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T cell cancer neoantigens are created from peptides derived from cancer-specific

aberrant proteins, such as mutated and fusion proteins, presented in complex

with human leukocyte antigens on the cancer cell surface. Because expression of

the aberrant target protein is exclusive to malignant cells, immunotherapy directed

against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of

neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of

neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid

therapeutic targets. Improvements in sequencing technology and innovations in antigen

discovery approaches have facilitated the identification of neoantigens. In comparison

to many solid tumors, hematologic malignancies have few mutations and thus fewer

potential neoantigens. Despite this, neoantigens have been identified in a wide variety

of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA

in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute

lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations

in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived

from patient-specific mutations in chronic lymphoid leukemias. We will review advances

in the field of neoantigen discovery, describe the spectrum of identified neoantigens

in hematologic malignancies, and discuss the potential of these neoantigens for

clinical translation.

Keywords: neoantigen, hematologic malignancies, human leukocyte antigen, T cell receptor, immunotherapy,

mutations, fusion proteins

INTRODUCTION

Neoantigens are composed of peptides derived from full-length aberrant cancer-specific proteins
through amulti-step intracellular process that has been extensively reviewed (1–3) and presented in
complex with human leukocyte antigen (HLA)molecules. This peptide-HLA complex is recognized
by T cell receptors (TCRs). Non-viral neoantigens can be potentially be generated from any protein-
coding mutations, fusion proteins, and cancer-specific splice isoforms (Figure 1), although not
every aberrant protein will yield neoantigens. In the treatment of solid tumors, clinical successes
have been seen with adoptive transfer of neoantigen-specific tumor-infiltrating lymphocytes (TIL)
(4–7) and neoantigen vaccines (8–10), highlighting the importance of this class of antigens in
effective anti-tumor immunity. T cell responses against neoantigens also appear to contribute to
the efficacy of immune checkpoint blockade therapy (11, 12) and allogeneic hematopoietic cell
transplantation (HCT) (13). Therapies targeting a neoantigen derived from an oncogenic driver
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FIGURE 1 | Schematic representation of different classes of non-viral neoantigens. From left to right: Protein-coding single nucleotide variants (SNV) lead to

neoantigens that differ from the wild-type antigen by a single amino acid that alters HLA and/or TCR binding. Frameshift insertion-deletion (indels) mutations result in a

novel amino acid sequence downstream of the indel. Cancer-specific splice isoforms can lead to frameshifts, if the splice is out of frame, or, like genomic fusions,

juxtapose two usually separate amino acid sequences, or produce entirely novel amino acid sequence from introns or other portions of the genome that are not

normally translated.

in the founding clone could be curative, and tumor escape
through loss of the target protein is unlikely when the neoantigen
is from a protein critical for maintaining the malignant
phenotype. As neoantigens are presented solely on malignant
cells and not on healthy equivalents, the risk of “on-target,
off-tumor” toxicity is minimized.

There are three major limitations to therapeutically
targeting neoantigens in hematologic malignancies. First,
most hematologic malignancies have relatively few protein-
coding mutations and/or gene fusions, and thus fewer potential
neoantigens than solid tumors, which may carry hundreds or
even thousands of mutations in an individual patient (14).
Second, therapies directed against any one neoantigen will apply
only to the subset of patients who have both the mutation or
fusion and restricting HLA allele, making neoantigens a less
broadly applicable target than antigens from overexpressed

wild-type proteins. However, in contrast to most solid tumors,
many hematologic malignancies have recurrent mutations

and/or fusions that are common within subgroups of patients
and represent shared neoantigens. Finally, though targeting

driver-derived neoantigens may prevent escape through loss of
the target protein, other mechanism of escape from neoantigen-

directed immunotherapy are possible, including downregulation
or loss of HLA expression (15–24) or altered proteasomal
processing of the epitope (25) by the malignant cell. However,
the potential limitations of neoantigens as therapeutic targets
are outweighed by their benefits: the high specificity for tumor
and absent expression on normal cells; the ability to target
intracellular as well as cell surface proteins; and, in some cases,
the indispensable role of the aberrant protein in the malignant
phenotype (26). Targeting a single high-quality neoantigen can
be sufficient for disease control or even cure (4, 6, 7).
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NEOANTIGEN DISCOVERY

