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Cardiovascular disease is the leading cause of worldwide mortality. Intravital microscopy

has provided unprecedented insight into leukocyte biology by enabling the visualization

of dynamic responses within living organ systems at the cell-scale. The heart presents

a uniquely dynamic microenvironment driven by periodic, synchronous electrical

conduction leading to rhythmic contractions of cardiomyocytes, and phasic coronary

blood flow. In addition to functions shared throughout the body, immune cells have

specific functions in the heart including tissue-resident macrophage-facilitated electrical

conduction and rapid monocyte infiltration upon injury. Leukocyte responses to cardiac

pathologies, including myocardial infarction and heart failure, have been well-studied

using standard techniques, however, certain questions related to spatiotemporal

relationships remain unanswered. Intravital imaging techniques could greatly benefit

our understanding of the complexities of in vivo leukocyte behavior within cardiac

tissue, but these techniques have been challenging to apply. Different approaches have

been developed including high frame rate imaging of the beating heart, explantation

models, micro-endoscopy, and mechanical stabilization coupled with various acquisition

schemes to overcome challenges specific to the heart. The field of cardiac science

has only begun to benefit from intravital microscopy techniques. The current focused

review presents an overview of leukocyte responses in the heart, recent developments in

intravital microscopy for the murine heart, and a discussion of future developments and

applications for cardiovascular immunology.
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INTRODUCTION

The primary function of the heart is to pump blood throughout the body via the circulatory
system, delivering oxygen and nutrients to the tissues, and removing carbon dioxide and waste
simultaneously. The heart is composed of four chambers, each separated by uni-directional
valves, that synchronously work to cycle blood through the systemic and pulmonary circulation.
The function of the heart relies on the action of contractile cells, known as cardiomyocytes,
specialized conducting cells that facilitate coordinating rhythmic contraction, extracellular matrix
that provide mechanical support, as well as veins, arteries, and microvasculature to supply blood to
the working muscle. Importantly, the heart vascular network, known as the coronary circulation,
maintains perfusion of myocardial tissue with hemodynamics that are out-of-phase to the systemic
circulation (1).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00092
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00092&domain=pdf&date_stamp=2020-02-04
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dms542@cornell.edu
https://doi.org/10.3389/fimmu.2020.00092
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00092/full
http://loop.frontiersin.org/people/844082/overview
http://loop.frontiersin.org/people/893634/overview
http://loop.frontiersin.org/people/14061/overview
http://loop.frontiersin.org/people/545039/overview


Allan-Rahill et al. Intravital Leukocyte Dynamics in the Heart

Almost all diseases of the heart involve an immune response
with a high degree of spatial and temporal regulation that
is orchestrated by functionally varied leukocyte populations.
This dynamic nature of leukocytes, coupled with the fact
that contractile motion at the cell and tissue level is an
essential function of the heart, present a unique and challenging
environment to study the immune system. Given that the heart
is highly specialized and metabolically active, containing the
highest oxygen consumption rate per unit of tissue in the
human body (2), it is highly susceptible to insults that decrease
its function. These include myocardial infarction, a condition
that is caused by the partial blockage of blood supply to the
myocardium, and chronic heart failure, which is a slow and
progressive pathology that weakens the pumping ability of the
heart. Diseases of the heart are the most common cause of
death in the United States and the majority of populations
worldwide (3). Furthermore, the incidence of heart disease
continues to increase at an alarming rate despite significant
advancements in therapies and techniques (4). Although an
inflammatory component has long been recognized as a
contributing factor in these diseases, the coupling between
the dynamics of the inflammatory cell populations and heart
function remains unexplored.

Common techniques to study the cellular basis of cardiac
disease in experimental models typically capture a static point
in time (e.g., post-mortem immunohistology) or use reduced
preparations (e.g., ex vivo perfused heart, cell dissociation
or isolation and analysis such as flow cytometry). These
approaches have led to enormous progress in our fundamental
understanding of leukocyte biology in the heart over the past
century. However, these approaches fail to capture simultaneous
and interacting processes at the cell-scale. The study of leukocyte
dynamics in the majority of organ systems, including brain (5–
7), kidney (8–10) skin (11, 12), and many more (13–17), have
greatly benefitted from intravital microscopy imaging approaches
by providing invaluable insight into the fundamental behavior
and function of these cells during normal and diseased states.
The field of cardiovascular science has started to overcome
the barriers of applying intravital microscopy to the heart, a
critical step in understanding the pathophysiological basis of
these devastating cardiovascular diseases.

The purpose of this review is to provide an overview
of leukocyte responses in the heart, outline the advances in
the application of intravital multiphoton microscopy to the
rodent heart, and highlight its application to investigate specific
questions about leukocyte biology within the heart.

