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This study describes a method developed for predicting pattern recognition receptors

(PRRs), which are an integral part of the immune system. The models developed here

were trained and evaluated on the largest possible non-redundant PRRs, obtained

from PRRDB 2.0, and non-pattern recognition receptors (Non-PRRs), obtained from

Swiss-Prot. Firstly, a similarity-based approach using BLAST was used to predict PRRs

and got limited success due to a large number of no-hits. Secondly, machine learning-

based models were developed using sequence composition and achieved a maximum

MCC of 0.63. In addition to this, models were developed using evolutionary information

in the form of PSSM composition and achieved maximum MCC value of 0.66. Finally,

we developed hybrid models that combined a similarity-based approach using BLAST

and machine learning-based models. Our best model, which combined BLAST and

PSSM based model, achieved a maximum MCC value of 0.82 with an AUROC value

of 0.95, utilizing the potential of both similarity-based search and machine learning

techniques. In order to facilitate the scientific community, we also developed a web server

“PRRpred” based on the best model developed in this study (http://webs.iiitd.edu.in/

raghava/prrpred/).

Keywords: pattern recognition receptors, prediction, innate immunity, machine learning, BLAST, toll-like receptors

INTRODUCTION

Pattern Recognition Receptors (PRRs) are germline-encoded proteins that are capable of sensing
invading pathogens by binding to the so-called pathogen-associated molecular patterns (PAMPs)
found in pathogens. These PRRs also bind to Damage-Associated Molecular Patterns (DAMPs)
which are molecules released by damaged cells. This recognition of PAMPs and DAMPs by
PRRs initiates a cascade of signaling processes and activates microbicidal and pro-inflammatory
responses. It leads to elimination of infectious agents, and at the same time, represents an
essential link to the adaptive immune response (1). There are four significant sub-families of
PRRs—Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-Leucine
Rich Repeats (LRR)-containing receptors (NLR), retinoic acid-inducible gene 1 (RIG-1)-like
receptors (RLR), and C-type lectin receptors (CLRs). While TLRs and CLRs are transmembrane
proteins, NLRs and RLRs are cytoplasmic proteins. These PRRs play essential roles in bacterial,
viral, and fungal recognition (2). Several other PRRs such as scavenger receptors, mannose
receptors, and β-glucan receptors induce phagocytosis. Other secreted PRRs are complement
receptors, collectins, ficolins, pentraxins for instances, serum amyloid, and C-reactive protein, lipid
transferases, peptidoglycan recognition proteins (PGRs), XA21D (3).
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Various studies in the past have exhibited the importance
of PRRs in diseases such as autoimmune disorders (4, 5),
atherosclerosis, sepsis, asthma (6), heart failure (4), kidney
diseases (7), bacterial meningitis, viral encephalitis, stroke,
Alzheimer’s disease (AD), Parkinson’s disease (PD) (5),
immunodeficiency disorders like chronic granulomatous disease
(CGD), and X-linked agammaglobulinemia (XLA) (8), Cancer
(9–12). Thus, PRRs have emerged as an important area for
therapeutic research specifically in adjuvant designing (13–16).
Hence, it is vital to have a deep understanding of PRR machinery
and their functional roles in innate immunity. Broadly, PAMPs
and DAMPs bind to PRRs, which results in signals that prompt
leukocyte recruitment (17). Cell types expressing PRRs include
innate immune cells such as macrophages, monocytes, dendritic
cells, and mast cells but also non-immune cells such as epithelial
cells and fibroblasts (18). Pattern recognition receptor-ligand
binding and their joint conformational changes elicit a cascade
of downstream signaling. This cascade results in transcriptional
changes as well as post-translational modifications (17).
Traditional methods for identifying PRRs include experimental
techniques such as immunofluorescence (19), Quantitative
real-time PCR, Cell viability assay, Immunoblot and Immuno-
precipitation (20, 21), Microbial Binding and Agglutination
Assay (22), PAMP binding assay (22, 23), ELISA (24–26),
Growth-inhibition assay (27). These experimental techniques are
highly accurate but costly and time-consuming. Recent advances
in technology have led to the development of various in-silico
methods for predicting the function of a protein. Besides being
faster and inexpensive, these methods are also reproducible.
The data required for building such prediction methods can
be obtained from various web-resources/databases/repositories
such as InnateDB (28), IEDB (29), IIDB (30), Vaxjo (31), and
VIOLIN (32). Due to its crucial role in innate immunity, the
prediction of PRRs is a necessity to further aid research and
efficient-therapy design. So far, only one prediction method (33)
for sub-family classification of PRRs has been developed in the
past, based on data obtained from PRRDB (34). This method,
however, used a relaxed criterion for dataset preparation (CD hit
at 90% cutoff) due to scarce data. This dataset was subsequently
used for training and testing of machine learning models. Since
their processed dataset contains homologous sequences, the
model prediction results could be biased.