Innovations in high-throughput genomic and transcriptomic
sequencing techniques have greatly facilitated the identification
of protein-coding mutations and fusions that produce potential
neoantigens. However, there is still no reliable comprehensive
in silico method for identifying immunogenic neoantigen
epitopes from protein-coding mutations, splice variants, or
other amino acid sequence-altering abnormalities. One challenge
is determining which peptides will be presented on HLA
molecules (27). In silico HLA-binding prediction algorithms
[including but not limited to (28–36)] can predict binding
of peptides to HLA molecules with reasonable accuracy and
thereby identify candidate neoantigen epitopes. HLA-binding
prediction algorithms are quite robust for prevalent HLA class
I molecules, and active research by multiple groups has led
to a greater understanding of and an improved ability to
reliably predict peptide binding to uncommon class I molecules
and most class II molecules (37–44). However, HLA-binding
predictions do not specify whether the peptides are processed and
presented on cell surfaces, although separate predictive tools for
antigen processing have been developed (45–53). HLA-binding
prediction from the parent amino acid sequence will additionally
miss non-canonical epitopes (54), such as post-translationally
modified or spliced peptides (55), and will also miss epitopes that
are not predicted to bindHLA but actually do (56). An alternative
approach is to directly determine the peptidome of malignant
cells by immunoprecipitating HLA complexes and then to elute
and identify peptides by tandem liquid chromatography–mass
spectrometry (57–59). This unbiased approach can identify
peptides as they are naturally presented on cells of interest but
has significant technical hurdles (60–63). Modifications, such as
the use of monoallelic cells (43, 60) should help to overcome
some of these technical issues. Since predictive algorithms rely
on datasets of peptides that are naturally processed and HLA-
binding, improvements to direct identification of HLA ligands
will in turn increase the reliability of predictive tools (64).

Determining which epitopes are immunogenic is also a
challenge. Presentation of a peptide epitope on an HLAmolecule
is necessary but not sufficient for T cell recognition. Currently
there are no reliable in silico tools to assess the immunogenicity
of a neoantigen peptide, although this is an active area of research
(65–70). There are three starting pools of cells in which one can
assess the immunogenicity of a putative neoantigen: patient TIL
or marrow-infiltrating lymphocytes (MIL), patient peripheral
blood T cells, and healthy donor peripheral blood T cells after
primary in vitro stimulation. The T cell repertoire of patients
may be enriched for neoantigen-specific T cells (71, 72) due
to antigen-induced expansion, but immunosuppressive tumor
environments can render such T cells dysfunctional (73) or even
absent (74). Finally, while neoantigen-specific T cells may exist
in the repertoires of patients, unbiased methods to determine
the cognate antigens of TCRs from their sequence are still in
their infancy (23, 75). Stimulating healthy donor T cells with
neoantigen-bearing antigen-presenting cells in vitro can be used
to isolate reactive T cells without confounding T cell dysfunction
(76, 77).

SHARED VS. PERSONAL NEOANTIGENS

Shared or public neoantigens derive from aberrant proteins that
are present in all or a sizeable subset of patients with a given
disease. In contrast, private or personal neoantigens are those that
result from mutations, fusions, or other abnormal amino acid
sequences that occur rarely in a disease or are idiosyncratic to
an individual’s malignancy.

Whole genome and whole exome sequencing of hematologic
malignancies (78–85) has revealed the spectrum of fusions
and mutations (also referred to as the mutanome) of these
diseases, including events that range from rare to highly
recurrent. Many of these genetic abnormalities may give rise
to neoantigens. Mutanomes provide a rich source of cancer-
specific aberrant amino acid sequences that can be interrogated
with HLA-binding prediction algorithms to identify candidate
neoantigens (70). However, with the exception of one study in the
myeloproliferative neoplasms (MPNs) (85), the mutanomes of
hematologic malignancies have not yet been thoroughly explored
as sources of neoantigens. Another source of both public and
personal candidate neoantigens is the HLA peptidome, which
is the comprehensive library of peptides eluted from HLA
molecules isolated from malignant primary cells and/or cell lines
and characterized by mass spectrometry. HLA peptidomes have
been defined in acute myeloid leukemia (AML) (57), chronic
lymphocytic leukemia (CLL) (59, 86), multiple myeloma (87),
and chronic myeloid leukemia (CML) (58). However, mutation-
derived candidate neoantigen epitopes have only been identified
in more focused HLA peptidome studies [for example, in a subset
of AML (74, 88)], reflecting both the heterogeneity of these
diseases and the currently limited sensitivity of this approach.

Personal neoantigens can arise from truly patient-specific
gene mutations and fusions. In addition, some recurrently
affected single genes and gene fusions are highly heterogenous
across individuals and would be expected to yield semi-
personal rather than shared neoantigens. For example, fusions
involving the mixed lineage leukemia (MLL)/ histone-lysine N-
methyltransferase 2A (KMT2A) gene in acute lymphoblastic
leukemia (ALL) and AML produce diverse amino acid sequences
among patients because the fusions may occur at multiple
breakpoints in theMLL/KMT2A genes and with multiple (>100)
partner genes (89, 90). Recurrently mutated gene in hematologic
malignancies that are likely to produce semi-personal rather than
shared neoantigens include Wilms tumor 1 (WT1) in AML (91–
94) and T cell ALL (95), Notch1 and FBXW7 in T cell ALL
(96–98), and TP53 in multiple malignancies (99–101). In these
examples, mutations occur at a variety of sites in the gene and
involve multiple different nucleotide substitutions, insertions,
and/or deletions, such that few, if any, of the resulting amino acid
sequences and resulting potential neoantigens would be shared
among patients even with the same disease.

At the other end of the spectrum are highly recurrent fusions
and mutations, exemplified by the RUNX1-RUNX1T1 fusion
(89) and exon 12 mutations in nucleophosmin1 (NPM1) (102,
103) in AML. Virtually all patients with such fusions ormutations
will have identical aberrant amino acid sequences. Neoantigens
created from these abnormalities are shared among patients who
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have the mutations or fusions and are potential therapeutic
targets for these individuals as a group.

