
macrophages (64, 66, 67). The Icm/Dot T4SS controls the
uptake of L. pneumophila by phagocytes (68, 69); however,
no effectors implicated in the process have been identified.
These results suggest that during uptake of L. pneumophila
class I PI3Ks are activated and the pathogen evades/inhibits
downstream processes in an Icm/Dot-dependent manner to form
the replication-permissive compartment.

Dictyostelium discoideum mutant strains were also used to
examine the role of endosomal PI kinases, PI phosphatases and
phospholipases for intracellular growth of L. pneumophila. Wild-
type L. pneumophila replicated more efficiently in D. discoideum
lacking two or five class I PI3Ks (51, 64) or in amoebae lacking
PIKfyve (70), a PI 5-kinase, which is recruited through its
FYVE domain to early endosomes, where it phosphorylates
PtdIns(3)P to yield PtdIns(3,5)P2. While it is not clear how lower
levels of PtdIns(3,4,5)P3 promote the intracellular replication
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of L. pneumophila, the reduction of PtdIns(3,5)P2 impairs
the bactericidal endocytic pathway, which restricts bacterial
killing and thus benefits the pathogen (70). The disruption
of D. discoideum PTEN (phosphatase and tensin homolog),
a PI phosphatase antagonizing PI3Ks, reduces the uptake of
L. pneumophila but does not affect intracellular growth (64).
Finally, the inhibition of D. discoideum PLC (Phospholipase C),
a hydrolase cleaving PI(4,5)P2 to yield DAG and inositol 1,4,5-
phosphate (IP3), also abolishes the uptake of L. pneumophila, but
again has no effect on bacterial replication (64).

PHOSPHOINOSITIDE CONVERSION ON
THE LEGIONELLA-CONTAINING VACUOLE

PtdIns(3)P accumulates on LCVs within 1min after uptake,
regardless of whether the vacuole contains wild-type or icm/dot
mutant L. pneumophila (71). However, while phagosomes
containing icm/dot mutant bacteria remain decorated with
PtdIns(3)P, more than 80% of wild-type LCVs gradually lose this
PI within 2 h. Concomitantly, major membrane rearrangements
take place with PtdIns(3)P-positive membranes being segregated
from the LCV and compacted at the cell center. PtdIns(4)P,
on the other hand, transiently localizes to early phagosomes
harboring wild-type or icm/dot mutant L. pneumophila, but is
cleared within minutes after uptake. During the following 2 h,
PtdIns(4)P steadily accumulates only on wild-type LCVs, which
for at least 8 h maintain a discrete PtdIns(4)P identity spatially
separated from the calnexin-positive ER. PtdIns(4)P decorates
the LCV for a prolonged time (18 h p. i. and beyond) up to when
the bacteria exit from the pathogen vacuole and the infected
cell (71). Taken together, within 2 h post-infection, the LCV
undergoes a PI conversion, replacing the endosomal PtdIns(3)P
with the secretory PtdIns(4)P (Figure 3). Importantly, the LCV
PI conversion occurs prior to and independently from ER
recruitment, and the two compartments appear to remain
separate throughout the intracellular life of L. pneumophila.

Mechanistically, the PI conversion on the LCV possibly
proceeds along several, mutually non-exclusive pathways: (i) the
LCV might communicate and selectively retain PI-decorated
vesicles, (ii) L. pneumophila might produce (Icm/Dot-secreted)
effectors acting directly as PI interactors, phosphatases or kinases,
and/or (iii) the pathogen might subvert host PI metabolizing
enzymes (Figure 3). Indeed, using D. discoideum producing
fluorescent PtdIns(3)P and PtdIns(4)P probes in tandem, we
recently showed by high-resolution real-time confocal laser
scanning microscopy that nascent LCVs continuously capture
and accumulate PtdIns(4)P-positive vesicles derived from the
trans-Golgi network (72). The sustained association of the
PtdIns(4)P-positive vesicles, but not the LCV-vesicle interactions
per se, require a functional T4SS. Thus, L. pneumophila exploits
the cellular dynamics of vesicle-bound PtdIns(4)P for LCV
formation. At different stages of infection L. pneumophila
effectors might modulate the host PI pattern in different
ways (73).