IMMUNE CELL POPULATIONS OF THE
HEART

The heart of a healthy adult mouse contains the full repertoire
of leukocyte populations including mononuclear phagocytes,
dendritic cells, neutrophils, T cells, and B cells (18). These
leukocyte classes differ in their regional location in the steady-
state heart (19), likely due to specific interactions with both
cardiomyocytes (20) and non-cardiomyocyte resident cells

including endothelial cells (21), smooth muscle cells, and
fibroblasts (22), all of which are sources of cytokines, chemokines,
and growth factors.

The predominant immune cell population in the heart
during healthy conditions is the tissue resident macrophages,
accounting for 5–10% of non-myocytes in the heart (23–25).
Resident macrophages are found primarily near endothelial
cells and within the interstitium between cardiomyocytes (26).
Fate mapping studies have shown that cardiac macrophages
arise from embryonic progenitors before the start of definitive
hematopoiesis and then self-renew through local proliferation
with minimal input from blood derived monocytes (26, 27). C-
C chemokine receptor type 2 (CCR2) expression is low in the
cardiac resident population of macrophages, however a small
population of CCR2+ cardiac macrophages, and lymphocyte
antigen 6C (Ly6C)+ macrophages exist in the myocardium
and are thought to be derived from circulating precursors (27,
28). Histological studies demonstrate that resident macrophages
have a spindle-like morphology and associate closely with
cardiomyocytes and endothelial cells (20, 25). To maintain
homeostasis, these cells survey the local microenvironment and
can phagocytose dying or senescent cells (23). Mice expressing
green fluorescent protein (GFP) under the control of the Cx3C
chemokine receptor (Cx3Cr1) promotor are commonly used
to identify monocytes and resident mononuclear phagocytes
including cardiac resident macrophage populations (25, 29).
In other organs such as the brain, these Cx3Cr1+/GFP mice
were used to discover that Cx3Cr1+ cells are actively moving
their processes in the normal state and respond within minutes
to injury (30–32). Tissue resident cardiac macrophages have
recently been discovered to have tissue-specific functions in both
health and disease that are not only essential for a coordinated
response to injury, but also vital for healthy, steady-state cardiac
physiology. Hulsmans et al. (20) demonstrated that resident
macrophages are denser in the atrioventricular node, where
they actively couple to cardiomyocytes to facilitate electrical
conduction through connexin-43-containing gap junctions.
Inducible transgenic ablation of these resident macrophages
resulted in atrioventricular block, demonstrating a previously
unknown, tissue specific function of macrophages. Intravascular
patrolling monocytes that are Cx3Cr1+ were observed in the
mouse heart during steady-state conditions (33), and are thought
to rapidly infiltrate during inflammatory conditions, as has been
described in other tissues (34, 35). Mast cells, dendritic cells, B
cells, and regulatory T cells are found sparsely in normal cardiac
tissue, while neutrophils and monocytes are not observed in
myocardial tissue unless within the coronary circulation or in
response to a stimulus (19, 27).

The heart is susceptible to a wide range of injuries, both acute
and chronic in their nature, that initiate leukocyte responses
that aim to repair. Acute myocardial infarction occurs due to
an occluded or ruptured coronary artery causing ischemia to a
region of the heart that would otherwise be perfused. This event
initiates a coordinated immune response that can be divided into
inflammatory and reparative phases which differ in leukocyte
composition and phenotype (18). The inflammatory phase occurs
shortly after ischemia and involves the degranulation of resident
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mast cells (21), the release of cytokines and chemokines including
interleukin (IL)-1, IL-6, tumor necrosis factor-alpha (TNF-α),
and CC-chemokine ligand 2 (CCL2) from resident macrophages
and cardiomyocytes (36–38), hematopoietic growth factors
from fibroblasts (39), and activation of endothelial cells to
upregulate adhesion molecules (40, 41). Together these factors
recruit neutrophils and monocytes from the circulation and
hematopoietic stem and progenitor cell populations from
the bone marrow (23, 42, 43). Within the infarcted heart,
neutrophils and monocytes remove dead and dying cells by
efferocytosis (44) and the release of proteolytic enzymes to
facilitate digestion of dead tissue (45, 46). These actions further
enhance inflammation by the production of cytokines including
TNF-α, IL-1, and IL-6 (36, 47–49). Neutrophil numbers
diminish ∼3–4 days post-infarction in the mouse, whereas
monocytes continue to accumulate in the infarct for several days
thereafter, where they differentiate into macrophages and express
Ly6CLow (50). The presence of neutrophils is essential for the
transition to the reparative phase since the release of neutrophil
gelatinase-associate lipocalin promotes a reparative macrophage
polarization (51). The reparative phase is further characterized
by a decreased production of inflammatory cytokines and
growth factors (52), accumulation of mast cells (53), and a
transition of cardiac macrophages to a reparative phenotype
that secrete transforming growth factor-beta (TGF-β) and
vascular endothelial growth factor (VEGF) to promote fibrosis
and angiogenesis (52, 54). Interestingly, some reports suggest
mast cells do not influence levels of inflammation following
infarction, however are more important for restoring cardiac
contractility by regulating calcium sensitization of cardiomyocyte
myofilaments (53).

