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Alemtuzumab was designed to reduce the immunogenicity of the parent CD52-specific

rat immunoglobulin. Although originally marketed for use in cancer (Mabcampath®),

alemtuzumab is currently licensed and formulated for the treatment of relapsing multiple

sclerosis (Lemtrada®). Perhaps due to its history as the first humanized antibody, the

potential of immunogenicity of the molecule has been considered inconsequential,

and anti-drug antibodies (ADA) responses were similarly reported as being clinically

insignificant. Nonetheless, despite humanization and depletion of peripheral T and B

cells, alemtuzumab probably generates the highest frequency of binding and neutralizing

ADA of all humanized antibodies currently in clinical use, and they occur rapidly in

a large majority of people with MS (pwMS) on alemtuzumab treatment. These ADA

appear to be an inherent issue of the biology of the molecule—and more importantly,

the target—such that avoidance of immunogenicity-related effects has been facilitated

by the dosing schedule used in clinical practice. At the population level this enables

the drug to work in most pwMS, but in some individuals, as we show here, antibody

neutralization appears to be sufficiently severe to reduce efficacy and allow disease

breakthrough. It is therefore imperative that efficacy of lymphocyte depletion and the

anti-drug response is monitored in people requiring additional cycles of treatment,

notably following disease breakthrough. This may help inform whether to re-treat or to

switch to another disease-modifying treatment.

Keywords: anti-drug antibodies, CD52, humanized, immunoglobulin, immunogenicity, multiple sclerosis,

neutralizing antibodies

INTRODUCTION

Alemtuzumab is a monoclonal antibody that is specific for the 21–28 kDa lymphocyte cell
surface CD52 glycoprotein (1, 2). This was the first example of a humanized monoclonal
antibody (mAb) (3). The initial formulation (Mabcampath R© 1,033mg over 12 weeks) was
used to treat CD52+ T and B cell cancers, notably chronic lymphocytic leukemias, and other
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lymphocyte-mediated conditions (1, 2, 4). However, it is now
formulated (Lemtrada R© 36–60mg over 3–5 days over 13
months) and licensed for the treatment of relapsing multiple
sclerosis (MS), which is a demyelinating, probable autoimmune
disease of the central nervous system (5, 6).

Humanization was a process designed to reduce the
immunogenicity of therapeutic monoclonal antibodies that
had been generated in rodents (1–3). Although removing
rodent constant regions and grafting the complementarity-
determining regions onto human framework regions clearly
reduced immunogenicity (1), it was soon recognized that
alemtuzumab could generate anti-idiotypic responses that could
prevent therapeutic benefit (4, 7). Subsequently, perhaps in
recognition of the problem of antibody neutralization (8),
strategies were developed to limit anti-globulin responses to
alemtuzumab (8–10). The occurrence of binding antibodies
(BAbs) received limited mention and notably neutralizing
antibodies (NAbs) were not discussed in the published reports (5,
6, 11) of the pivotal trials leading to the licensing and commercial
development in MS. The first mention of neutralizing antibodies
did not occur until we reported on them in 2017 (12, 13).
They were described as “inhibitory antibodies” within the
regulatory submissions (5, 6). According to the Food and
Drug Administration (FDA), their effect on the clinical efficacy
and safety profile was of unclear clinical significance. We are
concerned that the effect of alemtuzumab anti-drug antibodies
(ADA) on efficacy has yet to be adequately addressed (12, 14,
15), and may have safety implications (6, 13, 16, 17). Although
ADA against alemtuzumab have been reported as being without
clinical significance (14, 15), the dosing at intervals of 12 months
or longer may have aided development of alemtuzumab by
allowing ADA to subside (Table 1).