In order to complement and overcome the limitations of
the existing method, we developed a method using the largest
possible dataset, derived from PRRDB 2.0 (3) database, with
standard protocols. In this study, we used protocols that divide
the data into five data sets in such a way that no two proteins
in two different subsets have more than 40% sequence similarity,
without reducing the number of sequences in the dataset
(35, 36). In order to understand the strength and limitation
of the standard similarity-based approach, we evaluate the
performance of BLAST on our dataset. In the second step,
we developed standard machine-learning based classification
models for predicting PRRs using a wide range of descriptors
like residue composition and dipeptide composition (37–40).
It has been shown in the past that evolutionary information
provides more information than single sequence (41, 42). Thus,

we developed models using evolutionary information in the
form of the composition of the position-specific scoring matrix
(PSSM) profile (37). Finally, we developed hybrid models that
combine the strength of different approaches used in this study
(42, 43). We show that the hybrid model that comprises of
BLAST based similarity search and PSSM profile based Random
Forest (RF) classifier, is the best in-silico classification method for
predicting PRRs. This model is freely available for public use in
the form of the web-server “PRRpred” (http://webs.iiitd.edu.in/
raghava/prrpred/), to assist and aid further research on PRRs.

MATERIALS AND METHODS

Dataset
PRRs sequences (positive data) were obtained from the database
PRRDB2.0 (3). Initially, the total PRRs taken were 2,727, which
were reduced to 179 unique PRRs after the removal of identical
sequences. The negative dataset was created by collecting random
sequences from Swiss-Prot (44), which were not PRRs. The
negative dataset constituted of 274 Non-PRR sequences. In
order to create non-redundant subsets without reducing number
of sequences, we used an approach previously described by
Bendtsen et al. (35) and Garg et al. (36). Following the same
approach, CD-HIT (45) with a cutoff of 40% sequence similarity
was used on both positive and negative datasets, to obtain
positive and negative clusters respectively. Each cluster is a
collection of similar sequences based on the cutoff. A total of
106 positive clusters and 210 negative clusters were obtained.
The distribution of the sequences in the clusters is shown in
Figure 1. For the positive dataset, five subsets were created
from the clusters obtained by CD-HIT. All the sequences in
the first cluster were assigned to the first subset and the next
cluster’s sequences to the subsequent subset and so on. We
continued this process until all sequences (contained in CD-HIT

FIGURE 1 | Distribution of the sequences in negative and positive clusters

obtained from CD-HIT. x-axis represents the number of sequences and y-axis

represents number of clusters that have those number of sequences. Most of

the positive and negative clusters have a smaller number of sequences, while

there are a few clusters with a comparatively larger number of sequences.
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FIGURE 2 | The flowchart explains the process of fractioning positive clusters obtained from CD-HIT into five subsets. The numbers in the parentheses, following the

cluster names, represent the number of sequences in that cluster. As a result, Subset 1 contains sequences of clusters 1, 6, 11, …, 106; Subset 2 contains

sequences of cluster 2, 7, 12, …, 102; Subset 3 contains sequences of cluster 3, 8, 13, …, 103; Subset 4 contains sequences of cluster 4, 9, 14, …, 104; and

Subset 5 contains sequences of cluster 5, 10, 15, …, 105.

generated clusters) were distributed in the five subsets. Figure 2
explains this procedure diagrammatically. A similar process was
implemented for negative dataset to create five negative subsets.
This strategy makes sure that the subsets are dissimilar to each
other (<40% similarity between sequences in two subsets), which
will be beneficial for unbiased training and testing of machine
learningmodels and selection of a better classificationmodel. The
aim of this process is to create non-redundant dataset without
reducing the number of proteins from the dataset (35, 36).