Whether optimal therapies should target shared neoantigens,
personal neoantigens, or both is currently unknown. Some
key features of neoantigen quality have been postulated
[reviewed in (104)], including: clonality, dissimilarity to self-
antigens, similarity to microbial antigens (105), high protein
expression, binding to HLA, and low likelihood that genetic
abnormality yielding the neoantigen will be lost (for example,
driver mutations or genes involved in cell survival where loss
would harm cancer fitness) through deletion or transcriptional
repression. Neoantigens with high-quality features are likely to
be suitable therapeutic targets whether they are personal or
shared. One note of caution with personal neoantigens is that
unless autologous tumor is available, there may be no way to
validate that a given putative neoantigen is in fact presented
on primary tumor, and thus no way to confidently predict
therapeutic efficacy.

The feasibility of targeting personal neoantigens is currently
under investigation. As the accessibility of whole genome and
whole exome sequencing increases, defining an individual
patient’s mutanome is becoming increasingly practical, although
the ability to reliably predict personal neoantigens remains
imperfect (27). Personalized neoantigen vaccines based on
patient mutanomes have shown efficacy in solid tumors (8–10),
and as of December 2019, 14 clinical trials of personalized
neoantigen vaccines were recruiting in the United States,
although only one of these studies includes patients with a
hematologic malignancy (NCT03631043, multiple myeloma).
In addition, increasingly sophisticated T cell engineering
technologies have made the production of personalized
neoantigen-specific engineered T cell therapies more practical;
currently three trials of such therapies for patients with advanced
solid tumors (NCT03412877, NCT04102436, NCT03970382)
are enrolling.

Although both personal and shared neoantigens have
therapeutic promise, in this review we will focus primarily on
shared neoantigens (summarized in Table 1), which make up the
bulk of the data to date.

NEOANTIGENS IN SPECIFIC
HEMATOLOGIC MALIGNANCIES

Acute Myeloid Leukemia
AML is the most common acute leukemia in adults, and
mutations in nucleophosmin1 (NPM1) occur in 30–35% of
adult patients (102, 103). The majority of NPM1 mutations are
insertions of four nucleotides in exon 12, resulting in a frameshift
that produces a novel C-terminal 11 amino acid sequence
(123). NPM1 mutations are stable across the disease course and
considered to be driver events, thus an optimal immunotherapy
target. Eighty-five percent of patients with NPM1-mutated
(NPM1mut) AML share the type A/D mutations that produce
an identical abnormal amino acid sequence. Epitopes from the
mutated region were independently identified as HLA ligands
by two groups that used mass spectrometry to determine the

amino acid sequences of peptides eluted off HLAmolecules from
primary leukemic blasts (74, 88) or AML cell lines (88).

Van der Lee et al. subsequently identified CD8+ T cell clones
from healthy donors that were specific for the NPM1mut HLA-
A∗02:01-restricted epitopes CLAVEEVSL and C∗LAVEEVSL
(74). These clones specifically recognized HLA-A∗02:01+

peptide-pulsed targets and NPM1mut AML blasts. One
C∗LAVEEVSL-specific TCR was sequenced and transferred
into CD8+ T cells using a viral vector. T cells with transferred
NPM1mut TCRs could lyse NPM1mut but not NPM1 wild-type
AML in vitro and partially controlled leukemia in vivo in an
NPM1mut OCI-AML3 cell-line-derived xenograft murine model.
These results convincingly demonstrate that CLAVEEVSL and
C∗LAVEEVSL are naturally presented on HLA-A∗02:01 on
leukemic blasts, are immunogenic, and are thus bona fide AML
neoantigens. Curiously, although the peptide was immunogenic,
the authors were unable to identify naturally occurring epitope-
specific T cell responses in HLA-A∗02:01+ patients with
NPM1mut AML. While a subsequent publication (123) suggested
that NPM1mut -specific responses could be elicited ex vivo in
patients, these studies were less stringently controlled.

Earlier studies identified candidate NPM1mut-derived
epitopes predicted to bind HLA-A∗02:01 (106–108), against
which the authors elicited CD8+ T cells responses in patients
and healthy donors after ex vivo stimulation. CD8+ T cells
specific for two epitopes (AIQDLCLAV and AIQDLCVAV)
identified in these publications lysed an NPM1mut AML sample
(106), suggesting that these epitopes were naturally processed
and presented. However, these peptides were not identified
among HLA-A∗02:01 ligands in either of two subsequent
studies that directly examined peptide epitopes eluted from
HLA-A∗02:01 on NPM1mut primary blasts (74, 88) or cell lines
(88), and identification of AIQDLCL/VAV-specific CD8+ T cells
has not been reproduced by other groups.