Immune cell dynamics in chronic and adaptive pathologies of
the heart such as heart failure, are amenable to intravital imaging
approaches, since these changes can be far more subtle than the
rapid and intense reaction caused by acute cardiac pathologies
such as myocardial infarction. Heart failure is broadly defined
as a condition in which the heart muscle is unable to pump
enough blood to meet the body’s nutrition and oxygen demands.
If the heart muscle is too weak, the fraction of blood pumped
out from the left ventricle can drop below 30–35%, a condition
known as heart failure with reduced ejection fraction. On
the other hand, heart failure with preserved ejection fraction
(HFpEF) occurs when there is a deficiency in the relaxation
and filling capacity of the heart chambers (diastolic dysfunction)
while maintaining a normal ejection fraction (55, 56). HFpEF
is increasing in incidence with a mortality rate equal to other
cardiac pathologies (57–59) and an absence of any evidence-
based therapies. The etiology and risk factors are broad and
unclear, and there are limited experimental animal models that
recapitulate the pathology (60), making it difficult to study
leukocyte function. Tissue biopsies of human HFpEF patients
show that cardiac macrophages (61) and blood monocytes (62)
increase, and an animal model of diastolic dysfunction and aged
mice demonstrate this increase is due to monocyte recruitment
and increased hematopoiesis from bone marrow and spleen (61).
In an animal model of pressure overload induced by transaortic
constriction (TAC) that mimics aspects of HFpEF but eventually

develop a reduced ejection fraction, Nevers et al. demonstrated
T-cell recruitment, increased lymphocytes and macrophages in
the myocardium, and increased endothelial cell expression of
adhesion molecules VCAM1, ICAM1, and E-selectin (63). Wnt-
mediated neutrophil recruitment facilitates cardiac dysfunction
during heart failure, which has been demonstrated by improved
cardiac function following neutrophil depletion in the TAC
model (64). However, the behavior and localization of these
neutrophils within the microcirculation or myocardium that are
responsible for this damage are unknown. Furthermore, the TAC
model has been criticized as a surrogate model of HFpEF due to
the acute effects of aortic constriction. More recently, Hulsmans
et al. used a mouse model of diastolic dysfunction and aged mice
(18–30 months old) to demonstrate that increased myocardial
macrophages result from monocyte recruitment and increased
hematopoiesis (61). Understanding of the relationship between
the ejection fraction, the blood delivered to the rest of the body
and the local blood flow within the heart itself, is also limited in
heart failure models.

A major advantage of using intravital microscopy to study
cardiac disease, is the ability to visualize fast and dynamic
behaviors of leukocyte sub-types that can influence tissue
repair. Such interactions have been described in other tissues,
including neutrophil mediated dismantling of damaged vessels
and the creation of channels for regrowth in liver (65), and
patrolling monocyte mediated neutrophil activation (10) and
effector CD4+ T cell antigen recognition (9) in the inflamed
kidney. It is possible that similar actions occur within the heart,
yet this remains unknown. Specific cellular interactions that
could be investigated with cardiac intravital microscopy include
the neutrophil-induced promotion of reparative macrophage
polarization following infarction (51), and neutrophil-dependent
induction of hypertrophy (64).

INTRAVITAL IMAGING OF LEUKOCYTES IN
THE HEART: PREVIOUS APPROACHES

Approaches to imaging the rodent heart at cell resolution
need to consider three separate aspects—surgical access, image
acquisition, and pre- or post-processing of images. Previous
approaches to imaging leukocytes in the heart at cell resolution
used varied strategies to address these three aspects, and are
summarized in Tables 1, 2.

One of the first approaches to imaging leukocyte populations
in the mouse heart used heterotopic heart explantation with
the primary application to study leukocyte recruitment into the
inflamed heart (66). Heterotopic heart models are advantageous
for discriminating between infiltrating leukocyte and resident
cell dynamics, because the leukocyte populations of the
recipient animal were labeled through transgenic techniques,
whilst the donor heart remains unlabeled. Therefore, labeled
leukocyte populations following transplantation are indicative
of infiltrating cells and are not tissue resident cells. This
technique involves transplanting a donor heart into the right
cervical position of a recipient mouse, connecting the right
common carotid artery to the donor ascending aorta, and
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TABLE 1 | Surgical and stabilization approaches in the heart.

