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Tumor progression is typically accompanied by an accumulation of driver and passenger

somatic mutations. A handful of those mutations occur in protein coding genes

which introduce non-synonymous polymorphisms. Certain substitutions may give rise

to novel, tumor-associated antigens or neoantigens, presentable by cancer cells

to the host adaptive immune system. As antigen recognition is the core of an

effective immune response, the identification of patient tumor specific antigens derived

from transformed cells is of importance for immunotherapeutic approaches. Recent

technological advances in DNA sequencing of tumor genomes, advances in gene

expression analysis, algorithm development for antigen predictions and methods for

T-cell receptor (TCR) repertoire sequencing have facilitated the selection of candidate

immunogenic neoantigens. In this regard, multiple research groups have reported

encouraging results of neoantigen-based cancer vaccines that generate tumor antigen

specific immune responses, both in mouse models and clinical trials. Additionally,

both the quantity and quality of neoantigens has been shown to have predictive

value for clinical outcomes in checkpoint-blockade immunotherapy in certain tumor

types. Neoantigen recognition by vaccination or through adoptive T cell therapy may

have unprecedented potential to advance cancer immunotherapy in combination with

other approaches. In our review we discuss three parameters regarding neoantigens:

computational methods for epitope prediction, experimental methods for epitope

immunogenicity validation and future directions for improvement of those methods.

Within each section, we will describe the advantages and limitations of existing methods

as well as highlight pressing fundamental problems to be addressed.
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INTRODUCTION

Successful targeting of immune checkpoints including cytotoxic T lymphocyte-associated protein
4 (CTLA-4) and programmed cell death protein 1 (PD-1) has achieved durable regressions in
a wide range of human cancers (referred to as checkpoint blockade). They include melanoma
(1, 2), renal cell carcinoma (3), lung (4), bladder (5), and ovarian cancers (6), and microsatellite
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unstable malignancies (7, 8). Despite different mechanisms of
action, both approaches have resulted in the activation and
proliferation of tumor-reactive T cells (9). T cells recognize
peptides presented on the major histocompatibility complex
(MHC) of tumor cells. Tumor specific antigens which arise
due to mutations in coding regions are collectively referred to
as “neoantigens.” Neoantigens have a diversity of properties.
They can differ from their wild type sequences by SNV,
relative expression levels in the tumor, MHC affinity, differential
recognition by T-cell receptors (TCRs) and elicitation of
heightened cytotoxic and cytokine responses. Theoretically,
T cells recognizing neoantigens may have not been deleted
or tolerized so they have the potential to become primed.
Moreover, unlike tumor-associated antigens (TAA) that are
shared between tumor cells and normal tissue (e.g., Melan
A/MART-1) neoantigens have a selective potential to elicit tumor
exclusive T cell responses which makes them key elements for
inclusion in cancer vaccines and as the basis for adoptive T cell
transfer approaches (10–14). Indeed, initial attempts to target
overexpressed TAA have met limited success in clinical trials
potentially due to central and peripheral tolerance mechanisms
which removes high-affinity TCRs that would otherwise potently
recognize these TAA (15, 16). Unleashing immune responses
against tumor-specific clonal mutations can achieve tumor
regression through recognition by antigen-specific T cells (17–
22). Furthermore, as a tumor’s mutational landscape evolves with
ongoing immunotherapy, the immune systemmay accommodate
by changing the specificity of infiltrating T cell clones (23–25).
Efficient approaches to identify and characterize immunogenic
tumor neoantigens are central for these types of therapies.

Thus, far, MHC-I affinity is the only parameter which can
be predicted with some reliability using neoantigen peptide
and patient HLA allele sequences in silico, by using several
computational tools. Our group recently proposed the concept
of “neoantigen quality” (26, 27). This concept combines
biophysical, chemical and computationally inferred properties of
a neoantigen that make it more likely to induce a productive
immune response against the tumor. These properties may
include affinity of a neoantigen to MHC, avidity of the
peptide-MHC complex to the recognizing TCR, type of T
cells responding to the neoantigen and sequence similarity
to known highly immunogenic epitopes (Figure 1). Recent
studies from our group have shown that this parameter
is a critical aspect in segregating responders to checkpoint
therapy, but is not usually considered in algorithms of
neoantigen prediction.