In around 13% of AML cases (124, 125), a fusion of the
retinoic acid receptor (RARA) gene on chromosome 17 and
the promyelocytic leukemia (PML) gene on chromosome 15
occurs as a result of the chromosomal translocation, t(15;
17)(q24.1;q21.1), the classic translocation that produces the
distinct entity of acute promyelocytic leukemia (APL). The
resulting PML-RARA fusion protein not only serves as a driver
of the leukemic phenotype but also represents a potential
shared neoantigen at the fusion junction. Gambacorti-Passerini
et al. investigated the immunogenicity of the PML-RARA
fusion region by stimulating peripheral blood mononuclear cells
(PBMC) from healthy volunteer donors with a 25mer peptide
spanning the fusion (110, 126). CD4+ T cell clones from one
donor proliferated specifically in response to exogenous PML-
RARA peptide presented on HLA-DR∗11 in autologous target
cells. One T cell clone could lyse peptide-pulsed autologous target
cells and recognize autologous target cells transduced to express
the PML-RARA fusion protein. However, in a subsequent study,
no PML-RARA-specific CD4+ T cell responses could be elicited
from any of four HLA-DR∗11+ individuals in remission after
treatment for APL (111). Since neither study evaluated whether
PML-RARA-specific T cells could recognize primary APL cells,
the PML-RARA/HLA-DR∗11 epitope would still currently be
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TABLE 1 | Shared or potentially shared neoantigens relevant in hematologic malignancies (fs, frameshift).

Disease Parent protein Epitope HLA restriction Level of evidence

for neoantigen

status

Reference(s)

AML NPM1 fs (type

A/D)

C*LAVEESL A*02:01 Definite (74, 88)

CLAVEEVSL

AIQDLCLAV Possible (106–109)

NPM1 fs (type C) AIQDLCVAV Possible

PML-RARA NSNHVASGAGEAAIETQSSSSEEIV DR*11 Possible (110, 111)

ALL ETV6-RUNX1 RIAECILGM A*02:01 Conflicting (112–114)

MPN CALR fs KMRMRRMRR A*03:01 Possible (85, 109, 115)

RMRRTRRKM B*07:02 Possible

Multiple B*08:01 Candidate (85)

RMMRTKMRM C*03:03 Possible (109)

JAK2 V617F VLNYGVCFC A*02:01 Possible (116)

MPL Multiple A*03:01 Candidate (85, 116)

CML BCR-ABL1 KQSSKALQR A*03:01 Possible (117)

BCR-ABL1

E255K

KVYEGVWKK A*03:01 Possible (118)

B cell lymphomas D393-CD20 (P)LFRRMSSLEVIA DRB1*04 Possible (119)

Multiple tumors KRAS G12D GADGVGKSA(L) C*08:02 Definite (6)

VVVGADGVGK A*11:01 Possible (120)

KRAS G12V (V)VVGAVGVGK Possible

BRAF V600E GDFGLATEKSRWSGS DQA1*03/

DQB1*03

Possible (71)

TP53 R175H HMTEVVRHC A*02:01 Possible (121, 122)

YKQSQHMTEVVRHCPHHERCSDSDG Class II Possible (121)

TP53 R248Q YMCNSSCMGGMNQRPILTIITLEDS Class I & II Possible

TP53 R248W SSCMGGMNWR A*68:01 Possible

SSCMGGMNWRPILTII DPB1*02:01 Possible

TP53 R282W FEVRVCACPGRDWRTEEENLRKKGE Classs II Possible

For levels of evidence:

“Definite” indicates that the epitope is immunogenic and that epitope-specific T cells clearly and consistently recognize primary malignant cells in a mutation/fusion- and

HLA-specific manner.

“Possible” indicates epitopes that have demonstrated immunogenicity but either lack direct evidence of specific recognition of primary malignant cells (i.e., cell lines only) or data

is inconsistent.

“Candidate” indicates that the peptide epitope has been demonstrated to bind the restricting HLA in vitro.

“Controversial” indicates conflicting data between groups.

considered a possible, rather than definite, AML neoantigen
pending confirmation that the epitope is naturally presented on
APL cells.

Acute Lymphoblastic Leukemia
ALL is the most common childhood cancer. Like other
hematologic and pediatric malignancies, there are few non-
synonymous mutations (14, 127) and thus few potential
neoantigens. However, in recent studies, Zamora et al. found
surprisingly abundant neoantigen-specific CD8+ T cell responses
in MIL from pediatric patients with ALL (112). To identify
putative patient-specific neoantigens, cancer-specific mutations
were identified from genomic sequencing of diagnostic biopsies
and matched germline tissues from six patients. HLA typing was
extrapolated from samplemRNA sequencing data, and the amino
acid sequences of protein-coding mutations were interrogated

using HLA-binding prediction algorithms. Mutation- or fusion-
derived 15mer synthetic peptides were used to evaluate patient
T cell specificity ex vivo. Functional CD8+ T cell responses
against at least one neoantigen were detected in all patients and
encompassed 31 of 36 putative neoantigens mostly originating
from patient-specific single gene mutations.

