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Immune checkpoint blockade (ICB) has revolutionized cancer treatment, providing

remarkable clinical responses in some patients. However, the majority of patients do

not respond. It is therefore crucial both to identify predictive biomarkers of response and

to increase the response rates to immune checkpoint therapy. In this review we explore

the current literature about the predictive characteristics of the tumor microenvironment

and discuss therapeutic approaches that aim to change this toward a milieu that is

conducive to response. We propose a personalized biomarker-based adaptive approach

to immunotherapy, whereby a sensitizing therapy is tailored to the patient’s specific tumor

microenvironment, followed by on-treatment verification of a change in the targeted

biomarker, followed by immune checkpoint therapy. By incorporating detailed knowledge

of the immunological tumor microenvironment, we may be able to sensitize currently

non-responsive tumors to respond to immune checkpoint therapy.

Keywords: cancer immunotherapy, immune checkpoints, sensitization, tumor microenvironment, PD-1, CTLA4,
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INTRODUCTION

Therapeutic approaches that inhibit negative regulatory immune checkpoints or stimulate
activating immune checkpoints have shown great success in preclinical models and clinical
trials (1, 2). In particular, antibodies that block cytotoxic T lymphocyte associated protein 4
(CTLA4), and programmed death 1 (PD-1) or its ligand PD-L1 have demonstrated unprecedented
therapeutic efficacy in metastatic melanoma, non-small cell lung cancer, mismatch repair deficient
cancers, and several other cancer types (3, 4). In these cancer types, significant response rates and
survival benefits are seen, with a proportion of durable complete regressions, allowing the word
“cure” to enter the oncologists’ vocabulary (5). However, despite some positive outcomes, survival
gains are modest in most cancers, and even in the most responsive cancers, many patients do not
experience clinical benefit (6). This heterogeneity in response has led to a search for predictive
biomarkers that could identify whether a patient will or will not respond to immune checkpoint
blockade (ICB). In addition, although the targets for these antibodies are known, the down-stream
biological consequences of therapeutic target engagement—both systemic and in the tumor
microenvironment (TME)—are incompletely understood (6). Hence, although there is a clear need

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00223
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00223&domain=pdf&date_stamp=2020-02-18
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:willem.lesterhuis@uwa.edu.au
https://doi.org/10.3389/fimmu.2020.00223
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00223/full
http://loop.frontiersin.org/people/847598/overview
http://loop.frontiersin.org/people/140933/overview
http://loop.frontiersin.org/people/871159/overview


Zemek et al. Sensitizing Tumors to Checkpoint Therapy

to improve the therapeutic efficacy of ICB, most clinical trials
testing combination therapies are empirical, and often based on
scant biological or preclinical data (7, 8).

In mouse cancer models using subcutaneous tumors derived
from clonal cell lines we also observe a dichotomy in response
to ICB; some mice experience complete response to treatment,
while in others, their tumor continues to progress, despite having
been treated under identical environmental and experimental
conditions, including equal tumor burden and presumably
identical (neo-)antigen expression (9–13). It is noteworthy that
the probability of response in these mice can generally be
increased by treating with ICB earlier, at a smaller tumor size
(9). Together, these data suggest that each mouse has the capacity
to respond, but that even potentially sensitive tumors may
not respond if the pre-treatment conditions are not optimal.
Furthermore, some murine tumor models never respond to
ICB. Are these tumors intrinsically resistant, or do they lack
functional TME attributes that could be therapeutically induced?
Promisingly, some recent studies have been able to render
otherwise resistant models sensitive to subsequent ICB (9, 14).

Despite known associations between pre-treatment TME
characteristics and response [see references (15) and (16) for
comprehensive reviews of predictive biomarkers], strategies to
induce a responsive phenotype and thus sensitize cancers to
ICB are only beginning to be developed. Systemic immunity
and the local immune response at the effector site are obviously
linked, and indeed several studies, both in animal models and
patients, have shown that a degree of systemic immunity is
required for tumors to respond to ICB (17, 18). Here, we focus
on factors within the TME: we summarize and contextualize
recent studies characterizing the features of an ICB responsive,
contrasting with a non-responsive, TME (Figure 1), and discuss
selected therapeutic interventions designed to modulate that
environment toward a responsive phenotype (Figure 2).