T cells are primed by antigen presenting cells (APC) that
have taken up tumor antigens and processed them into smaller
peptides that are eventually presented on MHC class I and
II molecules (Figure 1). Intracellularly, antigens arise from
proteins targeted for degradation by the 80S proteasome.
Peptides of 9-12 amino acid residues in length are transported
from the cytosol by specialized protein machinery (transporter
associated with antigen presentation, TAP) and loaded on
MHC-I molecules within the endoplasmic reticulum (28–30).
Alternatively, antigens can arise from extracellular sources;
captured necrotic or apoptotic cells and other vesicles that are

FIGURE 1 | Molecular basis for antigen recognition. Antigen-presenting cells

(APC) express MHC-I complex that contains an antigenic peptide (Ag) with its

groove. MHC-I consist of two proteins, a conserved β2-microglobulin and a

variable α-chain. The MHC-I-Ag complex is recognized by the T-cell receptor

(TCR). Each TCR defines a clonal T cell population. Additional interactions,

such as the CD8 protein—MHC-I, are not essential for Ag recognition, but are

required for efficient T cell activation.

cross-presented on professional APC such as dendritic cells (DC)
(30, 31). As a tumor grows, tissue resident and migratory DC
subsets capture tumor cell debris and convey them to draining
lymph nodes (32–34). There, APC prime naïve T cells and
educate them to recognize the harvested antigens (35, 36).
Depending on the APC subset, nature of antigen and type
of processing pathway, different responses can be achieved,
either CD4+ T cell responses (Th1, Th2, Th17, and Treg) or
cytotoxic CD8+ T cell responses (37, 38). The majority of
APC prime naïve CD4+ T cells through MHC-II presented
peptides, while the cross-presenting XCR1+ DC subset uniquely
primes naïve CD8+ T cells (39, 40). The latter appear to be
essential for successful immunotherapy regimens (41–43). After
priming, reactive and expanded T cells can infiltrate the cancer
site and eliminate these cells. Overall, proper antigen selection,
processing, and T cell priming are at the heart of successful
immune responses.

With the recognition that neoantigens can be a significant
pool of tumor derived antigens depending upon the underlying
mutational status of the tumor, the field has turned its
attention to developing and optimizing neoantigen targeted
immune therapies. There are generally two approaches:
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neoantigen vaccines and neoantigen targeted adoptive T cell
therapies. Several clinical trials have been completed and/or are
currently ongoing to enhance tumor-specific responses through
neoantigen vaccination to induce expansion of neoantigen-
specific CD4+ and CD8+ T cells. Vaccination techniques
employ different neoantigen formulations such as peptides
(13, 44, 45) combined with different adjuvants (46–49), mRNA
(50, 51), DNA or as expressed in viral or bacterial vectors.
Another interesting approach targets neoantigens to specific
receptors expressed specifically by the cross-presenting APC
cDC1. Here antigens are fused in frame to antibodies targeting
the XCR1 receptor (52). Thus, far, vaccine-based approaches
have demonstrated successful immunization of patients (53, 54),
although CD4+ as opposed to CD8+ T cells are preferentially
generated. Cell-based vaccination is also under investigation.
In vitro expanded, neoantigen-pulsed dendritic cells have been
evaluated for autologous injection in patients (46, 55–58)
confirming immunogenicity (57, 58). Another approach focuses
on the adoptive T cell transfer of expanded T cells purified
from the patient’s tumor or peripheral blood mononuclear cells
(PBMC) either non-specifically or through selection in vitro.
Some strategies have successfully utilized neoantigen-specific
CD4+ and CD8+ cytotoxic T cells to eradicate solid tumors
(59, 60). In another example, autologous T cell transfer of
CD8+ T cells, specific to clonal neoantigens derived from cancer
driver mutations, e.g., KRAS, has led to nearly complete tumor
regression (61).

Mutation burden, neoantigen burden and quality
have been demonstrated to be predictive for outcome
of checkpoint blockade (26, 62–70). A few studies have
highlighted the importance of neoantigens in shaping
tumor evolution during immunotherapy with antibodies
that target checkpoint molecules such as CTLA-4 and PD-1
(71, 72). However, neoantigen prediction approaches are not
aligned with some utilizing solely gene expression (73, 74) or
combining transcriptomics with genomics (75). The successful
characterization of immunogenic neoantigens is critical to
optimizing approaches that target these key epitopes. In this
review we critically discuss current tools and methods for their
selection (76).