The Zamora study also identified T cells responsive to
several epitopes from the recurrent ETV6-RUNX1 fusion in
five patients. The ETV6-RUNX1 fusion results from the t(12;
21)(p13.2;q22.1) chromosomal translocation and is the most
common genetic event in childhood B-lineage ALL, occurring in
15–20% of patients (128–131). ETV6-RUNX1 epitopes eliciting
T cell responses in this study were predicted to bind to HLA-
A∗02:01, HLA-A∗11:01, and HLA-B∗15:01, and ETV6-RUNX1-
specific T cells were identified by positive staining with HLA-
A∗02:01 or HLA-A∗11:01 peptide/HLA tetramers. In earlier
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studies, the same HLA-A∗02:01 epitope (RIAECILGM) was
identified as binding stably to HLA-A2 in in vitro competitive-
binding assays by a group that also isolated CD8+ T cell lines
specific for the epitope (113). The two RIAECILGM-specific lines
that were isolated from healthy donors lysed fusion-expressing
cell lines, and one T cell line from a patient with ETV6-RUNX1+

ALL lysed autologous leukemic blasts at low levels. However, a
subsequent study disputed whether the ETV6-RUNX1 epitope
is in fact naturally processed and presented, as it showed that
the native RIAECILGM peptide had virtually no binding to
HLA-A∗02:01 in vitro, was not processed by cells transduced to
express the ETV6-RUNX1 epitope, and was not cleaved at the
relevant position by human proteasomes in vitro (114). Given
the conflicting data, it remains unclear whether the RIAECILGM
epitope is truly an ALL neoantigen.

Myeloproliferative Neoplasms
Philadelphia (Ph) chromosome-negative myeloproliferative
neoplasms (MPNs) comprise a group of disorders, including
essential thrombocytosis (ET), polycythemia vera (PV), and
primary myelofibrosis (PMF). MPNs arise from an abnormal
hematopoietic progenitor cell, in most cases consequent to
the acquisition of one of three driver mutations in JAK2
(Janus kinase 2), CALR (calreticulin), or MPL (c-mpl proto-
oncogene; thrombopoietin receptor), along with a variety of
passenger mutations (132) that can all produce neoantigens.
Recently, Schischlik et al. comprehensively evaluated potential
neoantigens in 113 patients with MPNs (85). Using whole-
transcriptome sequencing to define the MPN mutanome, they
identified 13 fusions, 221 non-synonymous single nucleotide
variants, 31 insertion or deletion mutations, and 20 frameshift-
producing splicing abnormalities. HLA-binding predictions
for the 12 most prevalent HLA-A, -B, and -C alleles in their
patient cohort yielded 541 patient-specific peptides predicted
to bind to at least one of the HLA alleles. Subsequent in
vitro HLA binding studies of 35 peptides derived from
aberrantly spliced proteins associated with SF3B1 mutations
and from mutated CALR (CALRmut) and MPL validated
binding of 23 peptides to HLA-A∗03:01, -A∗11:01, -B∗07:02,
and -B∗08:01.

Although Schischlik et al. did not evaluate processing or
immunogenicity of their putative neoantigens, others have
identified T cell responses to CALRmut and JAK2 V617F. Cimen
Bozkus et al. used in vitro stimulation to elicit T cell responses
to CALRmut peptides that were primarily CD4+ T cells in
patients with MPNs and both CD4+ and CD8+ in healthy
donors. Inhibition of the PD-1 and CTLA-4 immune checkpoint
molecules in vitro, and PD-1 in vivo (in a patient treated with
pembrolizumab), enhanced T cell responses. An immunogenic
HLA-C∗03:03-restricted 10mer epitope was identified, and T
cells specific for this epitope produced cytokine in response to
antigen-presenting cells pulsed with a 15mer peptide, indicating
that the epitope was processed from the longer peptide
(109). While this finding is encouraging, data conclusively
demonstrating that the CALRmut epitope is processed from
the full-length protein and presented on HLA-C∗03:03 on
primary MPN cells is currently lacking. Another group described

cytokine production, primarily by CD4+ T cells, in response
to ex vivo stimulation of peripheral blood mononuclear cells
from patients with MPNs with long (31mer) CALRmut peptides
(133). CD8+ T cells specific for CALRmut peptides presented
on HLA-A∗03:01 and -B∗07:02 were identified by another
group, but the low avidity of the T cells prevented them
from assessing whether the epitopes were naturally processed
and presented on CALRmut cells (115). Additionally, a 9mer
peptide spanning the JAK2 V617F mutation (VLNYGVCFC)
was identified as a ligand of HLA-A∗02:01 by HLA-binding
prediction; epitope-specific CD8+ T cells lysed target cells
either pulsed with the mutant peptide or naturally expressing
JAK2 V617F, but also recognized targets pulsed with wild-
type JAK2 peptide with lower efficiency (116). While this is
a promising possible neoantigen with broad applicability for
patients with MPNs, especially PV, further study is needed to
definitively show that VLNYGVCFC is presented on primary
malignant cells.