Five-Fold Cross Validation
The performance of the modules constructed in this report was
evaluated using five-fold cross-validation technique. Training
and test sets were formed using positive and negative subsets.
Four positive and the corresponding four negative subsets were
combined to form the training set. The remaining one positive
and one corresponding negative subset were combined to form
the test set. This process is repeated five times, such that the
combination of a positive subset and the corresponding negative
subset is used as a test set exactly once. We employed these five

training and test sets for performing five-fold cross-validation to
select the best machine learning models as well as for developing
BLAST similarity search-based module, as explained in the next
sections. Five-fold cross-validation is a standard process that
has been successfully implemented in several machine learning-
based studies in the past (39, 46–50).

BLAST Based Similarity Search
A similarity search basedmodule was designed based on pBLAST
(BLAST+ 2.7.1) (51). To evaluate the performance of this
module, five-fold cross-validation was implemented. For this, a
train set was used to make a local database against which the
query sequences (sequences in the test set) were searched at
an e-value of 0.001. The procedure is repeated five times (for
each training and test set), and the evaluation metrics are noted
(Results). Finally, in the web-server implementation, the total
positive (179 PRRs) and negative dataset (274 Non-PRRs) have
been combined to make a database of 453 proteins against which
the user’s unseen query protein can be searched.
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Protein Features
Composition Based Features
Amino acid composition (AAC) and di-peptide composition
(DPC) were obtained from Pfeature and used as features that
provide residue information of a protein. AAC, for a protein
sequence, is a 20-length vector where each element is the fraction
of a specific type of residue in the sequence. DPC, on the other
hand, is a 400-length vector that gives the composition of the
amino-acids present in pairs (e.g., L-M, G-L, and so on) in the
protein sequence. The detailed information can be obtained from
Pfeature (52).

Evolutionary Information-Based Features
In this study, we obtained evolutionary information for a protein
using PSI-BLAST. We implemented evolutionary information
in the form of PSSM-400 composition profile as a feature,
similar to the previous studies (37, 53–57). PSSM-400 for a
protein sequence is a 20 x 20 dimensional vector, which is the
composition of occurrences of each type of 20 amino acids
corresponding to each type of amino acids in the protein
sequence. For each protein sequence, PSSM matrix was created,
which was then normalized and converted to a 20 x 20
PSSM composition vector using Pfeature’s (52) “Evolutionary
Info” module.

Machine Learning Techniques
We used Sci-Kit’s sklearn package, consisting of various
classifiers, to develop prediction models. Each of these methods
requires fixed-length feature vectors. The maximum information
about proteins of variable lengths was converted into fixed
vectors of equal dimensions (AAC, DPC, PSSM-400), and then
these were used as input features. We used Sci-Kit’s GridSearch
package to tune hyper-parameters in order to get the best
performance on the training set. Subsequently, the best-learned
model was used for the test. This process was implemented using
five-fold cross-validation, and the average performance of five-
folds was evaluated. Different Machine Learning based classifiers
were then used to develop prediction models. The most basic
classifier i.e., Logistic Regression (LR) was used to handle linear
data, while to handle non-linear data more advanced classifiers
such as Random Forest (RF), Support Vector Machine (SVM),
Extra Trees (ET), K-Nearest Neighbor (KNN), and Multi-
Layer Perceptron (MLP) were used. All these machine learning
methods have been successfully applied in many bioinformatics
studies (39, 46, 49, 50, 58).

Performance Evaluation Parameters
Each model used in the study was evaluated using threshold
independent and dependent scoring parameters. Threshold
dependent parameters used here are Sensitivity (Sens), Specificity
(Spec), Accuracy (Acc), and Matthew’s correlation coefficient
(MCC). “Sens” is defined as true positive rate (TPR) i.e., correctly
predicted positives with respect to actual total positives, whereas
true negative rate (TNR) is defined by “Spec.” “Acc” is the
ability of the model to differentiate between true positives and
true negatives, while MCC is the correlation coefficient between
predicted and actual classes. Following relations were used to

calculate these:

Sens =
TP

P
× 100

Spec =
TN

N
× 100

Acc =
TP + TN

P + N
× 100

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Where TP denotes correctly predicted positive, TN denotes the
correct negative predictions, P denotes the total sequences in the
positive set, N denotes the total sequences in the negative set,
FP denotes actual negative sequences which have been wrongly
predicted as positive, and FN represents wrongly predicted
positive sequences. These scoring parameters are well-established
and have been used in many studies for model’s performance
evaluation. Area under Receiver Operating Characteristic Curve
(AUROC) value is a threshold independent parameter, which is
calculated via the plot between True positive rate (TPR or Sens)
and False positive rate (FPR or 1-Spec) (59).