THE LANDSCAPE OF NEOANTIGENS

Neoantigens arise from multiple genetic and epigenetic
aberrations (Figure 2). Well-characterized sources of
neoantigens are somatic missense and indel mutations, or
other genomic rearrangements, such as gene fusions. Frameshift
neoantigens may prove to be more immunogenic than missense
ones due to the lack of similarity to sequences in the human
coding genome and are currently under active investigation
(77, 78). Neoantigens derived from gene fusions have recently
passed the immunogenicity test (12), and may be of special
significance when mutational burden is low. Correct detection
of somatic mutations is essential to identify neoantigens

FIGURE 2 | Potential sources of “non-self” tumor neoantigens. Genomic alterations such as point mutations (A), indels (B) and gene fusions (E) can result in the

generation of missense and frameshift neoantigens. Splicing aberrations such as the retention of cancer-specific exons (C) and introns (D) can also lead to frameshift

neoantigens. Epigenetic changes can alter the expression levels of immunogenic genomically-encoded proteins (F) including viral proteins from integrated

chronically-infected cells (EBV, HPV), cancer-testis antigens (e.g., MAGE-A4) and proteins derived from LINE and HERV elements. Post-transcriptional changes (G),

including translation of upstream open reading frames (uORF), stop codon readthrough and protein modifications, such as methylation, phosphorylation and

acetylation, can generate tumor specific neoantigens as well.
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incorporated within these alterations (17, 79, 80). Neoantigens
can also arise from transcriptome-based aberrations, including
cancer-specific gene overexpression, alternative exon splicing,
intron retention, premature transcription ending, readthrough
the stop-codon by ribosomes and from upstream open reading
frames (uORF) (Figure 2). Virus-induced cancers, e.g., HPV+,
EBV+, generate strong immune responses due to presentation
of viral antigens (81) and as such can be considered as cancer-
specific antigens. Transcript-specific changes in exon usage
(82, 83), intron retention (84), and transcription end usage
were recently shown to produce cancer-specific neoantigens.
Translation-based neoantigens, originating from uORF regions,
cryptic short ORFs in non-coding RNAs still await their
discovery on a pan-cancer level. Whole genome sequencing,
deep RNAseq gene expression analysis, whole-cell and MHC-
eluate mass-spectrometry will be necessary for a determination
of the complete landscape of such neoantigens (85). Finally,
cancer-specific post-translational protein modifications, e.g.,
phosphorylation, acetylation, methylation, citrullination, and
etc., can be a potential source of neoantigens as well (86, 87).
Aberrant over activity of protein kinases, histone acetylases,
and methylases is well-known in multiple cancers. This
can result in frequent modifications of non-natural protein
targets or cancer-specific proteins, which may in turn produce
immunogenic, tumor-specific neoantigens (88, 89) (Figure 2).
It is important to point out that T cells with the capacity to
recognize these modified antigens likely have escaped central
tolerance and thus represent a large pool of T cell clones
that could be harnessed to attack cancer cells. Technological
advances in mass-spectrometry peptide detection from cancer
MHC-I eluates will be essential for neoantigen discovery of this
class (90).

ON A COMPUTATIONAL HUNT FOR
NEOANTIGENS

Somatic Mutation Calling
Despite the broad range of potential sources of neoantigens in
cancer cells, the process of selection of genomically encoded
antigens that are of immunological significance remains to
be well-established. Many computational pipelines have been
developed to predict neoantigens from cancer genomes (91, 92).
A joint effort referred to as the Tumor Neoantigen Selection
Alliance (TESLA; supported by the Parker Institute for Cancer
Immunotherapy and the Cancer Research Institute) to find the
right predictive algorithms for targeting neoantigens (based upon
NSVs) through large scale validation is ongoing. At this time, a
“typical” neoantigen pipeline includes the following steps:

• Whole exome or genome sequencing (WES orWGS) of tumor
and matched normal DNA samples by Illumina short read
sequencing platform.

• Quality control of sequencing reads.
• Alignment to the reference genome.
• Base quality recalibration and indel realignment.
• Comparison of normal and tumor alignments to call

somatic mutations.

• Conversion of coding DNA somatic mutations to
corresponding mutated peptide sequences.

• HLA-allele typing.
• Assessment of HLA-allele and mutated epitope (9–11mer)

affinity to call neoantigens.
• Expression analysis of putative neoantigens, e.g., RNAseq,

when possible.

Multiple tools exist to check the quality of sequencing reads with
the most commonly used being FastQC (93, 94). Alternative
tools are included in the Genome Analysis Toolkit (GATK)
bundle. To perform read alignment, Novoalign (95), BWA
(96), bowtie (97), STAR (98) are the most favored aligners.
For a typical WES (or WGS) dataset BWA is a commonly
used aligner. Base quality recalibration and indel realignment
around clusters of putative somatic mutations are both integral
tools of GATK and have been shown to reduce the false
positive rates of mutation calling (99). Collectively, these “pre-
processing” steps output aligned, cleaned, equilibrated ∗.bam
files of tumor and matched normal samples. These matched
datasets are fed to a combination of mutation callers to predict
somatic mutations in tumor samples. A wide range of somatic
mutation callers exist to date, such as Mutect (100), Varscan2
(101), VarDict (102), SomaticSniper (103), Strelka, and FastD
(104). Many comparative studies have been performed to call
mutations (105–108) (Figure 3A). Some key observations are
noted below.