Alemtuzumab and Anti-drug Antibody
Responses
While alemtuzumab (CAMPATH-1H) was originally designed
to reduce the immunogenicity of the parent CAMPATH-1G rat
immunoglobulin (1–3, 21) with alemtuzumab, ironically this
appears not the case, as seen in this comparison among antibody
therapies used in MS (Table 2). Moreover, alemtuzumab (36–
60mg Q52W) induces binding ADA in about 85% of cases
within 24 months (n = 811), and about 92% of those develop
neutralizing ADA (12, 13). In the phase III studies, it was
evident that, despite substantial lymphocyte depletion, over 60%
of pwMS developed ADA within the first month of infusion
(12, 13). Furthermore, in the phase II extension study (Maximum
n= 232), with three cycles of alemtuzumab administered, nearly
all of the pwMS eventually developed ADA (8) (Table 1). Even
chimeric CD20-depleting antibody (500–1,000mg rituximab.
Q48W) induced ADA in only about 25–37% of pwMS (22, 25).
By contrast, humanized ocrelizumab (anti-CD20. 600mgQ48W)
induced ADA in only 0.4% of people with relapsing MS, with
<0.1% of people exhibit neutralizing ADA within 2 years of
treatment (23). This low level may not simply be due to the
humanization process, as this is in part dose-dependent as lower
ocrelizumab doses (20mg) induce ADA in about 20% of pwMS

(26). While this dose induced comparable peripheral blood
depletion to the 600mg dose, repopulation was quicker (26), and
possibly allows sparing of B cells within lymphoid tissues that
can generate the ADA response. Humanized, natalizumab (anti-
CD49d-CD29. 300mg Q4W) induces ADA in about 5–9% of
people with MS (24). These are all significantly less than that of
alemtuzumab treatment of pwMS (12) (Table 2).

Biology Supporting the Generation of
Anti-drug Antibodies
The antibody humanization process has been refined since
alemtuzumab was first invented, as it may be possible to
reduce the immunogenicity of anti-CD52 antibody compared
to alemtuzumab (27, 28). However, high frequency of ADA
following alemtuzumab infusion may be due to its particular
biology, which probably relates to the pattern of CD52 antigen
tissue-expression and the depletion/repopulation kinetics of
immune cells. Alemtuzumab is (a) given as an effective bolus (5).
As CD52 antigen has a wide distribution outside the circulation,
the CD52 receptors on leucocytes outside in tissues can absorb
the antibody, and this can lead to the relatively short, peripheral
blood half-life of alemtuzumab and rapid clearance from the
circulation (15). Thus, the cells that escape the initial depletion
event are not targeted again until the next cycle of treatment
∼12 months later. This is unlike cladribine and ocrelizumab that
are administered again 2–4 weeks after the initial dose (23, 29).
As such, pwMS who do not deplete lymphocytes effectively after
the first dose are more likely to subsequently develop ADA
(13, 15); (b) alemtuzumab targets antigen-presenting cells, which
include dendritic cells, and B cells, due to their expression
of CD52 (Figure 1). Although transiently depleted, monocytes
repopulate within a month while circulating antibody is probably
still present, and so could rapidly present antigen to remaining
antigen-specific lymphocytes, as could any antigen presenting
cell that escaped depletion (15, 34). Similar to T cells, surviving
B cells (35), could exhibit homeostatic expansion (36), following
alemtuzumab-induced depletion and 1 month after treatment
memory B cells remain a significant proportion of the B cell
pool (37, 38). These cells can be efficient at presenting antigens,
notably their specific antigen (39, 40), and could as a result
complement the rapid generation of ADA, probably stimulated
by professional antigen-presenting cells and supported by the
activity of surviving T cells (41); (c) ancillary molecules are
needed for the lytic action of alemtuzumab. These include the
need for the complement cascade for complement-fixation or
cells for antibody-dependent cellular cytotoxicity to co-localize
and enter the target tissue (42). This may explain why it appears
that alemtuzumab does not purge the lymphoid tissue and
bone marrow effectively, as seen in humanized CD52 transgenic
mice (43). As such, sequestration of lymphocytes into lymphoid
tissue (and possibly the bone marrow) by fingolimod, due
to sphingosine-1-phosphate receptor modulation, appears to
inhibit the activity of alemtuzumab in some individuals (44);
(d) this may allow the B cell niche in the bone marrow to
survive and could account for the rapid hyper-repopulation of
immature/transitional B cells and naïve/mature B cells that may
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TABLE 1 | Alemtuzumab dosing schedule can limit anti-drug antibody activity.

Dosing schedule Observed effects (CARE-MS-Trials) Biology that avoids ADA effects

First infusion cycle*

Five daily 6 h, 12mg alemtuzumab infusions

ADA develop in most pwMS.