Hybrid Models for Classification
In order to improve the accuracy of the machine learning-
based models further, hybrid models were constructed that
combined the BLAST prediction score with the ML-based scores
as done in ALGpred (60). We assigned a score of “+0.5” for
positive prediction (PRRs), “−0.5” for negative prediction (Non-
PRRs), and “0” for no hits (NH). This score was added to the
Machine learning-based model score (i.e., prediction probability
of positive class). This is done for each of the sequences in the
test set in a five-fold cross-validation process. Then based on
this combined score, scoring metrics were evaluated for each ML
model at various probability cutoffs.

RESULTS

Prediction Based on Similarity Search
One of the standard software which is commonly used
for similarity search is BLAST. Thus, we used BLAST for
discriminating PRRs and Non-PRRs. In order to avoid bias,
we used five-fold cross-validation, where proteins in the test
set were searched against the training set using BLAST at
different e-value cut-offs (Table 1). This process is repeated
five times to cover all the proteins in our training sets. The
positive dataset consists of 179 PRRs, and a negative dataset
consists of 274 Non-PRRs. As shown in Table 1, the number
of correctly predicted PRRs increased from 74.30 to 82.12%
with e-value from 10−9 to 10−0 or 1. Though the performance
of correctly predicted PRRs (sensitivity) increased with an
increase in e-value, the rate of error (% of Non-PRRs) also
increased. In the case of Non-PRRs, specificity increased from
32.48 to 49.68%, and the error rate also increased from 1.67 to
10.05% with e-value from 10−9 to 10−0. The overall accuracy
of BLAST was only around 51% at e-value 10−3; due to a
significant number of no-hits. This poor performance shows that
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TABLE 1 | The performance of BLAST on training and testing dataset using

five-fold cross validation. PRRs, and non-PRRs were searched at different

e-values of BLAST.

BLAST

(e-value)

Positive hits

(Searching PRRs)

Negative hits (Searching

Non-PRRs)

PRRs

(Sensitivity)

Non-PRRs

(Error)

Non-PRRs

(Specificity)

PRRs (Error)

10−9 133 (74.30) 4 (1.45) 89 (32.48) 3 (1.67)

10−8 134 (74.86) 4 (1.45) 90 (32.84) 4 (2.23)

10−7 134 (74.86) 5 (1.82) 90 (32.84) 4 (2.23)

10−6 135 (75.41) 5 (1.82) 93 (33.94) 4 (2.23)

10−5 136 (75.97) 7 (2.55) 98 (35.76) 5 (2.79)

10−4 136 (75.97) 7 (2.55) 99 (36.13) 6 (3.35)

10−3 138 (77.09) 8 (2.92) 101 (36.86) 6 (3.35)

10−2 139 (77.65) 10 (3.64) 102 (37.22) 6 (3.35)

10−1 140 (78.21) 20 (7.29) 107 (39.05) 7 (3.91)

1 147 (82.12) 65 (23.72) 135 (49.27) 18 (10.05)

BLAST is not suitable to discriminate PRRs and Non-PRRs with
high precision.

Models Based on Machine Learning
Techniques
Composition-Based Features
In order to develop a method for classification of PRRs and
Non-PRRs, we used two main sequence composition-based
features viz. (i) Amino acid composition and (ii) Dipeptide
composition. A wide range of machine learning techniques (e.g.,
SVM, KNN, RF) were used for developing prediction models.
We examined the frequency of the 20 amino acids in both the
positive and negative datasets. A comparison of amino acid
composition between PRRs and Non-PRRs showed that residues
L, N, S, and Q are more abundant in PRRs whereas A, D, E, K,
and V are frequent in Non-PRRs (Figure 3). The composition
of PRRs is different from the composition of Non-PRRs, as
shown in Figure 3. Thus, amino acid composition (AAC) feature
can be used to develop models for discriminating two classes.
Following machine learning techniques were used for developing
binary classification models; (i) Extra-trees (ET), (ii) Random
forest (RF), (iii) Support vector machine (SVM), (iv) K nearest
neighbor (KNN), (v) Logistic regression (LR), and (vi) Multi-
layer perceptron (MLP). As shown in Table 2, ET based models
got a maximum AUROC of 0.90 with an MCC value of 0.63 on
the training dataset. We achieved AUROC as 0.88 withMCC 0.63
on the test dataset.