• A combination of multiple algorithms vs. a single mutation
caller significantly lowers the false positive rate (108–110).

• Calling somatic mutations from additional sequencing such
as of RNAseq of the same tumor sample and determining
overlap may help to reduce the false positive rate. However,
it may increase the rate of false negatives due to transient gene
expression and variable read coverage (111).

• PCR-free WES protocols [KAPA HyperPrep Kit (112)]
produce less bias in tumor allele frequencies but achieve it
at the expense of reduced total genome loci coverage and of
lowered total power of somatic mutation calling (109).

• Exome capture kits (Agilent SureSelect, NimbleGen SeqCap,
Illumina TrueSeq, and Illumina Nextera) introduce
sequencing coverage biases due to differences in capture
probes. This makes it potentially hard to compare final
mutation calls obtained from different WES kits of the same
sample of DNA, resulting in increased false negative rates for
somatic mutation calls (113–116).

• Sequencing read coverage drops significantly in GC-rich
regions, decreasing the sensitivity of tumor allele detection
in these loci. Correcting for GC-bias may help to rescue
certain mutations and improve tumor allele frequency
estimations (114).

• Maintaining high tumor purity of the sample before
DNA sequencing is essential. High levels of normal DNA
“contamination” decreases sensitivity of tumor mutation
calling (105, 109, 114).

• The quality of the sample is important, e.g., fresh tissue
samples are better than FFPE. It is highly advisable
to avoid excessive sample handling known to introduce
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FIGURE 3 | Potential sources of somatic mutation irreproducibility (A), suggested experimental design for comprehensive annotation of tumor mutational burden and

tumor microenvironment, (B) and possible roads for innovation at the MHC-I antigen TCR interfaces (C).

random DNA mutations, e.g., adenine/cytosine deamination,
guanine oxidation, which can impact the results of Illumina
sequencing. Otherwise the somatic mutation false positive
rates increase (105, 109).

Overall, using fresh or fresh-frozen samples with high

tumor purity (>80%), sticking to one WES protocol,
introducing a low number of PCR cycles, following GATK

pre-processing recommendations, and applying several somatic

mutation callers can benefit the generation of a reproducible,
“harmonized” lists of somatic mutations (117). Calling somatic

mutations from RNAseq of samples with high tumor content

(>80%) can further refine the list of expressed mutations.
Consensus on unified somatic calling pipelines will be essential
to improve the overall prediction of neoantigens and detection
of the shared ones.

HLA-Allele Typing
The next step in a neoantigen calling pipeline is HLA-allele
typing. CD8+ T cells see antigens presented on the MHC-I
complex, which is composed of conserved β2-microglobulin and
a variable α-chain. The latter subunit is highly polymorphic and
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encoded within the HLA gene, which is represented by three
loci on human chromosome 6: HLA-A, HLA-B, and HLA-C.
Thus, HLA allele assignment consists of the gene name (A,
B, or C) followed by a set of digits separated by colons: the
first two digits specify serological activity (A∗01, B∗03, etc.)
and the second two digits indicate protein sequence (A∗01:05,
B∗03:05, etc.). Due to the high level of polymorphism of
each gene, precise HLA-allele typing at protein level resolution
from WES and RNAseq reads is a complicated task (118).
Multiple tools were developed to address this problem such
as PHLAT (119), seq2HLA (120), Optitype (121), Polysolver
(122), HLAMatchmaker (123), HLAreporter (124), HLAforest
(125), HLAminer (126), xHLA (127). Each tool differs in its
performance, utilized set of input parameters and analyzed
sequencing dataset (RNAseq or DNAseq). Comparative studies
were performed and showed that Optitype has both greater
specificity and selectivity (128). However, it is important to keep
in mind that the quality of WES/RNAseq is critical for any
successful HLA typing. Indeed, due to the highly polymorphic
nature of HLA genes, WES capture kits vary in the capturing
efficiency of DNA from those regions (Figure 3A). This technical
variability in capturing clearly affects downstream results in
allele determination. Thus, careful examination of WES/RNAseq
read coverage in HLA gene regions is imperative for making
optimal predictions.