TURNING “COLD” TUMORS
“HOT”—CELLS IN THE RESPONSIVE TME

Recently, the concept of hot vs. cold tumors has become widely
accepted in immuno-oncology, where “hot” denotes tumors
that contain more than a defined threshold of inflammatory
cells, while “cold” tumors do not. Other terms characterizing
response-associated cellular TMEs include describing cold
tumors as either “immune desert” (absence of immune cells)
or “infiltrated-excluded” (tumors with only peripheral invasion
of immune cells); and classifying “hot” tumors into those with
tertiary lymphoid structures, or “infiltration-inflamed” tumors
(inflammatorymyeloid cells and activated CD8+ T cells) (19, 20).
Alternatively, more comprehensive characterizations incorporate
several different aspects of T cell immunity resulting in more
subcategories and allowing a scoringmetric to be applied (21, 22).
A potential caveat of these approaches is that innate immune
cells are underrepresented. Accumulating evidence indicates that
innate immune cells play a role in the responsive TME and could
be exploited therapeutically to improve outcomes. Relevant cells
include macrophages (23–25), dendritic cells (DCs) (26) and

natural killer (NK) cells (9, 26). We will briefly discuss several
cell types in the TME associated with response.

T Cells
Experiments in murine cancer models have consistently
demonstrated the importance of T cells for the efficacy of ICB
(27–29). In humans, secondary resistance to ICB has also been
associated with T cell deficits, including mutations in cancer cells
associated with decreased sensitivity to T cell-mediated killing,
or reduced antigen presentation to T cells (30, 31). Baseline
numbers of tumor-infiltrating lymphocytes (TILs) have been
found to correlate with response to anti-PD-1 alone, but not
with combination ICB therapy (32–34). CD8+ T cells have been
shown to be the anti-tumor effector cells, and sensitivity to ICB
was enhanced in tumors enriched for CD8+ T cells reactive to
clonal neoantigens (35). The differential role of CD8+ vs. CD4+

T cells is less clear, with conflicting outcomes in different tumor
models (28, 29). The interpretation of these results is difficult
because CD4 depletion in mice not only depletes T effector cells,
but also regulatory T cells (T-regs) (36). It should be noted that
anti-mouse PD-1 antibodies used in murine models are often
raised in rats, and repeated dosing will result in anti-antibody
formation. In addition, there are important differences in IgG
isotype and their affinity for Fc receptors (37, 38), which may
partly explain the difference in efficacy between murine and
human studies.

Pre-treatment with selected chemotherapeutics has been
shown to enhance T cell responses in the experimental setting
(39). For example, oxaliplatin plus cyclophosphamide treatment
of lung adenocarcinomas increased the ratio of CD8+ T cells
vs. T-regs, increased the presence of tumor-specific CD8+
T cells, and resulted in enhanced expression of PD-1 and
PD-L1 with subsequent improved responsiveness to ICB (40).
Similarly, gemcitabine only synergized with CD40 directed
immunotherapy when mice were pre-treated with gemcitabine,
but it was not effective when given concurrently or after
immunotherapy (41).

T-regs express high levels of CTLA4, and antibodies blocking
CTLA4 can deplete T-regs in the TME in murine models,
dependent on Fc subclass and host Fc receptor (42–44). T-reg
depletion has also been hypothesized as a key mechanism of
action for anti-CTLA4 treatment in humans (45, 46), however
clinical data does not support this (47), which may be due to
the different isotype and Fc portion of the human antibody.
Indeed, there is an association between pre-treatment Foxp3+
T-reg infiltration, followed by a subsequent increase in TILs 3
weeks into treatment in melanoma biopsies which was associated
with response to the CTLA4-targeting antibody ipilimumab (48).
Whether this is a causal relationship, or a bystander effect of
enhanced inflammation remains to be established, as infiltration
of the TME with T-regs usually coexists with an inflammatory
response that also includes CD8+ T cells, macrophages and
granulocytes (49, 50). Conversely, T-regs and T effector cells
express similar levels of PD-1 (51), and anti-PD-1 antibodies
do not deplete cells expressing the target, but the Fc portion
can modulate myeloid cell activity (37). Depletion of T-regs,
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FIGURE 1 | Diagram illustrating factors characteristic of a non-responsive tumor microenvironment. Tumors that are non-responsive to checkpoint blockade display