As outlined below in detail, L. pneumophila Icm/Dot-
translocated effector proteins subvert PI lipids (i) by directly

binding PIs (SidC, SidM, RidL, LtpM), (ii) by acting as
bacterial PI phosphatases (SidF, SidP), PI kinases (LepB, LegA5),
or phospholipases (VipD, PlcC, LpdA), or (iii) by recruiting
eukaryotic PI phosphatases or kinases (RalF, SidM). Currently, no
effector has been described, which directly modulates the activity
of host PI-metabolizing enzyme. In general, L. pneumophila
effectors determining the LCV PI pattern might act either in cis
(on the LCVmembrane) or in trans (in a distance from the LCV).
In fact, a number of these effectors have been shown to act in
cis, in agreement with their exceptional affinity for specific PI
receptors (40, 74–76).

PHOSPHOINOSITIDE ANCHORS FOR
L. PNEUMOPHILA EFFECTORS

Legionella pneumophila Icm/Dot substrates translocated to the
cytoplasmic face of the LCV can bind to the pathogen vacuole
as peripheral membrane protein [e.g., RalF; (77, 78)], as intrinsic
membrane protein [e.g., MavN; (79, 80)], through host cell
prenylation of a C-terminal CAAX motif [e.g., LegG1, AnkB,
LpdA; (81–83)], or through PI lipids [e.g., SidC, SidM, RidL,
LtpM; (44, 84, 85); Figure 4]. PI lipids bind a plethora of
eukaryotic proteins through distinct domains (59), none of which
was identified in L. pneumophila effector proteins. However,
L. pneumophila produces a battery of effector proteins, which
bind through novel domains to PtdIns(4)P (SidC, SdcA, SidM,
Lpg1101, Lpg2603, AnkX, LidA) and/or PtdIns(3)P (LepB, RidL,
SetA, LtpD, LtpM, RavD, RavZ, AnkX, LidA) (Table 1).

The L. pneumophila Icm/Dot substrate SidC and its paralogue
SdcA localize to the LCVmembrane (115) and almost exclusively
bind to PtdIns(4)P [(51); Figure 4 and Table 1]. The 105 kDa
effector proteins harbor a unique 20 kDa C-terminal domain
termed P4C [PtdIns(4)P-binding domain of SidC], which does
not show similarity to any eukaryotic PI-binding motif and was
used as a PtdIns(4)P probe in eukaryotic cells (116, 136). SidC
and the P4C domain are conserved in Legionella longbeachae,
where the 111 kDa effector represents the major PtdIns(4)P
binding protein (75). The SidC orthologs of L. pneumophila and
L. longbeachae bind PtdIns(4)P with a low dissociation constant
(Kd) of ca. 240 or 70 nM, respectively. The crystal structure of
SidC revealed a unique PtdIns(4)P-binding domain essential for
targeting the effector to the pathogen vacuole (137).

LCVs harboring an L. pneumophila 1sidC-sdcA mutant
strain recruit the ER slower and to a smaller extent; yet, the
formation of the spatially separated PtdIns(4)P-positive limiting
LCV membrane is not affected (28, 51, 65, 116). The interaction
with the ER is catalyzed by a 70 kDa N-terminal fragment of SidC
(116). The crystal structure of the N-terminal fragment revealed
a novel fold (117, 121), comprising a catalytic Cys-His-Asp triad,
which is essential for SidC to promote the polyubiquitination
of protein substrates on the LCV (118). Indeed, SidC and SdcA
act as E3 ubiquitin ligases, which show a broad and non-
overlapping specificity for ubiquitin-conjugating E2 enzymes
(118, 119). Hence, the L. pneumophila effector SidC links and
subverts two different eukaryotic pathways, phosphoinositide
and ubiquitination signaling.
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FIGURE 3 | LCV formation and phosphoinositide conversion. The Legionella-containing vacuole (LCV) is a replication-permissive compartment disconnected from the

bactericidal endocytic pathway and tightly associated with the ER. LCV formation is governed by a PI conversion from endosomal PtdIns(3)P to secretory PtdIns(4)P.

L. pneumophila subverts the LCV PI pattern (i) by recruiting and selectively retaining PI-decorated vesicles, (ii) by producing effectors acting as PI interactors (SidC),

kinases (LepB), phosphatases (SidP), or phospholipases (VipD), and (iii) by subverting host PI kinases (PI4KIIIβ) and phosphatases (OCRL).