Prediction of Neoantigen HLA-Allele
Interactions
In the final step, the researcher performs predictions of
tumor antigenic epitope- HLA-allele interactions to identify
neoantigens from the total pool of mutated peptides. Several tools
and programs which are undergoing constant modification, are
dedicated to this problem; NetMHC-pan being the one most
widely used. NetMHC utilizes a combination of several artificial
neural-networks (ANNs) to predict peptide affinity to selected
HLA alleles. Initially NetMHCwas trained on viral antigens from
IEDB [https://www.iedb.org, (129–134)], therefore rendering a
bias toward the selection of viral-like epitopes. Despite its general
popularity, users should always keep in mind the biases these
classification methods can introduce. For example, viral epitopes
were originally described for the most frequent HLA-alleles, e.g.,
HLA∗A02:01, HLA∗B07:02. Thus, netMHC based predictions
for tumor epitopes are a priori better for highly frequent HLA-
alleles than for low-frequency HLA-alleles. One way to overcome
this issue is to improve predictions by training the algorithm
on peptides eluted from MHC complexes of mono-allelic cancer
cell lines and identified by mass-spectrometry analysis (135).
However, mass-spectrometry itself has limited ability to detect all
possible eluted antigens, thus the false negative rate can be high
(90, 136, 137). Data from mass spectrometry analyses indicates
that only a small fraction of neoepitopes is presented on the cell
surface, likely due to a combination of such systematic biases
and real biophysical effects in the processing machinery (138–
140). Taken together, there is an urgent need for novel, unbiased
methods to generateMHC-I complexes for every HLA-allele with
broadly diversified antigen sequences in order to design novel
classification tools (Figure 3C).

Apart from class I epitopes, class II restricted neoantigens
are receiving increased interest. Class II neoantigens are those
epitopes presented by the MHC-II complex and recognized by
CD4+ T cells. Despite the recognition that MHC-II is significant
for tumor neoantigen presentation and priming of CD4+ T
cells (141) and for immunotherapy outcomes (142), the accuracy
and precision of MHC-II epitope predictions are poor when
compared to class I (143). The main difficulties with designing
such classification tools are associated with the “openness” of
the peptide-binding groove of HLA class II, which permits
binding of a highly degenerate set of peptides, and therefore
increasing the size of datasets needed for accurate machine
learning-based model training. However, these obstacles provide
an opportunity for more creative efforts to develop algorithms to
predict such neoantigens.

Identification of Immunogenic
Neoantigen-Reactive T Cells
Not every neoantigen presented on MHC-I complexes will have
the capacity to induce CD8+ T cell responses (79). What defines
neoantigen immunogenicity? Conventionally, an immunogenic
neoantigen must prime and stimulate T cells efficiently. This
occurs through (i) interaction of the neoantigen-MHC-I complex
with a TCR on one or several T cell clones, and (ii) induction of T
cell priming. This process generally results in either TNF-α, IFN-
γ, or double TNF-α and IFN-γ cytokine responses, IL-2 release
and T cell proliferation, and the acquisition of cytolytic activity
in the case of CD8+ T cells. As reviewed above, vaccination
has led to the priming and expansion of neoantigen-specific T
cells in humans. These responses can be enumerated through
assays which measure production of cytokines upon re-exposure
to peptides (through ELISA type assays or intracellular staining)
or binding to synthetic tetrameric or dextrameic complexes of
peptide-MHC (pMHC) molecules. The latter method relies on
in vitro folding of the MHC-I complex (144, 145) with peptide
or UV-cleavable substrate (146) which is later exchanged for the
peptide of interest (147).

Neoantigen-specific T cells with effector function have been
identified within PBMC following vaccination or even after
spontaneous induction (148), tumor infiltrating lymphocytes
(149) and can even be differentiated from progenitors through
in vitro priming approaches (150). A concerted effort is being
made to expand potent neoantigen-reactive T cells for the
purpose of adoptive cell therapy or to identify high avidity
neoantigen-reactive TCRs which can bemodified and transduced
into a primary T cells. For example, to overcome thymic
negative selection, which decreases TCR diversity in vivo
(151), humanized mice can be used to select the most-optimal
neoantigen-reactive TCRs (152). Tetramer-purified, neoantigen-
reactive T cell clones can also be expanded from these sources
or human blood or TILs in single-cell fashion and their TCRs
sequenced. The selected TCRs can be used for recombinant
TCR reconstitution (153) and characterization in vitro, for
additional modification to improve TCR avidity and stability
(129, 130) and then adapted for adoptive T cell transfer using
a cancer patient’s own T cells (131). In this regard tetramer
staining can be applied to identify neoantigen-specific TCRs
in a high-throughput manner (132). One discovery platform
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generates in vitro translated, DNA-barcoded pMHC complexes
from a chemically synthesized DNA library (133). Once tetramer-
positive T cells are purified, their interacting TCRs and DNA-
barcoded antigens are identified through single-cell sequencing.
Moreover, the same platform can be repurposed to characterize
all possible peptide specificities for each HLA-allele of MHC-
I and MHC-II complexes. Indeed, the ability to (i) start
from a randomized DNA library of putative epitopes and (ii)
characterize folding potential of produced pMHC complexes
in large scale could yield invaluable information to train novel
classification algorithms. Despite the obvious advantage of
tetramer staining in identifying neoantigen-reactive T cells, this
tool provides limited information on the functional status of
purified T cells and their cytotoxic capacity (134). The recent
development of T-scan screening technology holds promise
to overcome this issue (154). Likewise, a recently developed
method referred to as imPACT Isolation Technology identifies
pre-existing T cell clones that recognize tumor neoantigens
(155). Such approaches lay the foundation for multi-group
collaborations to synthesize neoantigen-specific T cells for
personalized adoptive T cell therapies (155).