(BAbs 62%, NAbs 54% in 1 month)**

Primary antibody response usually takes at least 6 days to generate#,

Influence of NAbs avoided.

Second infusion cycle*

Three daily 6 h, 12mg alemtuzumab infusions

ADA develop in most pwMS.

(BAbs 83%, NAbs 79 % in 1 month)**

Secondary antibody responses often take 3–4 days to generate#.

Influence of NAbs avoided.

Repeat infusion cycles*

A minimum 12 month intervals

Retreatment after disease activity

At least 12 months from last dose

ADA slowly subside with time.

Pre-cycle 1. BAbs 0.9% NAbs 0%**

Pre-cycle 2. BAbs 29% NAbs 0.6%**

Repeat dosing during high titers of BAbs and NAbs avoided.

Influence of ADA avoided.

Original schedule 2012–2017

Two cycles*

ADA may become more persistent

Pre-cycle 3. BAbs 75% NAbs 31%**

(Results at 23 months)

ADA levels wane before next cycle.

Influence of NAbs avoided.

New schedule 2017 onwards,

≤ four cycles (EU), ≤ three cycles (UK)

Pre-dose NAbs may be more

problematic for some pwMS.

Prophylactic anaphylactoid treatment*

Anti-histamines, paracetamol, steroids

Reduction of infusion reactions/cytokine

release syndrome.

Masks anaphylactoid responses,

which occur rarely*

Dosing schedule of alemtuzumab *(5), the occurrence of anti-drug antibodies (ADA), binding (BAbs), and neutralizing (NAbs) and adverse effects in people with multiple sclerosis (pwMS)

following the treatment cycles in the pivotal CARE-MS I and II trials **(12, 13) and the biology, such as the kinetics of antibody formation (18, 19), which could influence the generation

and/or action of ADA. European Union (EU), United Kingdom (UK). Pre-cycle refers to the results obtained 1 month before the next infusion cycle, unless otherwise stated as cycle 3

may be ≥24 months (20). Bold letter within the table in column 1 indicates the dosing schedule and in column 3 indicates the influence of NAbs.

form the precursors for ADA formation (12); (e) this occurs
at a time when CD52 depletion appears to block immune-
tolerance induction (12, 45). While it has been reported that
the proportions of CD4T regulatory cells increase compared
to CD4T helper cells (35, 46), in terms of absolute numbers
they are dramatically decreased, especially in relation to hyper-
populating immature B cells (12, 37). However, CD8T cells may
control this response, and this subset is markedly depleted by
alemtuzumab (12, 45). This perhaps creates an environment for
ADA generation that occurs with high frequency within the

first month of infusion (8, 12, 15). Whether this represents T

cell-independent extrafollicular zone directed immune response,
as suggested for the formation of ADA to other antibodies
(47), is currently unknown. Regulatory cells recover faster
than potentially pathogenic memory T and B cells, allowing
for control of MS (12). However, this early loss of immune
tolerance may also allow the generation of antibody-mediated
secondary autoimmunity to develop, which occurs at a high
frequency (∼40–50%) in pwMS within 5 years from infusion
(5, 20, 48). This problem occurs in MS at a higher frequency
compared to that observed in cancer following alemtuzumab use
(49). Similarly, only 4/211 (1.9%) of people treated for cancer
developed ADA (50). This suggests a dose-related difference, or
that perhaps the genetics of people with MS and other potential
autoimmunities (7) may also predispose them for generating
immune responses that may contribute to generating ADA
responses; (f) Lastly, since peripheral B cell niches may not
be effectively purged, and CD52 is only weakly expressed by
plasmablasts and plasma cells (Figure 1) (51, 52), alemtuzumab
may not particularly target antibody-forming cells. The low
expression of CD52 on plasma cells suggests that once formed,
antibody responses (including ADA responses) will persist.
Consistent with this view, vaccine responses to common virus
and recall antigens persist following alemtuzumab treatment,
and the ability to mount responses to novel antigens is retained

TABLE 2 | A high frequency of anti-drug antibodies develops following

alemtuzumab treatment in people with MS.