Similarly, models were constructed using dipeptide
composition and using different machine learning techniques
(Table S1). The best performance was noted for LR with an
average accuracy of 80.25%, MCC value of 0.59, and AUROC of
0.87 at test set, while on the training dataset, an average accuracy
of 82.57% was noted with MCC value of 0.64 and AUROC value
of 0.88. Overall test accuracy was 83% in the case of LR, with
MCC of 0.64 and AUROC of 0.88.

Composition of Sequence Profile
It has been shown in the past that the sequence profile provides
more information than single sequence. Thus, in this study, first,
we generate sequence profile corresponding to a protein using
PSI-BLAST software. In order to generate a fixed number of
features, we compute the composition of sequence profile or
PSSM profile (see section Materials and Methods). We represent
the composition of PSSM profile by PSSM-400, which has a
fixed-length vector of 400 elements. We generated the PSSM-
400 composition profiles for our dataset and used it as feature
vectors for developing classification models. Similar to the AAC
and DPC based methods, we use various classifiers such as SVM,
RF, ET, MLP, etc. for training and test purposes. As shown in
Table 3, models based on evolutionary information showed a
maximum AUROC of 0.87 with MCC of 0.64 on the training
dataset. Similarly, on the test dataset, the maximum AUROC
was 0.89, with MCC of 0.66. As compared to composition-
based prediction models, PSSM based prediction model showed
higher performance in terms of MCC. In terms of AUROC, the
performance of both composition and PSSM based methods was
nearly the same.

Combination of Sequence and PSSM Composition
The PSSM composition was combined with amino acid
composition to generate a 420-length feature vector. Various
classifiers were used for training and testing using five-fold cross-
validation. As shown in Table 4, we got an AUROC value of 0.89
with a MCC value of 0.66 using LR on training sets. Similarly,
maximum AUROC was obtained on using MLP with AUROC of
0.90 and of 0.67 on the test dataset. Thus, the performance has
been improved as compared to using evolutionary information-
based features (PSSM) or composition-based features (AAC
or DPC) alone. Figure 4 shows the ROC curves for different
classifiers corresponding to AAC, PSSM, and the combination of
AAC and PSSM.

Hybrid Models
It is apparent from the previous results that both similarity-
based approach and machine learning-based models have their
own pros and cons. Thus, we made an attempt to develop a
method that combines the strengths of both approaches. The
e-value of 10−3 was selected for the BLAST-based similarity
search method based on the hits against PRRs. Since at this
e-value, the probability of correct prediction was found to be
reasonably high (77.09%), and the rate of error was very low
(2.92%). Though the number of no-hits was too high at this
cutoff (∼80%), it was compensated by a high prediction accuracy.
In order to integrate the two approaches, proteins were first
classified using machine learning models. In the second step,
the proteins were again classified using BLAST wherein the
query proteins which showed similarity with PRRs at e-value
of 10−3 were assigned as PRRs. We gave preference to BLAST
over machine learning-based models in predicting PRRs due to
the high probability of correct prediction of the BLAST-based
similarity search method. In simple words, we used machine
learning techniques for classifying proteins as PRRs and Non-
PRRs when there is no BLAST hit for query protein at BLAST
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FIGURE 3 | The percent amino acid composition of pattern recognition receptors and non-pattern recognition receptor proteins.

TABLE 2 | The performance of different machine learning techniques-based models on PRR dataset developed using AAC of protein sequences.

Method Train dataset (Average) Test dataset (Average)

Model Hyper-parameters* Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC

ET ne = 90 80.71 82.56 81.73 0.90 0.63 77.06 84.08 82.46 0.88 0.63

SVM C = 5, g = 0.01, k = rbf 78.07 83.83 81.62 0.87 0.62 77.95 82.31 81.06 0.88 0.60

RF ne = 100 77.82 81.46 80.08 0.88 0.59 77.42 80.85 79.97 0.87 0.58

LR C = 1 77.98 82.50 80.77 0.86 0.60 76.12 81.57 79.57 0.86 0.58

MLP a = tanh, HL = (19,), m = 200, s = adam 77.02 82.77 80.50 0.86 0.59 78.88 77.94 78.90 0.87 0.57

KNN al = ball_tree, nn = 20, w = distance 76.17 79.06 77.91 0.85 0.55 77.74 75.00 76.97 0.86 0.53

*g, gamma; ne, n_estimators; k, kernel; a, activation; HL, hidden layer size; s, solver; al, algorithm; w, weight; m, max_iter; nn, n_neighbors.