Collectively, the identification of immunogenic neoantigens is
a multi-step process that requires significant time, cost and labor
to accomplish. Personalized neoantigen-based immunotherapies
suffer from such drawbacks, sometimes requiring up to 3 months
to manufacture the a short list of “best” candidates (156). A
potential solution to this pipeline problem is to target shared
neoantigens, that are highly recurrent, clonal, and broadly
immunogenic across cancer patients. However, whether such
immunogenic shared antigens are sufficiently available across
broad cancer types remains to be determined. Prioritizing
such antigens whenever possible is important, as any “off-
the shelf ” strategies that can be developed will significantly
reduce the cost and increase the efficiency of neoantigen-specific
cancer immunotherapies.

CONCLUDING REMARKS

We review the available tools for the computational prediction
and experimental validation of tumor-associated neoantigens,
discussing approaches for somatic mutation detection, HLA
allele typing, and prediction of peptide-MHC interactions. We
have made an effort to highlight the biases associated with
particular approaches and suggest possible ways to minimize
their influence. We also outline technologies for identifying
immunogenic neoantigens. Future developments that could
improve these strategies are suggested in Figure 3. Firstly,

harmonization of somatic mutation calling can improve
reproducibility across different platforms and sequencing
centers. Secondly, in vitro assays for folding and characterization
of pMHC complexes starting from randomized peptide
libraries can improve existing prediction tools. Applying
the same approach for peptide-MHC-II complexes may also
improve MHC-II classification tools (157). Finally, single-cell
identification of TCR-antigen interacting pairs will provide
information on the principles of TCR-neoantigen interactions,
making it possible to develop predictive methods for this type
of interaction (158). The latter will be an invaluable tool for
immunogenic neoantigen selection for vaccine designs, refining
immunotherapy outcome predictions, or selecting the most
avid TCR for adoptive recombinant T cell therapies. We believe
the field of neoantigen-based immunotherapies of cancer is
undergoing a major renaissance. Equipped with powerful
sequencing technologies, sensitive computational tools for
neoantigen discovery and efficient high-throughput platforms
for characterization of their immunogenicity, scientists will have
the potential to bring novel disruptive immunotherapies to the
clinic to definitely improve outcomes of cancer patients.

AUTHOR CONTRIBUTIONS

VR wrote the manuscript. VR, BG, and NB reviewed and revised
the manuscript.

FUNDING

NB has National Institutes of Health grants R01CA201189,
R01CA180913, and R01AI081848 and receives support from
the Melanoma Research Alliance, Cancer Research Institute,
Leukemia & Lymphoma Society and NYSTEM. BG has
National Institutes of Health grants 7R01AI081848-04 and
1P30CA196521-01; BG has Stand Up To Cancer-National
Science Foundation-Lustgarten Foundation Convergence Dream
Team Grant sponsored by Stand Up to Cancer, the Lustgarten
Foundation, the V Foundation and the National Science
Foundation grant NSF 1545935; BG is the Pershing Square Sohn
Prize-Mark Foundation Fellow supported by funding from The
Mark Foundation for Cancer Research.

ACKNOWLEDGMENTS

We thank the members of NB and BG labs for critical assessment
of the manuscript.