Antibody Target Dosing Frequency of ADA References

Rituximab CD20 1,000mg Q26W BAbs 24–37% (22)

Ocrelizumab CD20 600mg Q26W BAbs 0.4%, NAbs <0.1% (23)

Natalizumab CD49d 300mg Q4W BAbs 5–9% (24)

Alemtuzumab CD52 36–60mg Q52W BAbs 85%, NAbs 78% (12)

Reported frequency of anti-drug antibody (ADA) responses to various disease-modifying

therapies (infusion dose and frequency are shown) during the first 2 years of use in major

clinical trials for multiple sclerosis.

once the antibody has cleared (53). Thus, ADA titers are
boosted with each infusion cycle (15), and this increases the
risk of neutralization over time, as the number of treatment
cycles increases.

Anti-drug Antibody Generation May Have
Influenced the Treatment Protocol for
Alemtuzumab
With the recognition that humanized forms of CAMPATH-
1 could still elicit strong ADA responses (4, 7, 54, 55) with
a reduction in therapeutic benefit (7, 56), strategies to inhibit
ADA to alemtuzumab were investigated (8–10). As such, ADA
might have been a consideration in the clinical dosing schedule
developed for alemtuzumab in MS (Table 1). Dosing is limited
to 5 days for the first treatment cycle and 3 days for the second
and subsequent treatment cycles. Repeat dosing has to be 1
year after the last treatment cycle, rather than following disease
breakthrough, and only two cycles of dosing were to be initially
administered (5). Lastly, infusion of alemtuzumab occurs under
anaphylactoid reaction prophylaxis (5, 11, 20).

The dosing schedule may thus avoid potential influences
of ADA response. As such, it takes at least 6 days for B cell
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FIGURE 1 | Expression profile of CD52 antigen on leucocytes. Gene

expression of CD52 antigen in various cell types assessed using microarray.

Data was extracted from the BioGPS portal [www.biogps.org] (30–32) using

normalized data from the Primary Cell Atlas (http://biogps.org/dataset/2429/

primary-cell-atlas/) (33) and the CD52 probe (34210_at) in Affymetrix Human

Genome U133 Plus 2.0 expression arrays (33). The results represent the mean

± SD relative gene expression (arbitrary units) from 2 to 5 replicates.

Polymorphonuclear neutrophils (PMN).

responses to be generated, with primary antibody levels peaking
sometime after that, and it will take a few days to generate
an effective secondary antibody response (18, 19, 57). These
antibody responses appear to take about a year to subside to near
background levels to allow re-dosing (12, 15). Importantly, while
there were no pre-treatment NAb responses prior to treatment
cycle 1, and only about 0.6% of people had NAbs prior to cycle
2 in the phase III trials, about 31% of people had persistent
NAbs, which can limit activity at the end of the second treatment
cycle, and over 75% of people had persistent BAbs (12, 13, 15).
Anaphylactoid reaction prophylaxis is largely being given to limit
the problems of infusion reactions, which are common (>80%),
especially during the first cycle of infusions. These are associated
with the reactivation of symptoms that occur with pre-existing
demyelinated lesions (5, 58). Infusion reactions are largely a
product of the cytokine release syndrome, occurring following
cell lysis, due to antibody-mediated attacks. The antihistamines
and glucocorticosteroids would also mask any potential anti-
globulin allergic response, which have not been a significant
adverse event (5, 11, 20). While this dosing schedule may have
served to avoid the potential issue of antibody immunogenicity,
it also generated the concept of pulsed “immune reconstitution
therapy” (IRT). This demonstrates that it is possible to get
long-term benefit—and possibly long-term remission for some
people—from a short treatment cycle, creating a new therapeutic
paradigm that did not depend on continuous treatment (48, 59).

Neutralizing Anti-drug Antibodies
Generation May Become More Problematic
With Increasing Number of Treatment
Cycles and Will Need Monitoring
While the frequency of ADA during two cycles is high, the
titer generally drops sufficiently to allow effective re-treatment
(12, 48). However, with time they may become more persistent

FIGURE 2 | High-titer binding and neutralizing ADA may limit CD4T cell

depletion. People in the CARE-MS extension study received three cycles of

alemtuzumab. The results compare the pre-dose binding and neutralization

ADA titer, expressed as the lowest to highest quartile and the post-dose

absolute number of peripheral CD4T blood cells over time. The diagram was

adapted from data presented in Jacobs et al. (14). The data for the highest

quartile was described as “limited and non-significant.” Poster available.

https://onlinelibrary.ectrims-congress.eu/ectrims/2018/ectrims-2018/228455/

alan.jacobs.minimal.impact.of.anti-alemtuzumab.antibodies.on.the.html

(accessed 5th December 2019). Reproduced with permission from L. Chung

and Genzyme.