In L. pneumophila-infected phagocytes, SidC decorates the
LCV selectively, uniformly and in copious amounts (51, 116).
We exploited this feature to isolate LCVs from homogenates
of infected host cells by establishing a two-step procedure
comprising immuno-affinity enrichment with an anti-SidC
antibody, followed by Histodenz density gradient centrifugation
(138, 139). Using this protocol, intact LCVs were isolated
from D. discoideum amoeba (28, 140), murine RAW 264.7
macrophage-like cells (24, 27) and bonemarrow-derived primary
macrophages (141). The isolated LCVs were utilized for
biochemical fusion experiments (28) and proteomics analysis
(24, 27, 140, 141), which identified small GTPases and their
effectors (Rab family, Rap1, Ran, RanBP1), large GTPases,
components of the endosomal and late secretory trafficking
pathways, as well as protein or lipid kinases and phosphatases.
LCV localization of some of these proteins was confirmed by
fluorescence microscopy using D. discoideum strains producing
the corresponding GFP-fusion proteins (24, 26–28, 140, 142).

The Icm/Dot substrate SidM (alias DrrA) localizes to the
LCV membrane early during L. pneumophila infection (92) and
is the major PtdIns(4)P-binding protein, as it was exclusively
identified as such in a non-biased pulldown approach [(84);
Figure 4 and Table 1]. In lysates of L. pneumophila 1sidM, no
other PI-binding protein (not even SidC) was identified. The
73 kDa effector protein harbors the 12 kDa C-terminal domain
P4M [PtdIns(4)P-binding domain of SidM], which does not show
similarity to any eukaryotic PI-binding motif or the P4C domain
of SidC, but is shared with two other effectors, Lpg1101 (alias
Lem4) and Lpg2603 (alias Lem28) [(102); Table 1]. The P4M

domain has been ectopically produced and used as a PtdIns(4)P
probe in eukaryotic cells (143) and Drosophila photoreceptor
cells (144). The crystal structure of SidM and biochemical
analysis revealed a unique PtdIns(4)P-binding domain and a very
high binding affinity (Kd = 4–18 nM) (40, 74).

SidM, i.e., its central domain, exerts GEF activity toward
Rab1-GDI complexes, thus leading to GTP loading and
Rab1 activation on LCV membranes (38, 39, 92, 124–127).
Moreover, the N-terminal domain of SidM catalyzes the covalent
attachment of AMP to Rab1, a reaction termed AMPylation
(128), which renders Rab1(GTP) inaccessible to GAPs and
causes the constitutive activation of the small GTPase on
LCVs (93). The AMPylation reaction is reversible, and the
L. pneumophila effector protein SidD can remove the AMP
residue from Rab1 by a deAMPylation reaction (145–147). The
removal of the covalent modification allows the GAP LepB to
inactivate Rab1 (92, 94). Through activation of Rab1, SidM
catalyzes the non-canonical pairing of plasma membrane t-
SNARE syntaxin proteins (present on the LCV membrane) with
the ER-localized v-SNARE protein Sec22b (148, 149). Thus,
the SidM-catalyzed activation of Rab1 seems to promote the
tethering and fusion of the LCV with ER-derived vesicles,
which has been described many years ago (150, 151). In
summary, the L. pneumophila effector SidM links and subverts
two different eukaryotic pathways, phosphoinositide and small
GTPase signaling.

The Icm/Dot substrate LidA supports SidM-dependent
recruitment of Rab1 to LCVs (39) and preferentially binds
to PtdIns(3)P or with lower affinity to PtdIns(4)P [(84, 103);
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FIGURE 4 | Subversion of host PI lipids by L. pneumophila effector proteins. L. pneumophila effector proteins translocated by the Icm/Dot T4SS subvert PI lipids on

the Legionella-containing vacuole (LCV) (i) by directly binding PIs (SidC, SidM, AnkX, LidA, RidL, SetA, LtpM), (ii) by acting as bacterial PI phosphatases (SidF, SidP), PI

kinases (LepB, LegA5), or phospholipases (VipD, PlcC, LpdA), or (iii) by recruiting eukaryotic PI phosphatases or kinases (RalF, SidM). PtdIns(4)P is bound by SidC

(ubiquitin ligase) and SidM (Rab1 GEF/AMPylase). LidA and the Rab1 phosphocholinase AnkX bind PtdIns(3)P as well as PtdIns(4)P. PtdIns(3)P is bound by RidL

(retromer inhibitor) and RavZ (Atg8/LC3 protease), as well as by SetA and LtpM (glycosyltransferases) and LepB (Rab1 GAP, PI 4-kinase). SidF and SidP are PI

3-phosphatases. VipD and PlcC function as a Rab5-activated phospholipase A1 or a Zn2+ metallophospholipase C, respectively. LpnE is secreted by an unknown

mechanism and binds PtdIns(3)P as well as the host PI 5-phosphatase OCRL. The GEF RalF activates the small GTPase Arf1, which in turn recruits the host PI

4-kinase IIIβ (PI4KIIIβ). OCRL and PI4KIIIβ produce PtdIns(4)P from PtdIns(4,5)P2 or PtdIns, respectively.