REFERENCES

1. Hodi S, O’Day S, McDermott D, Weber R, Harris A, Johnson DW, et al.
Improved survival with ipilimumab in patients with metastatic melanoma.
N Engl J Med. (2010) 363:609–19. doi: 10.1056/NEJMoa1003466

2. Topalian S, Hodi S, Brahmer J, Gettinger S, Smith DC, Mcdermott DF, et al.
Safety, Activity, and immune correlates of anti–PD-1 antibody in cancer. N
Engl J Med. (2012) 366:2443–54. doi: 10.1056/NEJMoa1200690

3. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ,
Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell
carcinoma. N Engl J Med. (2015) 373:1803–13. doi: 10.1056/NEJMoa
1510665

4. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E,
et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-
cell lung cancer. N Engl J Med. (2015) 373:123–35. doi: 10.1056/NEJMoa
1504627

Frontiers in Immunology | www.frontiersin.org 7 January 2020 | Volume 11 | Article 27

https://doi.org/10.1056/NEJMoa1003466
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1056/NEJMoa1510665
https://doi.org/10.1056/NEJMoa1504627
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Roudko et al. Prediction and Validation of Tumor-Associated Neoantigens

5. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A
(anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer.
Nature. (2014) 515:558–62. doi: 10.1038/nature13904

6. Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama
T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab,
in patients with platinum-resistant ovarian cancer. J Clin Oncol. (2015)
33:4015–22. doi: 10.1200/JCO.2015.62.3397

7. Le DT, Uram JN,Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1
Blockade in tumors with mismatch-repair deficiency. N Engl J Med. (2015)
372:2509–20. doi: 10.1200/jco.2015.33.15_suppl.lba100

8. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al.
Mismatch repair deficiency predicts response of solid tumors to PD-1
blockade. Science. (2017) 413:409–13. doi: 10.1126/science.aan6733

9. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al.
PD-1 blockade induces responses by inhibiting adaptive immune resistance.
Nature. (2014) 515:568–71. doi: 10.1038/nature13954

10. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy.
Science. (2015) 348:69–74. doi: 10.1126/science.aaa4971

11. De Vries J, Figdor C. Immunotherapy: cancer vaccine triggers antiviral-type
defences. Nature. (2016) 534:329–31. doi: 10.1038/nature18443

12. Yang W, Lee K, Srivastava RM, Kuo F, Krishna C, Chowell D, et al.
Immunogenic neoantigens derived from gene fusions stimulate T cell
responses. Nat Med. (2019) 25:1–9. doi: 10.1038/s41591-019-0434-2

13. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND,
Li S, et al. Neoantigen vaccine generates intratumoral T cell
responses in phase Ib glioblastoma trial. Nature. (2019) 565:234–9.
doi: 10.1038/s41586-018-0792-9

14. Tran E, Robbins PF, Rosenberg SA. Final “common pathway” of human
cancer immunotherapy: targeting random somatic mutations.Nat Immunol.

(2017) 18:255–62. doi: 10.1038/ni.3682
15. Coulie PG, Van Den Eynde BJ, Van Der Bruggen P, Boon T. Tumour antigens

recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev
Cancer. (2014) 14:135–46. doi: 10.1038/nrc3670

16. Stone JD, Harris DT, Kranz DM. TCR affinity for p/MHC formed by tumor
antigens that are self-proteins: impact on efficacy and toxicity. Curr Opin
Immunol. (2015) 33:16–22. doi: 10.1016/j.coi.2015.01.003

17. Efremova M, Finotello F, Rieder D, Trajanoski Z, Gutenberg-universität J,
Gutenberg-universität J. Neoantigens generated by individual mutations and
their role in cancer immunity and immunotherapy. Front Immunol. (2017)
8:1679. doi: 10.3389/fimmu.2017.01679

18. Mcgranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R,
Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and
sensitivity to immune checkpoint blockade. Science. (2016) 351:1463–9.
doi: 10.1126/science.aaf1490

19. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al.
Genomic and transcriptomic features of response to anti-PD-1 therapy
in metastatic melanoma. Cell. (2016) 165:35–44. doi: 10.1016/j.cell.2016.
02.065

20. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L,
et al. Genomic correlates of response to CTLA-4 blockade in metastatic
melanoma. Science. (2015) 350:207–11. doi: 10.1126/science.aad0095

21. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ,
et al. Mutational landscape determines sensitivity to PD-1 blockade in
non-small cell lung cancer. Science. (2015) 348:124–8. doi: 10.1126/science.
aaa1348

22. Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R,
et al. Genomic correlates of immune-cell infiltrates in colorectal
carcinoma. Cell Rep. (2016) 15:857–65. doi: 10.1016/j.celrep.201
6.03.075

23. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor
and microenvironment evolution during immunotherapy with nivolumab.
Cell. (2017) 171:934–49.e15. doi: 10.1016/j.cell.2017.09.028

24. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for
checkpoint inhibitor immunotherapy. Nat Rev Cancer. (2019) 19:133–50.
doi: 10.1038/s41568-019-0116-x

25. Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal
replacement of tumor-specific T cells following PD-1 blockade. Nat Med.