(8, 13). As such, ADA could be an issue for any pwMS receiving
a third cycle of alemtuzumab, although they have not been a
problem at the population level, as alemtuzumab continues to
deplete (14, 15, 48, 60).While available data suggests that a lack of
response after a third cycle of alemtuzumab is probably only in a
minority of pwMS (14), it still appears that those with the highest
titer ADA (binding and neutralizing) pre-cycle 3 (>75 percentile)
exhibit the poorest lymphocyte depletion potential (Figure 2)
(14). People with high-titer neutralizing ADA responses can
fail to deplete. This can lead to disease breakthrough and
accumulating disability (Figures 3, 4) (8, 13, 16, 17).

Initially, alemtuzumab had a liberal license in Europe,
requiring only an active lesion on MRI for use (15). More
recently, vascular side effects following infusion has moved
alemtuzumab largely to a second-line status in the European
Union, and it remains largely a third-line treatment in the
United States, where it has remained ever since receiving
FDA approval (15, 61). However, as the third and potentially
fourth treatment cycle of alemtuzumab was approved by the
European Medicines Agency (EMA) in 2017, and the National
Health Service (NHS) in the United Kingdom in 2018 (15, 62),
measurement of ADA would be more important to help inform
re-treatment or drug-switching decisions for individual patients.

If using alemtuzumab, it is imperative that lymphocyte
depletion is assessed. This also applies to any other lymphocyte-
depleting agent, as people fail to reduce lymphocyte levels in
response to treatment with a variety of agents, probably due to
their genetics (13, 63). Although it has consistently been reported
that total lymphocyte levels do not predict disease activity (15,
60), lack of depletion can be seen to be associated with disease
breakthrough and treatment failure in individuals, necessitating a
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FIGURE 3 | Loss of lymphocyte-depleting function after three alemtuzumab cycles. Lymphocyte depletion following alemtuzumab treatment in people that switched

to fingolimod. Evidence for loss of function after two or more cycles. Although the clinical course is not shown, additional treatments after two cycles or switching to

another treat in an indicator for disease breakthrough in the form of new relapses or magnetic resonance imaging. Poster available http://www.empireneuro.org/

sitebuildercontent/sitebuilderfiles/ean2015poster.pdf (accessed 5th December 2019). Reproduced with permission from Genzyme and D. J. Arnold.

FIGURE 4 | Alemtuzumab neutralizing antibodies develop in a person failing treatment. (A) Lymphocyte (lower limit of normal is shown by a dashed line) and CD4T

cell levels were assessed in a person with clinically-definite multiple sclerosis who received the standard 12 mg/day dosing of alemtuzumab at 12-month intervals.

Following detection of an active spinal cord lesion, detected by T1 gadolinium (Gd+) enhanced magnetic resonance imaging, an additional alemtuzumab infusion

cycle was given. Lymphocyte deletion was limited. A magnetic resonance imaging scan subsequently detected 17 brain and 7 spinal cord gadolinium enhancing

lesions, and prompted intravenous methyl prednisolone and plasma exchange, followed by an oral steroid taper. A serum sample (collected during routine sampling)

following five cycles of plasma exchange was used following informed written consent and approval given for publication, consistent with institutional guidelines.

These were assayed to conform with United Kingdom regulations. (B) Binding (Saxena et al., in press) and (C) neutralizing ADA (Ali et al., in press) levels taken prior to

1000mg rituximab therapy, which was given at 2-week intervals.
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switch to alternative therapies (Figure 3). Such individuals could
be found in meeting reports (8, 16, 17). However, the scale
of the issue needs to be addressed, although presumably the
frequency of total lack of efficacy is low (14, 48). Nonetheless,
in one study, two out of six people switching to fingolimod
could be seen to totally fail to deplete prior to switching
(Figure 3) (16)—this suggested the presence of neutralizing
ADA. Appreciation of this issue could possibly spare individuals
from unnecessary disease activity and disability that untreated
MS causes.