Philadelphia Chromosome-Positive
Malignancies
The BCR-ABL1 fusion derives from translocation t(9;
22)(q34;q11), also called the Ph chromosome, which is highly
recurrent in chronic myeloid leukemia (CML) and Ph-positive
ALL (Ph+-ALL). Most patients have one of two fusions resulting
from different breakpoints, namely p210BCR-ABL1 and p190BCR-
ABL1. p210BCR-ABL1 is found in both CML and Ph+-ALL,
while p190BCR-ABL1 is primarily associated with Ph+-ALL
(134). As an oncogenic driver, the BCR-ABL1 fusion is essential
to the malignant phenotype and an ideal therapeutic target.
Small molecule tyrosine kinase inhibitors (TKIs) are now key
components of therapy for Ph+ malignancies, but resistance does
occur. Because the fusion is highly recurrent and disease-specific,
it is a potential source for shared neoantigens. BCR-ABL1 was
first described as a neoantigen in 1992 (135), and additional
BCR-ABL1 epitopes were subsequently investigated by multiple
groups [reviewed in (136)]. However, evidence for the natural
CML presentation of BCR-ABL1 fusion peptides is conflicting:
one group eluted an immunogenic fusion peptide from HLA-
A∗03:01 in primary CML (117), but a recent comprehensive
evaluation of the HLA-ligandome in CML found no BCR-ABL1
epitopes presented on class I or class II molecules (58). Because
the biology and specific fusions differ in the two diseases,
the CML and Ph+-ALL peptidomes may differ. Interestingly,
adoptive transfer of ex vivo-expanded p190BCR-ABL1-specific
CD8+ T cells showed encouraging anti-leukemic activity in three
patients with Ph+-ALL (137). Specific BCR-ABL1 mutations
that confer TKI resistance might also serve as neoantigens; one
group identified donor-derived CD8+ T cell responses to an
HLA-A∗03:01-restricted epitope from BCR-ABL1 E255K in a
patient with the mutation who had achieved remission after
HCT (118). While the BCR-ABL1 E255K-specific T cell clones
could recognize minigene-transduced target cells, recognition of
primary CML was not tested and thus it remains unclear whether
the epitope represents a bona fide CML neoantigen.
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Lymphomas and Chronic Lymphocytic
Leukemia
In B cell malignancies, such as lymphomas and myelomas,
neoplastic B cell-produced clonal immunoglobulin (Ig) was
first described as a tumor-specific antigen in 1972 (138). Ig
idiotypes have been extensively investigated as neoantigens with
varying degrees of success, including in clinical trials (139).
More recently, Khodadoust et al. recovered peptides representing
somatic mutations in Ig heavy and light chain genes from
the peptidomes of both class I and class II molecules in 17
primary mantle cell lymphomas (MCL) and two MCL cell lines,
and detected circulating functional CD4+ T cells specific for
one Ig neoantigen that could kill autologous lymphoma (140).
Subsequent studies by this group identified primarily class II-
restricted Ig-derived neoantigens in other B cell malignancies,
including follicular lymphoma, diffuse large B cell lymphoma,
and chronic lymphocytic leukemia (CLL) (141). A cytoplasmic
variant of CD20 (D393-CD20), produced by alternative splicing
of the CD20 transcript, is detectable in malignant primary B cells
and B cell lines, but not normal resting B cells (142). CD4+

T cell responses to an epitope of D393-CD20 could be elicited
from both healthy donors and patients with B cell lymphomas
after in vitro peptide stimulation and blocked with anti-HLA-
DR monoclonal antibody, but the exact HLA restriction could
not be determined (119). MYD88 is recurrently mutated in
a variety of B cell malignancies and has been proposed as a
potential neoantigen (143). Separately, in a small cohort of CLL
patients evaluated after HCT, CD8+ responses to neoantigens
created from patient-specific non-Ig somatic mutations were
identified; one well-studied patient-derived T cell clone could
lyse autologous primary CLL cells, indicating that the epitope the
clone recognized was a true personal neoantigen (13).

Neoantigens With General Applicability in
Hematologic Malignancies
While some genetic abnormalities are specific to or even
defining of particular cancer types, others, especially mutations
in oncogenes or tumor suppressor genes, can be found in
numerous cancers with a wide variety of cellular origins,
including hematopoietic tissues. For example, somatic mutations
affecting members of the Ras-MAPK pathway are among the
most common in human cancers and are found across diverse
cancer types (144–147). Similarly, TP53 is the most commonly
mutated gene in human cancer, with TP53 mutations estimated
to occur in ∼25% of all cancers (99). Neoantigens derived from
these mutations may thus be shared not just among patients with
a single disease but across patients with many different cancers,
including hematologic cancers (Table 2).

Mutations in KRAS or NRAS are found in ∼5–26% of
hematologic malignancies (146, 148) (Table 2). The most
recurrent oncogenic mutations that occur in the RAS genes
(NRAS, KRAS, HRAS) across cancers occur at codons
12, 13, and 61. As such, neoantigens derived from these
recurrent mutations in RAS genes are attractive therapeutic
targets with applicability in multiple diseases, including blood
cancers. Moreover, the amino acid sequences of RAS family
members are highly similar, such that identical epitopes may