Surgical access Stabilization Advantages Limitations References

Heterotopic heart

explantation

• Right cervical or

abdominal transplantation

of donor heart with

circulatory integration

• Stabilization

chamber

• Investigating graft

and host cell

interactions

• Abnormal

hemodynamics, low

temporal resolution

(66–68)

Micro-endoscopy • 2–3mm intercostal

incision

• Suction probe • Reduced motion

artifact

• Repeat

longitudinal imaging

• Reduced lateral and

axial resolution due

to GRIN lens

(33)

Passive stabilization • Left thoracotomy • 3D-printed or

machined circular

probe with tissue

adhesive

• High spatial and

temporal resolution

• Wide fields of view

• Motion artifact limits

visualization of

single-cycle

dynamics

(69–76)*

*Matsuura et al. (69) achieved passive stabilization in a rat model by retracting the anterior thoracic wall and placing a suction-assisted stabilization chamber.

TABLE 2 | Imaging and reconstruction approaches in the intravital heart.

Image acquisition Advantages Limitations References

Image gating • Laser scanning microscopy

• 1–16 fps

• Z-stack

• External pacing of cardiac and

respiratory cycles

• Prospective or

retrospective gating

• High spatial and temporal

resolution

• Wide field of view

• External control of cardiac and

respiratory cycles may induce

abnormalities

• Restricted to stable portions of

cardiac cycle

(70, 71, 73, 77)

Free running • Laser scanning microscopy

• 15–30 fps

• Single z-plane

• Capture fast dynamic events • Motion artifact limits quantification

of beat-to-beat dynamics

• Restricted to single z-plane

(33, 69, 70, 72)

Cardiorespiratory

reconstruction

• Laser scanning microscopy

• 30 fps

• Z-stack

• Nearest neighbor

cardio-respiratory

phase-space reconstruction

• High spatial and temporal

resolution

• Wide field of view

• Image volumes visualized across

full cardiac and respiratory cycles

• No external pacing

• Inability to visualize

beat-to-beat dynamics

(74–76)

right external jugular vein to the donor pulmonary artery.
Optical access is gained by placing the mouse within a
stabilization chamber allowing a coverglass to be lowered onto
the heterotopic heart (Figure 1A). Image acquisition used video-
rate scanning with 15-frame averaging, and Z-stack imaging that
was partially synchronized with the heart rhythm. This method
produced images of neutrophils andmacrophages at baseline and
following ischemia-reperfusion induced either by transplantation
or coronary artery ligation. Imaging demonstrated recruitment
of neutrophils to the heart, their extravasation from coronary
veins, and their infiltration of the myocardium where they form
large clusters (Figure 3A). In combination with transgenic cell
ablation studies (diphtheria toxin receptor targeted expression),
this technique has been used to demonstrate that tissue-resident,
CCR2-expressing cardiac macrophages promote monocyte
recruitment after transplantation (67). The same authors also
present intravital imaging of neutrophils flowing, rolling, and
crawling within coronary vessels of the murine heart in its native
intrathoracic position during baseline and inflamed conditions.
Intra-abdominal heart transplantation using a similar technique

has also been used to image trafficking of donor dendritic
cells following transplantation, finding that they migrate out
of donor tissue and that this behavior is Cx3Cr1-dependent
(68). While the heterotopic heart presents a unique system to
study leukocyte dynamics in the context of transplant-induced
ischemia-reperfusion and acute and chronic rejection, it remains
restricted to these applications since the heterotopic heart does
not contribute to the hemodynamics of the recipient despite
perfusion of the donor coronary circulation and beating of
the heart. Understanding cardiac leukocyte dynamics during
healthy, steady-state conditions requires imaging of the heart
within the natural intrathoracic location. More recently, a similar
stabilization device enabled imaging the native heart within
the intrathoracic position of rats (69). This technique involves
removing the anterior chest wall and applying a circular stabilizer
affixed with a cover glass and suction ring to reduce motion.
Using a clever ischemia reperfusion model that was deployed
during intravital imaging, the authors showed the accumulation
of transplanted, GFP+, bone-marrow derived leukocytes that
occlude capillaries following reperfusion.
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FIGURE 1 | Surgical approaches for intravital microscopy of the beating mouse heart. (A) The cervical explanted heart model provides the benefits of studying cardiac

graft vs. host interaction [image adapted from Li et al. (66) with permission]. (B) Endoscopic, suction-stabilized imaging provides a less invasive approach and enables

time-lapse imaging that reduces motion and appears to leave major histocompatibility complex class-II (MHC-II) + immune cell numbers unchanged [image

reproduced from Jung et al. (33) with permission]. (C) Intrathoracic approaches enable a wider field of view of the freely beating heart in mechanically ventilated

animals. Optical access to the heart is gained by a left thoracotomy in the anesthetized mouse. (D) Passive tissue stabilization is achieved by a 3D printed stainless

steel probe (left) with a coverglass and reservoir for water immersion of the microscope objective. Tissue adhesive is applied to the underside of the stabilization probe

prior to attachment to the left ventricle. Photographs show the probe attached to the heart (top right) and a view of the heart surface with visible coronary vessels in

the window (bottom right). Image adapted from Jones et al. (78).