Figure 4 and Table 1]. The 83 kDa effector targets Rab1 and
several other host Rab GTPases (152, 153) and binds with high
affinity to the GDP- and GTP-bound as well as the AMPylated
form of Rab1, thus stabilizing the active conformation of the
GTPase and preventing inactivation by GAPs (39, 104, 105).

The Icm/Dot substrate AnkX localizes to LCVs and binds
with apparently similar affinity to PtdIns(3)P and PtdIns(4)P
[(154); Figure 4 and Table 1]. AnkX covalently attaches a
phosphocholine moiety to GDP-bound Rab1 and Rab35
in a process termed phosphocholination, which stabilizes
inactive Rab1 at the LCV membrane (86, 87, 155). The
CDP-choline-dependent activity of AnkX is reversed by the
Icm/Dot-secreted effector Lem3, which dephosphocholinates
Rab1 (88, 155).

The Icm/Dot substrate RidL specifically binds PtdIns(3)P and
localizes to the LCV, juxtaposed to where the polar Icm/Dot T4SS
connects to the pathogen vacuole membrane [(44); Figure 4 and
Table 1]. RidL binds the Vps29 subunit of the retromer coat
complex, inhibits retrograde trafficking and thereby promotes
intracellular bacterial replication (19, 20). Structural studies
revealed that a hydrophobic β-hairpin in the N-terminal domain
of RidL interacts with Vps29, thus displacing the Rab7 GAP
TBC1D5 [a regulator of retrograde trafficking; (43, 45, 46)].

The Icm/Dot substrate RavZ targets autophagosomes
and binds PtdIns(3)P on high-curvature membranes
trough a C-terminal domain [(49); Figure 4 and Table 1].
RavZ inhibits autophagy by deconjugating Atg8/LC3 from
phosphatidylethanolamine (PE) (48). In contrast to the
eukaryotic deconjugating factor Atg4, the cysteine protease RavZ
irreversible decouples Atg8 from PE by hydrolyzing the amide
bond between the C-terminal glycine and an adjacent aromatic
amino acid in Atg8.

The Icm/Dot substrates SetA (110, 120) and LtpM (85) localize
to LCVs and endosomes through C-terminal PtdIns(3)P-binding
domains (Figure 4 and Table 1). The N-terminal domains
of these effectors show similarities with glycosyl transferases,
and indeed, the purified enzymes were found to exhibit
glycohydrolase and glycosyltransferase activity in vitro, using
UDP-glucose as a sugar donor. Intriguingly, PtdIns(3)P activates
the glycosyltransferase activity of LtpM (85).

The Icm/Dot substrates LtpD (109) and RavD (114)
also localize to the LCV through C-terminal PtdIns(3)P-
binding domains (Table 1). LtpD might bind to the inositol
monophosphatase IMPA1, which has indeed been detected
on isolated LCVs (140). LpnE is a 41 kDa L. pneumophila
virulence factor that binds to PtdIns(3)P and the eukaryotic PI
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TABLE 1 | L. pneumophila T4SS-translocated effectors targeting host PI lipids.

Effector (alias) Cellular target(s) and activity References

AnkX

(LegA8/Lpg0695)

Rab1/Rab35 phosphocholinase,

modulation of Rab1/Rab35 activity

(86–91)

LepB (Lpg2490) Binding to PtdIns(3)P, Rab1 GAP, PI

4-kinase

(92–98)

LecE (Lpg2552) Subversion of host phospholipid

biosynthesis (DAG)

(99, 100)

LegA5 (Lpg2322) Class III PI 3-kinase (101)

Lem4 (Lpg1101) Binding to PtdIns(4)P (102)

Lem28 (Lpg2603) Binding to PtdIns(4)P (102)

LidA (Lpg0940) Binding to PI lipids, protection of

Rab1/Rab8 from GAPs

(103–107)