Alemtuzumab Screening Assays
At present, alemtuzumab ADA assays are neither routinely
supplied by the manufacturer nor required by regulatory
authorities. However, the reagents with which to construct
an assay for alemtuzumab ADA and a neutralizing assay are
commercially available. To support clinical use of alemtuzumab
in our clinical practice—as it is a valuable treatment for many
people with MS, and the possibility of third and fourth courses of
treatment were available (5, 48)—we developed a novel assay to
detect ADA against alemtuzumab, using a synthetic recombinant
construct Alem GloBody (64). This consists of the alemtuzumab
variable heavy (VH) and light (VL) domains held together by an
engineered tandem nanoluciferase molecule, such that the VH

and VL will pair up and retain antigen binding, and the dual
luciferase activity is not compromised (64). In the presence of
ADA, the Alem GloBody-IgG complexes form. Since the Alem
GloBody lacks the IgG constant domains, it cannot bind to
Protein G. However, the complexes can be captured via the Fc
of the ADA, and the retained luciferase activity is proportional
to the level of ADA in the sample. The assay is performed in
<3 h and currently only requires 20 µL of serum. Secondly,
we have developed a stable adherent CHO cell line expressing
human CD52 for use in a competition assay with sera and
alemtuzumab conjugated with Alexa-488 (65). In the absence
of neutralizing antibody, the alemtuzumab-Alexa-488 binds to
the cells with maximum fluorescence. If neutralizing antibodies
are present, they inhibit alemtuzumab-Alexa-488 binding to the
cells and the signal is reduced. This reduction in signal can be
titrated, and a value assigned to the dilution, requiring giving
50% inhibition (ID50). This assay currently requires only 10µL of
serum and takes 3 h (65). These two assays can be used to detect
the development of binding and neutralizing alemtuzumab-
specific ADA, as seen in an individual with MS (Figure 4)
who stopped depleting lymphocytes and exhibited breakthrough
disease activity as indicated by new lesion formation (Figure 4A).
In comparison to untreated serum (baseline 1.22 x 104 Lux),
blank, and a 50µg/mL anti-alemtuzumab standard (4.66 × 104

Lux), the serum had a very high titer (>7.7 × 105 Lux, despite
five cycles of plasma exchange) of binding (Figure 4B), and
neutralization (Figure 4C) of ADA could be detected. Although
this does not prove cause and effect, it is inconceivable that
high titers of neutralizing antibodies are without any influence
if there are pre-existing ADA. It has been suggested that
ADA are without significant influence (5, 11, 14). While this
may be the case at the population level (14, 60), this seems

not the case for certain individuals (13). This study indicates
that neutralization of alemtuzumab occurs and appears to be
clinically relevant in some individuals. Thus, the monitoring of
ADA responses may be helpful in the decision to re-treat or
switch treatments.

CONCLUSIONS

High-titer neutralizing ADA responses can be associated with a
lack of clinical response (8, 13, 17) (Figure 4). These can become
high-titer and persist for years (unpublished observations).
However, it remains to be determined whether there is a
pre-dose antibody-titer limit, above which further dosing is
unlikely to work effectively. People within the phase III CARE-
MS trial (n = 712), and extension studies (n = 292), had
their ADA (binding and neutralizing) and lymphocyte levels
monitored (14)—suggesting that the manufacturer could address
this point. Based on our findings, it would seem important for
1-month pre-dose neutralizing ADA titers relating to post-dose
lymphocyte depletion failure to be reported, in order to evaluate
the concerns raised here. Further, ongoing studies on assay
development and validation are in progress and are required
to define prognostic ADA levels that may predict lymphocyte
depletion and potential treatment failure, such that they can
inform on re-treat or switching options. We believe pre-dose
screening should be offered and adopted, and that the switching
of treatments should be instigated where relevant, as it is
important that further neurological disability is not accumulated
because patients are being given an ineffective treatment. Here,
we demonstrated the utility of GloBodyTM for alemtuzumab
ADA detection. GloBody reagents based on other antibody-
therapeutic binding sites may be generated (including for CART-
cell), and the generic platform may be adopted to monitor ADA
responses (64).
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