Less invasive approaches are achievable through the use of
suction-assisted, micro-endoscope, optical probes (33). A benefit
of this technique is the local stabilization of the myocardial
tissue that significantly reduces motion artifact and therefore
eliminates the need for retrospective image processing. This
technique utilizes a gradient refractive index (GRIN) lens within
suction tubing, an assembly that is sufficiently small (2–3mm) to
be inserted through an incision in the intercostal space, thereby
making repeat longitudinal imaging achievable (Figure 1B). To
counter the small field of view typically achievable with micro-
endoscopic lenses, the lens can be moved within the suction
tubing via a translation stage to image multiple regions. Using
repeated imaging over 6 days in Cx3Cr1+/GFP mice to track
monocytes and LysM+/GFP mice to track neutrophils, Jung et al.
provided evidence that following acute myocardial infarction,
recruited monocytes come first from the vascular reservoir and
then later from the spleen. Although this technique allows repeat
imaging which is advantageous for studies of long-term leukocyte
infiltration, the use of GRIN lenses results in a reduction in
image resolution and imaging depth due to low numerical
aperture (NA) and is not well-suited for studying leukocyte
dynamics that involve fine cellular features. Image resolution
and achievable depth rely on many factors including acquisition
speed and fluorescence excitation source (multiphoton or single
photon excitation), however the approximate lateral and axial
resolution of GRIN lenses are 1 and 12µm, respectively, with
≤0.6 NA objectives, compared to sub-micron resolution with

approximately 1.0 NA objectives (79–81). GRIN lens imaging
depth has been reported to be ∼95µm in brain tissue compared
to ∼1,000µm without (82–85), but was not specified in heart.
Typically, ∼100–200µm depth of imaging is achieved with a
traditional objective in the heart (78).

Passive tissue stabilization that sufficiently reduces cardiac
and respiration-induced motion in the axial direction can be
used in tracking leukocyte dynamics on short-time scales with
relatively wide fields of view. This has been demonstrated by Lee
et al. using rhodamine-6G to label leukocytes (70). Passive tissue
stabilization involves the application of a stabilizing ring that is
bonded to the surface of the heart (Figures 1C,D). Image capture
typically requires gating image acquisition by synchronizing
with the stable portion of the cardiac cycle (diastole) (71).
To eliminate motion from breathing, many studies transiently
pause ventilator-induced respiration (70). Externally pacing
the heart also simplifies timing image acquisition. If adequate
stabilization is achieved with tissue stabilization devices so that
axial motion of the cardiac contraction remains less than the
axial dimension of the structure of interest (cell or capillary),
then free-running images can be used to capture very short time-
scale dynamics that occur over one heart beat. In our experience,
cardiac contraction induced axial motion is often greater than
the structure of interest, and severe suppression of motion
might suggest inadequate ventricular function. Furthermore,
transiently stopping ventilation of the animal, and externally
pacing the heart can exert aberrant effects on the animal and heart
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function. Using similar passive motion stabilizers, prospective
and retrospective image gating methods have been incorporated
to image with high resolution (71) however, image gating fails
to capture the dynamics of the heart at its peak contraction
(systole). Recently, Kavanagh et al. have applied passive tissue
stabilization of the beating heart without gating strategies, using
fluorophore-conjugated antibodies to visualize neutrophils and
platelets following ischemia-reperfusion injury (72).

MOTION WITHIN MOTION—CAPTURING A
MOVING CELL WITHIN A MOVING ORGAN

Motion is a defining characteristic of leukocytes, blood
flow, and most importantly, the heart. The progress of
cardiac leukocyte biology requires techniques to quantitatively
assess leukocyte characteristics including polarized morphology,
spatially-dependent speeds, and transmigration ideally with
minimal artifacts and invasiveness.