be derived from different proteins. Although there are no
publications specifically investigating RAS-derived neoantigens
in hematologic malignancies, findings from studies in solid
tumors have potential applicability. For example, Tran et al.
studied tumor-infiltrating lymphocytes (TIL) from a patient
with metastatic KRAS G12D-mutated colorectal cancer and
identified CD8+ T cell clones specific for a KRAS G12D epitope
presented on HLA-C∗08:02 (6). KRAS G12D specific T cells
expanded in the patient’s peripheral blood after re-infusion of
TIL, were persistently detectable ∼9 months after TIL infusion,
and mediated at least a transient regression of metastatic
lung lesions. Subsequently, Cafri et al. performed in vitro
stimulation of memory T cells isolated from two patients with
KRAS-mutated solid tumors (one with endometrial cancer,
one with rectal cancer) and identified CD8+ T cells specific
for an HLA-A∗11:01-restricted epitope from KRAS G12V and
CD4+ T cells specific for an HLA-DRB1∗08:01 restricted epitope
from KRAS G12D (156). Earlier studies also identified murine
TCRs with specificity for HLA-A∗11:01-restricted epitopes
from KRAS G12D and G12V in HLA-A∗11:01+ transgenic
mice immunized with KRAS peptides (120). Retroviral transfer
of the KRAS-specific TCRs into human T cells conferred
KRAS neoantigen-specific anti-tumor activity in vitro and in
vivo. These findings have been translated into clinical trials
of transgenic TCR T cell immunotherapy for HLA-A∗11:01+

patients with certain KRAS G12D- or G12V-mutated solid
tumors (NCT03190941 and NCT03745326). Although this
clinical trial is directed toward patients with solid tumors, such
therapies also have applicability to those with hematologic
malignancies; for example, alterations at codon G12 of NRAS
occur in a subset of patients with AML and produce identical
amino acid sequences to the equivalent KRAS mutations, and so
should yield the same epitope that could be targeted with KRAS
G12D or G12V-directed T cells.

Mutations in BRAF, another component of the Ras-MAPK
pathway, are present in about 8% of all human cancers (150).
While the majority of BRAF-mutated malignancies are solid
tumors, BRAF mutations do occur in a subset of hematologic
malignancies. The BRAF V600E mutation is highly prevalent
in hairy cell leukemia (151–153) and systemic histiocytoses
(Erdheim-Chester disease and Langerhans cell histiocytosis)
(154) and have also been identified in CLL (148) (Table 2).
BRAF-derived neoantigens, particularly those originating from
the V600E mutation, thus have applicability in a subset
of hematologic malignancies. By examining peripheral blood
lymphocytes from a patient with BRAF V600E+ melanoma who
had a clinical response after TIL therapy, Veatch et al. identified
a CD4+ T cell clone specific for an HLA-DQB1∗03-restricted
epitope of BRAF V600E (71). Lentiviral transfer of the BRAF
V600E-specific TCR to donor CD4+ conferred recognition
of BRAF V600E-expressing target cells. An earlier study also
detected CD4+ T cell responses to HLA class II-restricted
epitopes from BRAF V600E in patients with BRAF V600E
melanoma, although not in the context of clinical response after
immunotherapy (157).

TP53 mutations occur in malignancies of all origins (99),
including all types of hematologic malignancies (100, 101, 158)
(Table 2). While TP53 mutations can be quite heterogeneous,
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TABLE 2 | Recurrently mutated genes in cancers, including hematologic malignancies, for which possible or definite public neoantigens have been identified.

Gene/gene family Overall prevalence of any

mutation in the gene/gene

family in human cancers

Prevalence of any mutation in the

gene/gene family in hematologic

malignancies

Mutation hotspots

(all cancers including

hematologic)

Mutations yielding

possible/definite

neoantigens*

References

KRAS/

NRAS/HRAS

∼25%

(all RAS genes)

∼26% multiple myeloma G12, G13, Q61 G12D, G12V (146, 148, 149).

∼16% AML

∼14% ALL

∼10% CLL

∼5% MDS (∼30% CMML)

BRAF ∼8% ∼100% hairy cell leukemia V600 V600E (148, 150–154)

∼40–60% systemic histiocytoses

∼5% CLL

TP53 ∼25% 14% AL R175, R245, R248,

R273, R282

R175H, R248Q,

R248W, R282W

(99–101, 155)

12% AML

7–10% CLL

6% MDS

6–24% B cell lymphoma

7–40% non-B cell lymphoma

6% myeloma and other plasma cell

dyscrasias

*See Table 1 for specific details about neoantigens.

there are mutation hotspots at R175, R245, R248, R273, and
R282 that are shared across multiple kinds of cancers, including
hematologic cancers (99, 101). Neoantigens created from TP53
mutations thus have broad potential applicability in blood
cancers as well as solid tumors. Malekzadeh et al. isolated T
cells specific for HLA class I- and class II-restricted epitopes
from five different recurrent TP53 mutations from TIL generated
from patients with a variety of epithelial tumors (colorectal,
ovarian, and pancreatic) (121). Both this publication and a
subsequent report from the same group (122) identified an
HLA-A∗02:01-restricted epitope from TP53 R175H that appears
to be naturally presented on a number of tumor cell lines.
CD4+ and CD8+ responses to epitopes from patient-specific
TP53 mutations have also been identified (122, 159, 160).
Because the codon distribution of TP53 mutations is not
specific to the tissue origin of a cancer, therapy targeting
the TP53 R175H epitope, for example, should be equally
applicable in a TP53 R175H+ hematologic cancer as in a TP53
R175H+ solid tumor, assuming the epitope is processed and
presented appropriately. Similarly, specific mutations that are
identical in many different malignancies, like the ones described
in this section, are sources for neoantigens that are shared
across cancers.