TABLE 3 | The performance of different machine learning techniques-based models on PRR dataset developed using PSSM-400 of protein sequences.

Method Train dataset (average) Test dataset (average)

Model Hyper-parameters* Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC

SVM C = 10, g = 0.5, k = rbf 77.80 85.89 82.78 0.87 0.64 79.74 85.46 83.64 0.89 0.66

LR C = 1,000 77.31 86.37 82.84 0.87 0.64 80.80 81.07 81.13 0.89 0.61

KNN al = ball_tree, nn = 6, w = distance 72.80 83.48 79.36 0.86 0.57 78.40 82.50 81.07 0.87 0.60

RF ne = 80 75.95 85.01 81.55 0.87 0.61 79.07 81.41 80.74 0.86 0.60

MLP a = logistic, HL = (14), m = 200, s = adam 75.26 85.09 81.28 0.86 0.61 79.07 81.03 80.26 0.88 0.59

ET ne = 70 80.33 78.79 79.36 0.88 0.58 83.73 74.97 79.15 0.87 0.59

*g, gamma; ne, n_estimators; k, kernel; a, activation; HL, hidden layer size; s, solver; al, algorithm; w, weight; m, max_iter; nn, n_neighbors.

TABLE 4 | The performance of different machine learning techniques-based models on PRR dataset developed using the combination of composition (AAC) and

evolutionary information (PSSM-400) based features for protein sequences.

Method Train dataset (Average) Test dataset (Average)

Model Hyper-parameters* Sens Spec Acc AUROC MCC Sens Spec Acc AUROC MCC

MLP a = tanh, HL, = (70,), m = 200, s = adam 77.70 86.54 83.20 0.88 0.65 81.23 85.50 84.19 0.90 0.67

LR C = 1,000 82.97 83.49 83.34 0.89 0.66 83.59 81.49 82.67 0.90 0.64

RF ne = 60 80.32 83.24 82.16 0.88 0.63 80.43 82.44 82.16 0.87 0.63

ET ne = 100 77.72 85.25 82.35 0.89 0.63 78.96 83.75 82.13 0.88 0.63

SVC C = 5, g = 0.01, k = rbf 81.65 83.35 82.73 0.89 0.65 80.62 81.56 81.72 0.88 0.62

KNN al = ball_tree, nn = 20, w = distance 80.20 76.60 78.12 0.87 0.56 80.41 72.88 76.35 0.86 0.52

*g, gamma; ne, n_estimators; k, kernel; a, activation; HL, hidden layer size; s, solver; al, algorithm; w, weight; m, max_iter; nn, n_neighbors.
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FIGURE 4 | Receiver operating characteristic curves for five-fold

cross-validation based on AAC, PSSM, AAC+PSSM using Support vector

machine (SVM), Logistic Regression (LR), and Multi-layer perceptron (MLP)

based classifier, respectively.

e-value of 10−3. This hybrid strategy improved the coverage,
which was earlier missing while using BLAST alone. As shown
in Table 5, the performance of machine learning techniques
improved drastically when BLAST was integrated. Our best
hybrid model (RF) based on PSSM achieved an accuracy of
91.39% and AUROC of 0.95 with an MCC of 0.82. In general, the
performance of all hybrid models was observed to be better than
the BLAST-based similarity search and models based on machine
learning techniques.

WEB-SERVER INTERFACE

Providing service to the scientific community is one of the
primary goals of this study. We developed a user-friendly web
server (http://webs.iiitd.edu.in/raghava/prrpred/), which allows
users to predict whether a given protein is a pattern recognition
receptor or not. The web interface of the server has two
sub-modules under prediction: (i) Composition Based and
(ii) Evolutionary Information Based. The “Composition Based”
module allows a user to identify a protein sequence based on
Amino acid composition. This module further provides the user
with the option to choose the non-hybrid method, which is
only AAC based and hybrid method, which is AAC+BLAST
based. The “Evolutionary Information Based” module facilitates
the user to predict PRRs from evolutionary information of a
protein sequence. Here, the PSSM-400 composition profile for
the entered protein sequence is generated and is used as a feature
vector for the prediction. This module also has the facility of
non-hybrid and hybrid models, similar to the composition-based
module. The web server has been designed by using a responsive
HTML template for adjustment to the browsing device. Thus, our
web server is compatible with a wide range of devices, including
desktops, tablets, and smartphones.