LpdA (Lpg1888) Phospholipase D, hydrolysis of PG,

PtdIns and PtdIns(3)P

(83, 99)

LppA (Lpg2819) Inositol-P6 phosphatase (phytase), PI

phosphatase activity in vitro

(108)

LtpD (Lpw3701) Binding to PtdIns(3)P and

(myo)-1-mono-phosphatase 1

(IMPA1)

(109)

LtpM (Lpp0356) PtdIns(3)P-actived glycosyltranferase (85)

PlcC (CegC1,

Lpg0012)

Zn2+ metallophospholipase C,

hydrolysis of PC, PG and PI

(110, 111)

RalF (Lpg1950) Arf1/Arf6 GEF (22, 77, 78,

112, 113)

RavD (Lpg0160) Binding to PtdIns(3)P (114)

RavZ Binding to PtdIns(3)P, cysteine

protease inhibiting autophagy

(48–50)

RidL

(Ceg28/Lpg2311)

Binding to PtdIns(3)P and Vps29,

inhibition of retrograde trafficking

(43–46)

SdcA (Lpg2510) Binding to PtdIns(4)P, E3 ubiquitin

ligase (mono-ubiquitination of Rab1),

recruitment of ER to LCV

(51, 115–119)

SetA (Lpg1978) Binding to PtdIns(3)P,

UDP-glucosyltransferase,

modification of histone H3.1 and H4

in vitro

(110, 120)

SidC (Lpg2511;

Llo3098)

Binding to PtdIns(4)P, E3 ubiquitin

ligase (mono-ubiquitination of Rab1),

recruitment of ER to LCV

(51, 71, 75,

115–119, 121)

SidF (Lpg2584) PI 3-phosphatase, hydrolysis of

PI(3,4)P2 and PI(3,4,5)P3 in vitro

(122, 123)

SidM

(DrrA/Lpg2464)

Binding to PtdIns(4)P, Rab1

GEF/AMPylase, modulation of

Rab1/Rab35 activity

(38–40, 74, 84,

90, 92, 93, 102,

124–128)

SidP (Lpg0130) PI 3-phosphatase, hydrolysis of

PtdIns(3)P and PtdIns(3,5)P2 in vitro

(129)

VipD (Lpg2831) Rab5-activated phospholipase A1,

hydrolysis of PE, PC and PtdIns(3)P

(130–135)

AMP, adenosine monophosphate; DAG, diacylglycerol; ER, endoplasmic reticulum;

GAP, GTPase-activating protein; GEF, guanine nucleotide exchange factor; LCV,

Legionella-containing vacuole; PC, phosphatidylcholine; PE, phosphatidylethanolamine;

PG, phosphatidylglycerol; PI, phosphoinositide.

5-phosphatase OCRL (see below) [(156); Figure 4 and Table 1].
The Sel1 repeat-containing LpnE is secreted independently of
the Icm/Dot T4SS or the Lsp T2SS and promotes uptake of L.
pneumophila by phagocytes and intracellular replication (157,
158). Finally, a recent bioinformatics-based screen identified

three novel PtdIns(3)P-binding domains, which are present in
at least 14 known Icm/Dot substrates, including LepB and
RavZ (95).

L. PNEUMOPHILA PHOSPHOINOSITIDE
PHOSPHATASES, KINASES, AND
PHOSPHOLIPASES

Legionella pneumophila produces Icm/Dot-translocated effector
proteins, which directly modify PI lipids by acting as PI
phosphatases, PI kinases or phospholipases (Figure 4). The
Icm/Dot substrate SidF localizes to the LCV at early time
points of infection (2 h) [(122, 123); Figure 4 and Table 1].
The crystal structure of the N-terminal catalytic domain in
complex with its substrate PtdIns(3,4)P2 revealed a positively
charged groove in the catalytic center, similar to other
PI phosphatases harboring the “CX5R” motif (123). The
102 kDa effector SidF harbors two predicted C-terminal
transmembrane motifs, which anchor the protein to the LCV
membrane. SidF specifically hydrolyses in vitro PtdIns(3,4)P2
and PtdIns(3,4,5)P3 typically occurring on early phagosomes,
and it likely contributes to the production of PtdIns(4)P
on LCVs, since vacuoles harboring L. pneumophila 1sidF
accumulate lower amounts of the PtdIns(4)P-binding effector
SidC. Yet, the 1sidF mutant strain is not impaired for
intracellular growth.