THERAPEUTIC APPLICATIONS OF
NEOANTIGENS

While neoantigens are attractive targets for therapy because of
their high specificity for malignant cells, there are challenges
in translating neoantigen-directed immunotherapies to the
clinic and the best approach to neoantigen-directed therapy

is currently unknown. One strategy is to adoptively transfer
neoantigen-specific T cells. T cells can be isolated from patient
peripheral blood, TIL, or MIL (in hematologic malignancies),
then expanded ex vivo non-specifically or against a defined
antigen and re-infused (4, 6, 7, 161). Alternatively, T cells can
be engineered to express a transgenic neoantigen-specific TCR
(TCR-T), allowing infusion of a rapidly generated product with
defined specificity and composition. Preclinical studies have
shown that transfer of neoantigen-specific TCR-Ts is feasible (71,
74, 122), and two clinical trials of autologous TCR-T targeting
HLA-A∗11:01-restricted epitopes derived from point mutations
in KRAS are enrolling (NCT03190941 and NCT03745326).
Although TCR-T targeting epitopes from wild-type WT1 have
shown safety (162–164) and efficacy (165), no clinical trials
of neoantigen-specific TCR-T immunotherapy for hematologic
malignancies have opened to date. TCR constructs can be
modified to include other features to improve TCR-T safety and
function: a CD8 co-stimulatory receptor enables CD4+ T cells to
function with a class I-restricted TCR and provide targeted help
to neoantigen-specific CD8+ T cells (166–168), a safety switch
(167, 169) enables rapid removal of transgenic TCR-T cells in
the event of toxicity, and other elements have been advanced
[reviewed in (170)]. Lastly, vaccines do not require adoptive cell
transfer, have shown clinical efficacy in solid tumors (8–10), and
are particularly attractive for targeting highly immunogenic but
less prevalent neoantigens.

Many factors influence which immunotherapy strategy is

optimal for a given antigen. For neoantigens, the relatively

low prevalence of each neoantigen among individuals with a
given hematologic malignancy is a significant consideration,
as immunotherapy for one neoantigen will apply only to
a subset of patients. For example, the NPM1mut epitope

Frontiers in Immunology | www.frontiersin.org 8 February 2020 | Volume 11 | Article 121

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Biernacki and Bleakley Neoantigens in Hematologic Malignancies

described above (74) is only presented by the ∼15% of AML
patients with NPM1mut (30–35%) and HLA-A∗02:01 (∼50%
in the U.S.A.) and this represents one of the most broadly
applicable recurrent neoantigens in hematologic malignancies.
Producing neoantigen-directed TCR-T therapies using currently
standard viral transfer methods is probably not cost-effective
for less common neoantigens given their narrow applicability,
but vaccines could be. Moreover, the growing use of non-
viral techniques for TCR gene transfer, such as transposon-
based technologies (159, 171, 172), nanoparticles (173), and
RNA electroporation (174) should facilitate the development
of TCR-T immunotherapy for all neoantigens, as illustrated
by a recently opened clinical trial of gene-edited TCR-T
immunotherapy for personal neoantigens (NCT03970382). The
use of “universal donor cells” that have been engineered to be
HLA-negative and express natural killer (NK) cell inhibitory
molecules (175), in combination with silencing or editing the
endogenous TCR (163), could also facilitate neoantigen-directed
TCR-T immunotherapy.

Another consideration is the natural immunologic landscape
of a particular malignancy. Ex vivo expansion and vaccination
rely largely on the presence of existing anti-tumor responses that
can be boosted in vivo or ex vivo and would be challenging
in an immunosuppressive environment. Because hematologic
malignancies have multiple mechanisms for blocking effective
naturally occurring anti-leukemic immune responses (11, 176–
183), TCR-T immunotherapy may be preferable for these
diseases. For example, transgenic TCRs can used to modify
selected virus-specific memory T cells for therapeutic transfer
(165). Immune checkpoint blockade has been used alone
in MPNs (109); combining them with neoantigen-specific
immunotherapies could potentiate their effect in these and other
hematological malignancies.

DISCUSSION

Much progress has been made in the field of neoantigens
generally and in hematologicmalignancies specifically. A number
of promising bona fide and potential shared neoantigens have
been identified for hematologic malignancies, most of which are
derived from well-established mutations and fusions. However,

growing access to comprehensive sequencing technologies has
greatly enhanced the ability to define disease- and patient-
specific mutanomes, which are valuable sources of potential
neoantigens. Combined with improvements in T cell antigen
discovery approaches, sequencing advances will facilitate the
discovery of additional shared and personal neoantigens derived
from known as well as new genetic abnormalities, expanding
the repertoire of potential targets and moving the field forward.
While there are a number of challenges in translating neoantigen-
directed immunotherapies to the clinic, the rapid evolution of
neoantigen discovery methods and the immunotherapy field is
making barriers to clinical translation surmountable. Experience
gained from T cell immunotherapy and vaccine studies in solid
tumors and from cell therapy engineering for non-neoantigen
targets will provide a critical foundation for building potent
neoantigen-directed immunotherapies that are viable treatment
strategies for hematologic malignancies.
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