DISCUSSION

Over the past few years, there have been rapid advances
in understanding innate immunity, particularly about the
mechanisms by which pathogens are recognized and how the
signaling molecules respond to them. Innate immunity is gaining
more attention than adaptive immunity due to its role in
combating the pathogens during the early stages of infection,
while adaptive immunity comes later into the picture. Adaptive
immunity comprises of receptors which are highly specific to
antigens (61). In contrast, innate immunity consists of specialized
receptors known as PRRs that recognize infectious pathogens
and initiate inflammatory responses for their eradication (62).
Several critical implications of PRRs have been reported in the
past in the context of adjuvant designing, therapeutic targets,
immunomodulator design, cancer immunotherapy, etc. (61,
63, 64). A comprehensive database of pathogen recognizing
receptors such as PRRDB (34) is highly essential to understand
innate immunity. These kinds of knowledge-based resources
can assist researchers working in the area of innate immunity
and drug development. In addition to resources, there is a
need to develop methods than can annotate newly sequenced
PRRs. Recently, a method has been developed using SVM
for predicting PRRs and subfamilies (33). This method uses
amino acid and pseudo-amino acid composition (PseAAC) for
developing models using dataset derived from PRRDB (34).
The prediction was based on 332 PRR sequences (containing
different families) obtained from 473 sequences (that includes
multiple similar UniProt IDs), which were originally present in
the database, by employing CD-HIT at 90% cutoff. The model
accuracy was reported to be ∼97–98%; however, such a relaxed
redundancy reduction process employs sequences that can be
similar up to a very high degree. In this paper, we used the dataset
obtained from the recently updated version PRRDB2.0 (3) to
develop classification models. The positive dataset in our case
consists of PRR sequences with unique UniProt IDs, thereby first
reducing the redundant data (1,784 sequences) to 179 sequences.
Secondly, CD hit at 40% cutoff was applied to divide both the
negative (274 random Non-PRR sequences from swiss-prot) and
positive datasets to five subsets each. This helped in reducing
homology bias amongst the train and test datasets, and thus more
precise training of the models during five-fold cross-validation.

Here, we tried various approaches to predict PRRs. We used
different protein features such as composition-based features
(AAC and DPC) and evolutionary information-based features
(PSSM) to develop machine learning-based models in order to
distinguish PRRs and Non-PRRs. We also used the combination
of composition-based features and evolutionary information-
based features for the same. These approaches were used for the
first time in the study of predicting PRRs. To do this, we used
a variety of classifiers available in Sci-Kit’s sklearn such as SVM,
RF, ET, MLP. Firstly, we tried BLAST only classification due to
its simplicity and wide popularity. Though BLAST resulted in a
very high accuracy (e-value of 10−3) whenever a hit was found,
it was unable to predict around 80% of sequences (No-Hits)
during five-fold cross-validation. Thus, we employed a hybrid
approach for the problem in hand, which combines ML-based
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TABLE 5 | The performance of different machine learning techniques-based models on test dataset when combined with BLAST hits at e-value 10−3.

Feature Model Hyper-parameters* Sens Spec Acc AUROC MCC

PSSM RF C = 80 83.24 96.72 91.39 0.95 0.82

AAC RF C = 100 82.12 94.53 89.62 0.92 0.78

AAC+PSSM ET ne = 100 87.15 89.78 88.74 0.95 0.77

DPC SVC C = 2, g = 0.01, k = rbf 79.89 92.34 87.42 0.93 0.73

*g, gamma; ne, n_estimators; k, kernel.

methods with BLAST. The major advantage of this strategy
is that the proteins which could not be predicted by BLAST
alone can be predicted using ML. We tried this approach with
each of the protein-features and their combinations, using an
extensive range of classifiers. The best performance was achieved
in the hybrid case of PSSM and BLAST. The formulation of
this hybrid model was implemented in the free web-server.
Using the web-server, for an unknown protein sequence, this
model will first predict the positive (PRR) or negative (Non-
PRR) class, based on BLAST search against the entire database
(179 PRRs+274 Non-PRRs). If the result is a “No-Hit,” the
prediction will then be made by the RF model trained on the
complete set. The web-server is freely available and easy to use.
We believe that the work done here will be beneficial for the
annotation of PRRs and boost the ongoing research in the field
of innate immunity.
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