Intravital microscopy of the beating mouse heart has
primarily relied on multiphoton microscopy, specifically 2-
photon excitation fluorescence (2PEF) microscopy, because it
provides fluorescence imaging with microscopic resolution at
depth in intact tissues (86). In contrast to confocal microscopy,
which utilizes continues-wave (non-pulsed) laser wavelengths at
which single photons can excite fluorescence, 2PEF microscopy
uses photons with approximately half the energy of the confocal
microscope lasers and approximately double the excitation
wavelength. Therefore, it requires the nearly simultaneous
(within ∼10−16 s) interaction of two photons with a fluorescent
molecule to excite fluorescence (87). The emitted fluorescence
signal then scales as the square of the excitation intensity, rather
than proportionally as with confocal or wide-field fluorescence
microscopy, resulting in a signal primarily emitted from the beam
focus where intensity is highest. An image is reconstructed by
scanning this focus in the sample, measuring the amount of
emitted fluorescence, and assigning that value to the image pixel
corresponding to the focus position. Scattering of the emitted
light does not blur the reconstructed image because all the light
is known to have originated from the focus point. To achieve
the higher intensities required for two-photon microscopy, the
excitation laser is pulsed, and because the gaps in time between
pulses are relatively long, the average power remains low. These
characteristics greatly increase the signal-to-noise ratio, restrict
excitation to a narrow focal volume, and minimize harmful
energy deposition in the tissue. Confocal microscopy can also
be used in vivo, but because it relies on rejection of scattered
and out-of-focus light, the signal decays rapidly with depth.
A further advantage of using longer wavelengths is reduced
light scattering which also increases imaging depth compared to
confocal microscopy.

An important consideration is that leukocyte behavior varies
with time, especially during inflammatory conditions. Therefore,
different imaging approaches are best at capturing the intravital
dynamics depending on whether the activity is faster or slower
than the speed of tissue motion. For example, leukocyte crawling,
extravasating, and migration through myocardial tissue typically
occurs at speeds of∼7–10 µm/min (66). Since this is slower than

tissue motion during systole, ∼9 mm/s (5.4 × 105 µm/min),
and the leukocytes remain in the field of view over multiple
heartbeats, imaging can be gated to limit acquisition during stable
portions of the cardiac cycle (Figure 2A). However, fast leukocyte
dynamics, such as intravascular flow, must account for three-
dimensional movement of the tissue throughout the cardiac cycle
which requires additional approaches.

It is possible to achieve capture of cell dynamics throughout
the whole cardiac cycle without the need for external pacing,
gating strategies, or breath holds, by using passive tissue
stabilization, mechanical ventilation, and fast resonant
scanning acquisition coupled with cardiorespiratory-cycle
dependent image reconstruction algorithms (78). Figures 2B–F
demonstrates reconstruction methods to achieve high quality
volumetric images of cardiac dynamics at the microscale.
Bidirectional raster scanning at a single depth relative to the
microscope (Z-position) is achieved by scanning the beam
focus using slow galvanometric scanning for the Y-axis, and fast
resonant scanning for the X-axis, which enables the acquisition
of frames at ∼30 frames/s. X, Y, Z position refers to the
microscope stage position and not to the orientation of the
cardiac tissue since the heart is actively beating and therefore
moving through the imaged region. The two primary sources of
motion within acquired imaging frames are the cardiac muscle
contraction and respiratory motion of the lungs pushing on
the heart. Therefore, the electrocardiogram (ECG) and lung
pressure are simultaneously recorded and used to index image
frames according to where they occurred in the cardiac and
respiratory cycles. Raster scanning of the beam focus generates
a line of pixels at a specific Y-axis galvanometer position and
Z-axis stage height (a single Y, Z position) at a known time
relative to the cardiac and respiratory cycles. By selecting line
segments that occur at a particular portion of the cardiac and
respiratory cycles, image volumes can be reconstructed at any
desired point during the cardiac cycle by using, for each Y,
Z position in the reconstructed volume, the line scan which
occurred at the requested cardiac phase. A limiting factor of
this method is not all points within cardio-respiratory phase
space will be sampled, which can result in missing segments
within reconstructed image volumes. By using lines that are
nearest to the desired point in cardio-respiratory phase space,
complete volumetric reconstruction can be achieved. We find
that ∼3 s of image acquisition per imaging plane is sufficient
to enable detailed volumetric reconstructions across the
cardiac cycle.

Reconstruction methods are advantageous for tracking
leukocyte dynamics that occur over slower, minute time scales,
including neutrophil infiltration of explanted heart tissue
[Figure 3A; (66)] and high resolution images of Cx3Cr1+
resident macrophage morphological changes in response to laser
induced focal injury or following infarction (Figures 3B,C).
Faster leukocyte activities including rolling and migratory
behaviors can also be captured with free-running image
acquisition without cardio-respiratory phase dependent
reconstruction (Figure 3D). However, axial displacement due
to cardiac and respiratory induced motion causes the transient
disappearance of selected cells, therefore restricting the ability to
capture sequential heartbeat (beat-to-beat) dynamics.
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FIGURE 2 | Image acquisition and reconstruction techniques for the beating mouse heart in vivo. (A) Heart structure is relatively stable during diastole allowing

acquisition of full image frames with no motion artifact [image adapted from Lee et al. (70) with permission]. (B–F) Line-by-line reconstruction enables volumetric

reconstructions at any point within the cardiac or respiratory cycles. (B) Simultaneous recording of the electrocardiogram (ECG) and lung pressure during imaging