resistance at the physical, cellular, protein, and gene expression level. Figures made in ©BioRender-biorender.com.

nevertheless, may enhance the efficacy of ICB. Depletion of T-
reg using an Fc-optimized anti-CD25 antibody prior to anti-
PD-1 treatment resulted in a greater response rate in a murine
model, indicating that depleting T-regs prior to ICBmay be viable
sensitization strategy (52). An intriguing approach turned T-regs
into interferon (IFN)γ-producing T effector cells by targeting the
CARMA1-BCL10-MALT1 signalosome complex. This resulted
in an inflammatory TME with increased expression of MHC
class II by macrophages and MHC class I and PD-L1 by tumor
cells, facilitating increased T cell mediated tumor lysis (53).
Another strategy to target Treg is pharmacological inhibition
using the allosteric MALT1 inhibitor mepazine (previously used
in psychiatric diseases). Combination therapy with mepazine and
PD-1 blockade resulted in an additive anti-tumor effect (53).
However, as yet there are no clinically available therapeutic agents
which deplete human T-reg.

Macrophages
Macrophages may also play a role in response to ICB, although
both tumor-promoting and tumoricidal effects have been noted.
Macrophages are enriched in anti-PD-1 resistant human non-
small cell lung cancer (NSCLC) (24). Conversely, macrophages
have also been noted in the regression bed of neoadjuvant treated
NSCLC patients with complete response (25). These seemingly
opposing effects may be partially explained by the heterogeneity
of macrophages, which can change polarization from a pro-
tumorigenicM2 phenotype to amore tumoricidalM1 phenotype,

a phenomenon which could be exploited therapeutically. Viitala
et al. identified common lymphatic endothelial and vascular
endothelial receptor-1 (Clever-1) as a driver of M2 polarization.
Treatment of Lewis lung cancer-bearing mice with an antibody
targeting Clever-1 concomitant with PD-1 blockade provided
a modest additive anti-tumor effect (54). Similarly, Rodell
et al. used Toll-like receptor 7/8 agonist-loaded nanoparticles
to polarize macrophages toward an M1 phenotype, resulting
in single-agent anti-tumor efficacy, and additive effects in
combination with PD-1 blockade in mice bearing MC38 or B16
tumors (55). Notably, these studies used concomitant treatments
and did not explore sensitization strategies using sequential
scheduling of treatment to alter the TME prior to ICB.

Myeloid Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) have been linked to
a reduced efficacy of several immune-based cancer therapies
(56–60), and therefore can also be targeted to enhance
ICB efficacy. In murine cancer models, the gamma isoform
of phosphoinositide 3-kinase (PI3Kγ), which is highly
expressed in myeloid cells, can be targeted with a selective
inhibitor that reprograms MDSCs and improves responses
to antibodies targeting CTLA4, PD-1, or both (61). Selective
PI3Kγ inhibitors are currently being evaluated in clinical
trials (62). Similarly, blocking CSF1R prevents MDSCs from
exerting immunosuppressive effects, enhances anti-tumor T-cell
responses, and improves response to checkpoint blockade in
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FIGURE 2 | Diagram illustrating ways a checkpoint blockade favorable tumor microenvironment may be therapeutically attained. Approaches that could alter the

non-responsive tumor microenvironment and sensitize tumors to checkpoint blockade. Figures made in ©BioRender-biorender.com.

several murine models to ICB (63–65). Other approaches include
blocking the chemokine receptor CXCR2 to prevent MDSC
recruitment into the tumor, which sensitizes a mouse model of
rhabdomyosarcoma to anti-PD-1 (66), and using the repurposed
drug ibrutinib which inhibits MDSCs and sensitizes murine
breast cancer models to anti-PD-L1 (67, 68).