The Icm/Dot substrate SidP acts as a PI 3-phosphatase
in vitro and converts PtdIns(3,5)P2 to PtdIns(5)P as well as
PtdIns(3)P to PtdIns (Figure 4 and Table 1). However, its
PI-phosphatase activity was not assessed in L. pneumophila-
infected cells, and a 1sidP mutant strain is not impaired
for intracellular growth (129). The crystal structure of SidP
from L. longbeachae revealed three distinct domains: a large
N-terminal catalytic domain, an appendage domain inserted
into the catalytic domain, and a C-terminal α-helical domain.
Based largely on biochemical studies, SidF and SidP were
postulated to produce PtdIns(4)P and hydrolyze PtdIns(3)P
on LCVs, thus contributing to the PI conversion on the
pathogen vacuole.

The Icm/Dot substrate LepB is a Rab1 GAP (see
above), but also shows PI 4-kinase activity specific for
PtdIns(3)P [(96); Figure 4 and Table 1]. The effector
might contribute to the production of PtdIns(4)P on
LCVs, since pathogen vacuoles harboring L. pneumophila
1lepB accumulate lower amounts of the PtdIns(4)P-
binding effector SidC. LepB was proposed to convert
PtdIns(3)P on LCVs into PtdIns(3,4)P, which could be
hydrolyzed by SidF to yield PtdIns(4)P (96). Interestingly,
the Icm/Dot substrate LegA5 (159), a membrane-associated
effector toxic for yeast (110, 160), was recently found to
be a wortmannin-insensitive, class III-like PI 3-kinase
[(101); Table 1]. In fact, LegA5 might be a PI 3-kinase
producing PtdIns(3)P on LCVs as a substrate for the PI
4-kinase LepB.

The Icm/Dot substrate LppA is another example of a
CX5R motif PI phosphatase hydrolyzing in vitro PtdIns(3,4)P2,
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PtdIns(4,5)P2, and PtdIns(3,4,5)P3 to yield PtdIns(4)P [(108);
Table 1]. While LppA appeared like an ideal candidate to
produce PtdIns(4)P on LCVs, live-cell microscopy using
GFP-P4C as a PtdIns(4)P probe indicated that LppA does
not affect the LCV PI pattern. Instead, LppA is a T4SS-
translocated hexakisphosphate inositol phosphatase (phytase),
which degrades the micronutrient chelator phytate (indeed
produced by amoebae), and thereby promotes the intracellular
growth of L. pneumophila. Given that the L. pneumophila genome
encodes more than 400 proteins with the CX5R (PI) phosphatase

signature (123), other (PI) phosphatases are likely produced by
the pathogen.

The Icm/Dot substrates VipD, PlcC, and LpdA are lipases,
which possess broad range activity against phospholipids
including mono-phosphorylated PIs (Figure 4 and Table 1).
VipD was identified as an Icm/Dot substrate that impairs
membrane trafficking in yeast (130, 131). The effector

hydrolyzes PE as well as phosphatidylcholine (PC) (132)
and, intriguingly, binds Rab5 as well as Rab22 and acts as
a Rab5-activated phospholipase A1 (133–135). Accordingly,
VipD removes PtdIns(3)P from endosomal membranes
and thus might promote the evasion of the endocytic

pathway by LCVs (133, 134). Analogously, the Icm/Dot
substrate PlcC (alias CegC1) is a metallophospholipase C,
which hydrolyzes a broad spectrum of lipids including PC,
phosphatidylglycerol (PG), and PtdIns (111). The effector can
degrade PtdIns(3)P and likely destabilizes target membranes.
Finally, the Icm/Dot substrate LpdA is a phospholipase D
that binds to membranes through C-terminal prenylation and
hydrolyzes PG, PtdIns and PtdIns(3)P as well as PtdIns(4)P
yielding phosphatidic acid (PA) (83). While LpdA does not
seem to affect the cellular PI pattern, the phospholipase triggers
Golgi fragmentation.