produces image frames at a single Z-plane that are captured at various points in the cardiac and respiratory cycles. The R-wave peak of the ECG (red arrows) and

inspiratory peak of the lung pressure (blue arrows) are defined as the start and end of the cardiac cycle and respiratory cycle, respectively. (C) Each 512 × 512 pixel

image frame is produced by raster scanning the excitation laser in the X-direction, therefore each line has a defined position in Y, a depth in Z, and a time it was

captured with respect to the cardiac cycle (cardiac time) and respiratory cycle (respiratory time). (D) Each Y, Z line in the image is associated with a phase in the

cardiac and respiratory cycles (yellow spots). An image volume is reconstructed using image lines for each Y, Z position that occur at a specified part of respiratory

and cardiac cycles (green shaded box). (E) The closest Y, Z position (green circle) to a requested point in cardio-respiratory phase space that is absent (red cross) can

be used to completely fill a three-dimensional volume. (F) Reconstructed vasculature of the beating mouse heart during diastole. Vasculature is fluorescently labeled

with a Texas Red dye conjugated to a 70 kDa dextran. Scale bar in A represents 20µm.

THE FUTURE OF INTRAVITAL
MICROSCOPY FOR CARDIAC
LEUKOCYTE DYNAMICS

Active Motion Compensation
Passive stabilization in combination with different acquisition
and reconstruction methods, often with gating (either during
imaging or at reconstruction), enables structural imaging
and some measurements (70, 71, 78, 88). However, since
all reconstruction methods rely on assembling image data
from multiple cardiac and/or respiratory cycles, reconstructed
images cannot be used to measure or visualize any process
that occurs faster than the number of cycles required to
generate the reconstruction, such as non-adherent leukocyte and
red blood cell motion within vessels. Dynamics that change
from heartbeat to heartbeat such as arrhythmic, electrical
conduction irregularities in individual cells, also cannot be
visualized with current reconstructions. One solution that does
not involve altering the natural physiology beyond surgical
access and application of an imaging window is active motion
compensation, which involves moving the focal plane in
synchrony with the heart motion.

The key challenge in active motion compensation is
generating a feedback signal that indicates the motion of the

tissue. With an appropriate feedback signal, the motion of the
tissue can be matched by moving either the focal plane of the
microscope, such as the microscope objective using actuators
for fast motion, or moving the mouse using the microscope
stage for slower motion. The feasibility of these methods was
shown in early approaches using stroboscopic illumination
of epicardial microvessels in combination to image, and a
computer-controlled electromechanical micromanipulator that
moved a micropipette in synchrony with the heart to capture
phasic changes in microvascular pressure in the left ventricle of
cats (89). To generate a feedback signal, image-based motion
compensation methods use the alignment of successive images.
In cardiac imaging, a separate camera capable of faster frame
rates must be used to image a fiducial such as a fluorescent bead
implanted within an imageable volume. However, this method
has only been successful in correcting for in-plane motion (90)
while axial movements (toward and away from the microscope
objective) pose a particular challenge in cardiac imaging because
such movements cause biological structures to come into and
out of focus. Contact-based motion compensation methods have
been proposed which use cantilever probes or strain gauges
to detect three dimensional motion however, there have been
no reports of successful in vivo imaging using laser scanning
microscopy through a single cardiac cycle using this method (77).
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FIGURE 3 | Leukocyte dynamics in the mouse heart using intravital multiphoton microscopy. (A) Intravital multiphoton imaging of explanted heart tissue after

heterotopic cardiac transplantation into LysM+/GFP mice shows neutrophil (green) infiltration from the host through vasculature labeled with non-targeted 655 nm

Q-dots in red [image adapted from Li et al. (66) with permission]. Time stamp is h:min:s and scale bar is 60µm (top) and 20µm (bottom). (B) Intravital multiphoton

microscopy with cardiorespiratory-dependent image reconstruction of Cx3Cr1+/GFP mice hearts enables visualization of acute morphological changes of resident

cardiac macrophages (green) in response to focal, laser-irradiation injury (yellow cross-hairs) over 1 h. Images are perspective Z-projections over 50µm in depth and

insets are single Z-slice of the region outlined in yellow, from 80% of the cardiac cycle and 50% of the respiratory cycle. (C) Intravital imaging shows increased number

of macrophages in the heart following myocardial infarction compared to baseline. Vasculature is fluorescently labeled with Texas Red dextran (B–D, magenta).