(2019) 25:1251–9. doi: 10.1101/648899

26. Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD,
Solovyov A, et al. A neoantigen fitness model predicts tumour response
to checkpoint blockade immunotherapy. Nature. (2017) 551:517–20.
doi: 10.1038/nature24473

27. Richman LP, Vonderheide RH, Rech AJ. Neoantigen dissimilarity to the
self-proteome predicts immunogenicity and response to immune checkpoint
blockade. Cell Syst. (2019) 9:375–82.e4. doi: 10.1016/j.cels.2019.08.009

28. Santambrogio L, Berendam SJ, Engelhard VH. The antigen processing
and presentation machinery in lymphatic endothelial cells. Front Immunol.

(2019) 10:1033. doi: 10.3389/fimmu.2019.01033
29. Mellman I, Steinman RM. Dendritic cells: specialized and

regulated antigen processing machines. Cell. (2001) 106:255–8.
doi: 10.1016/S0092-8674(01)00449-4

30. Blum JS,Wearsch PA, Cresswell P. Pathways of antigen processing.Annu Rev
Immunol. (2013) 31:443–73. doi: 10.1146/annurev-immunol-032712-095910

31. Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The
biology and underlying mechanisms of cross-presentation of exogenous
antigens on MHC-I molecules. Annu Rev Immunol. (2017) 35:149–76.
doi: 10.1146/annurev-immunol-041015-055254

32. Boltjes A, van Wijk F. Human dendritic cell functional specialization
in steady-state and inflammation. Front Immunol. (2014) 5:131.
doi: 10.3389/fimmu.2014.00131

33. Dalod M, Chelbi R, Malissen B, Lawrence T. Dendritic cell maturation:
functional specialization through signaling specificity and transcriptional
programming. EMBO J. (2014) 33:1104–16. doi: 10.1002/embj.201488027

34. Worah K, Mathan TSM, Vu Manh TP, Keerthikumar S, Schreibelt G, Tel
J, et al. Proteomics of human dendritic cell subsets reveals subset-specific
surface markers and differential inflammasome function. Cell Rep. (2016)
16:2953–66. doi: 10.1016/j.celrep.2016.08.023

35. Stockwin LH, McGonagle D, Martin IG, Blair GE. Dendritic cells:
immunological sentinels with a central role in health and disease. Immunol

Cell Biol. (2000) 78:91–102. doi: 10.1046/j.1440-1711.2000.00888.x
36. Hancock DG, Guy TV, Shklovskaya E, Fazekas de St Groth B. Experimental

models to investigate the function of dendritic cell subsets: challenges and
implications. Clin Exp Immunol. (2013) 171:147–54. doi: 10.1111/cei.12027

37. Gutiérrez-Martínez E, Planès R, Anselmi G, Reynolds M, Menezes
S, Adiko AC, et al. Cross-presentation of cell-associated antigens by
MHC class I in dendritic cell subsets. Front Immunol. (2015) 6:363.
doi: 10.3389/fimmu.2015.00363

38. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage:
ontogeny and function of dendritic cells and their subsets in the steady
state and the inflamed setting. Annu Rev Immunol. (2013) 31:563–604.
doi: 10.1146/annurev-immunol-020711-074950

39. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel
CE, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs)
represent a unique myeloid DC subset that cross-presents necrotic
cell antigens. J Exp Med. (2010) 207:1247–60. doi: 10.1084/jem.
20092140

40. Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, et al. Dendritic cells
but not macrophages sense tumor mitochondrial DNA for cross-priming
through signal regulatory protein α signaling. Immunity. (2017) 47:363–
73.e5. doi: 10.1016/j.immuni.2017.07.016

41. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, et al.
Dissecting the tumor myeloid compartment reveals rare activating antigen-
presenting cells critical for T cell immunity. Cancer Cell. (2014) 26:638–52.
doi: 10.1016/j.ccell.2014.09.007

42. Hammerich L, Marron TU, Upadhyay R, Svensson-arvelund J, Dhainaut
M, Hussein S, et al. Systemic clinical tumor regressions and potentiation
of PD1 blockade with in situ vaccination. Nat Med. (2019) 25:814–24.
doi: 10.1038/s41591-019-0410-x

43. Salmon H, Remark R, Gnjatic S, Merad M. Host tissue determinants of
tumour immunity. Nat Rev Cancer. (2019) 19:215–27.

44. Ott PA,HuZ, KeskinDB, Shukla SA, Sun J, BozymDJ, et al. An immunogenic
personal neoantigen vaccine for patients with melanoma. Nature. (2017)
547:217–21. doi: 10.1038/nature22991

45. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas
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