SUBVERSION OF HOST
PHOSPHOINOSITIDE KINASES AND
PHOSPHATASES BY L. PNEUMOPHILA

In addition to directly modulating PI lipids, L. pneumophila
effectors also subvert the host cell PI pattern indirectly by
targeting eukaryotic PI phosphatases and kinases (Figure 4). The
PtdIns(3)P-binding virulence factor LpnE binds mammalian
OCRL (Oculocerebrorenal syndrome of Lowe) and its
Dictyostelium homolog Dd5P4 (D. discoideum 5-phosphatase
4) via their N-terminal domains (156). The interaction of
LpnE with OCRL was recently confirmed by size exclusion
chromatography and supported by the crystal structure of the
bacterial protein (161). OCRL and Dd5P4 are PI 5-phosphatases,
which hydrolyse PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to yield
PtdIns(4)P and PtdIns(3,4)P2, respectively (162, 163). Dd5P4 is
likely catalytically active on LCVs and increases the PtdIns(4)P
available for binding by effectors such as SidC or SidM
(156). Consequently, LpnE might increase the concentration
of PtdIns(4)P on LCVs by recruiting OCRL/Dd5P4, and
thereby promote PI conversion. L. pneumophila grows more
efficiently in D. discoideum lacking Dd5P4, and thus, the

pleiotropic PI 5-phosphatase restricts intracellular bacterial
growth. Mechanistic details of this process are not known,
but Dd5P4 modulates the recruitment of calnexin, Rab1 and
retromer components to LCVs, which might account for growth
restriction (156, 164).

The Icm/Dot substrates RalF and SidM possibly contribute
indirectly to the modulation of the LCV PI pattern through
the recruitment and activation of small host GTPases. RalF
is an Arf1 GEF and activates the small GTPase on the LCV
[(22, 112); Figure 4 and Table 1]. RalF harbors a C-terminal
globular “capping” domain, which regulates GEF activity by
auto-inhibition (77). Activated Arf1 recruits PI 4-kinase IIIβ
(PI4KIIIβ) to the trans Golgi network (165), and hence, RalF
might indirectly increase the PtdIns(4)P concentration on
LCVs. Indeed, the depletion by RNA interference of PI4KIIIβ,
but not PI4KIIIα or PI4KIIα decreases the amount of the
PtdIns(4)P-binding effector SidC on LCVs, suggesting that in
absence of PI4KIIIβ the level of PtdIns(4)P is reduced (84).
Analogously, SidM recruits and activates Rab1 on LCVs (see
above). Activated Rab1 (166) as well as Arf1 (167) recruit OCRL
to endosomal membranes. Accordingly, SidM might not only
bind to PtdIns(4)P, but also indirectly contribute to an increase
of this PI on LCV membranes.

The Icm/Dot substrates LpdA and LecE localize to LCVs and
might also indirectly modulate the LCV PI pattern by promoting
DAG biosynthesis [(99); Table 1]. LpdA is a phospholipase D,
which hydrolyzes PC to yield PA (see above). LecE enhances
the activity of the eukaryotic PA phosphatase Pah1, which
dephosphorylates PA yielding DAG. The second messenger DAG
recruits protein kinase D (PKD) and its activator protein kinase
C (PKC) to membranes. Activated PKD then interacts with
PI4KIIIβ, thereby possibly also contributing to an increase in
PtdIns(4)P on LCVs (99).

CONCLUSIONS AND OUTLOOK

Legionella pneumophila replicates intracellularly in phagocytes
within an LCV, a complex compartment tightly associated with
the ER. The nascent LCV undergoes a PI conversion from
PtdIns(3)P to PtdIns(4)P, and thereby is rerouted from the
bactericidal endocytic to the replication-permissive secretory
pathway. To modulate the PI pattern in infected cells,
L. pneumophila (i) recruits PI-decorated vesicles, (ii) produces
effectors acting as PI interactors, phosphatases, kinases or
phospholipases, or (iii) subverts host PI-metabolizing enzymes.
To this end, at least 21 T4SS-translocated effector proteins
have been shown to target the host PI metabolism (Table 1).
Intriguingly, a number of these effectors harbor 2–3 different
functional domains and link PI signaling to other pivotal
cellular pathways, e.g., SidC (PI interactor, ubiquitin ligase),
SidM (PI interactor, Rab1 GEF, Rab1 AMPylase), LepB (PI
interactor, PI 4-kinase, Rab1 GAP), SetA and LtpM (PI interactor,
glycosyltransferase), and VipD (Rab5 interactor, phospholipase).
LCV formation and the contribution of PI lipids to this
process are incompletely understood. Among the more than
300 T4SS-translocated effector proteins of L. pneumophila only
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about 50 have been thoroughly investigated. Future studies will
focus on the structural, molecular and cellular characterization
of novel effectors implicated in host cell PI pattern subversion, as
well as on the spatiotemporal regulation of effector translocation
and function.
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