(D) Free-running intravital multiphoton microscopy captures intravascular rolling (red arrow) and crawling (yellow arrow) behavior of leukocytes labeled with

rhodamine-6G (cyan) within vessels (magenta, Texas Red dextran). (B–D) Scale bars represent 50µm, except insets in (B) that are 20µm. Images captured with an

Olympus XLPlan N 25 × 1.05 NA objective. All animal procedures were approved by the Institutional Animal Care and Use Committee of Cornell University.
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Early studies using stroboscopic illumination have measured
diameter changes over 100 heat beats in small coronary vessels of
the rabbit heart (91). A third motion compensation strategy takes
advantage of angular changes in the reflection of a positioning
laser off the surface of the tissue to measure (92) and correct
for axial motion in applications such as imaging in rodent spinal
cord (93). Reflective positioning offers advantages over contact-
based and image-based methods as it is simple, sensitive, and
does not rely on additional physical probing of the animal.
The application of reflective motion compensation to cardiac
imaging is a promising direction that could enable single-cycle
measurements of cell trafficking and electrical activity.

Deeper Imaging
The current maximum 2PEF imaging depth within the mouse
heart is ∼200µm, limiting visualization to functions within
the epicardial layer. Although this provides a good first
step to studying immune cell dynamics in the heart, there
are both structural and functional differences within deeper
layers of the heart. Structurally, specialized conduction fibers,
known as Purkinje fibers, are located in the subendocardial
space, and larger coronary arteries lie deeper within the
mouse myocardium. Given the recent discovery that resident
macrophages facilitate electrical conduction in the heart (20),
and that atherosclerosis occurs within larger coronary arteries,
deeper imaging within 300µm from the epicardial surface would
enable the study of leukocyte function and behavior within
these contexts.

Recent advancements in mid-infrared laser sources now
make deeper imaging feasible using three-photon microscopy
(94). By utilizing three excitation photons to excite a single
emission photon, excitation sources with longer wavelengths can
be used, and these longer wavelengths penetrate deeper into
tissue and scatter much less than 2PEF wavelengths. However,
the probability of three-photon interaction is low, so achieving
a usable amount of fluorescence requires a higher excitation
photon density or peak power. New short-pulse laser sources
can now reach such peak powers at sufficient repetition rates for
imaging, and provide longer wavelengths, which enable greater
imaging depth (84, 94). Laser sources based on photonic crystal
fibers emitting around 1,700 nm have been developed specifically
for deep imaging applications (95), as well as commercially
available excitation sources with turn-key optical parametric
amplifiers that can be tuned from 1 to 2µm. While able
to provide more than adequate power and pulse repetition
rates for three-photon imaging of slow dynamics, excitation
sources in these higher wavelength ranges typically operate
at a lower repetition rate (frequency of photon pulse) which
presents a challenge for cardiac imaging which relies on very
fast raster scanning. A resonant scanner sweeps across the
focal plane so quickly that some pixels will fall between two
laser pulses resulting in no signal. Current laser sources are
not far off, as only 12–15 MHz is needed to guarantee at
least a single pulse to acquire a 512 × 512 image at 30 fps.
Continued advancements in laser technology to produce high
repetition rate sources in the mid-infrared range would alleviate
this problem.

Deeper imaging is also impaired by sample-dependent optical
aberrations. The use of an adaptive optical element such a
deformable mirror can greatly improve multiphoton microscope
performance (96–98). By pre-compensating for system and
sample aberrations in the excitation beam wavefront, an
improved focus is achieved resulting in higher intensities and
better spatial confinement. This allows for deeper penetration
with greater image contrast and resolution.

Chronic Implantable Window
Other organ systems have benefitted from chronic implantable
windows to enable time-lapse imaging, making it possible to
follow the same regions at the micro-scale during disease
progression. This includes the cranial window (5, 6, 99, 100),
dorsal skinfold chamber (101, 102), abdominal window for
intestine, liver and spleen (103–105), a modified abdominal
window for kidney (106, 107), and a fixation plate with micro-
endoscope for femur bone marrow (108). Chronic imaging of
the mouse heart would allow unprecedented visualization of
pathophysiological processes in diseases of the heart, including
the ability to monitor angiogenesis and fibrosis post-infarction
within the full inflammatory milieu of leukocyte populations.
Currently, time-lapse imaging over multiple imaging sessions
for the mouse heart involves repeated surgeries for opening and
closing an incision. Recently, chronic intravital imaging of the
lung was achieved through a permanent window attached to a
superficial portion of lung (109). This demonstrates the ability to
chronically access the thoracic cavity and suggests accessing the
anatomically deeper heart is feasible.

CONCLUSIONS

With continued advancements in technology to access and
image the murine heart, we are sure to make strides toward
increasing our understanding of leukocyte dynamics during
diseases of the heart. Targeting the immune system with
therapies has proven to be successful in other diseases, especially
immunotherapies for cancer (110). However, applying similar
types of therapies to the varied diseases of the heart first
requires an understanding of leukocyte behavior within the true
in vivo environment which can be improved with intravital,
multiphoton microscopy.
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