Natural Killer Cells
There has been increasing interest in the role of NK cells
in anti-tumor immunity, and the potential to modulate their
function therapeutically. In human nasopharyngeal cancer, the
presence of functionally exhausted NK cells predicted worse
outcomes, and reversing NK cell exhaustion in vitro restored
anti-tumor effects (69). Furthermore, a high number of intra-
tumoral NK cells in patient melanoma samples at various stages
of treatment predicted responsiveness to anti-PD-1. NK cell
associated genes were correlated with expression of Flt3lg in
the Cancer Genome Atlas melanoma dataset, suggesting a DC
stimulatory role for NK cells (26). Although NK cells may not
be required for the direct anti-tumor effects driven by ICB, they
appear to play a role in supporting an immune-favorable TME.
NK cells are required for the accumulation of conventional type
I dendritic cells (cDC1) into tumors in mouse models, which
are crucial for T cell anti-tumor immunity (70). In addition,
we recently identified higher numbers of activated NK cells in

the pre-treatment TME of responsive tumors in mouse models
treated with anti-CTLA4/anti-PD-L1 compared with those that
did not respond. This observation was validated in data from
patients treated with anti-PD-L1 (9, 71). Depletion of NK cells
prior to ICB abrogated the response, confirming a role of NK
cells in the priming of the TME, potentially through local IFNγ

production (9). Pre-treatment with poly(I:C), IFNγ and anti-IL-
10 increased NK infiltration and sensitized four different tumor
models to subsequent ICB. This sensitizing effect was similarly
abrogated when NK cells were depleted, despite intratumoral
IFNγ administration, suggesting that the effect of NK cells was
not restricted to local IFNγ production (9).

In conclusion, the concept of hot vs. cold continues to be
useful to explain some differential sensitivity to ICB. However,
as more granular information emerges about the functionality
of infiltrating cells in the TME and how this is associated with
response, this binary description may miss some nuances. For
example, in a homogenous background, using tumors derived
from clonal cancer cell lines in inbred mice, we found that
the composition of cellular infiltrates between responsive and
non-responsive tumors was largely identical for CD8+ T cells,
macrophages, DCs and granulocytes (9). However, cells in the
TME of responding mice had a more activated phenotype as
measured by MHCI, PD-L1 and activated regulatory networks,
compared to non-responding mice (discussed in more detail
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below) (9). Specific characteristics of infiltrating cells, such as
cellular phenotype and activation state, may define the sensitive
or resistant nature of the TME more than cell lineage or origin.
The examples above show that therapeutic approaches that
change these phenotypic and functional characteristics are able
to sensitize tumors to ICB (Figure 2).

SENSITIZING THE TME THROUGH
ENHANCED IFN SIGNALING

Interferons have been associated with both responsiveness and
resistance to immunotherapy (72). Expression of IFNγ and
IFNγ-inducible genes, such as IDO and CXCL9, are positive
biomarkers of response to ICB (73). Upregulation of IFNγ can
promote T cell responses, as well as upregulate MHC class I
molecules on tumor cells, increasing their sensitivity to cytotoxic
T cells (40, 74, 75). At the same time, IFNγ upregulates PD-L1
on cancer cells, leading to the possibility of T cell exhaustion.
Targeted activation of the type I IFN system (IFN α and β)
renders resistant immune-cell poor tumors sensitive to ICB (76).
Some chemotherapies also upregulate type I IFNs, attracting T
cells to the TME (77). Combination anti-CTLA4 and anti-PD-1
work synergistically by increasing IFNγ signaling, which in turn
increases IL-7 signaling, resulting in superior tumor eradication
(78). Inducing IFN signaling may therefore be exploited to
increase response to ICB. However, prolonged activation of type
I IFN can induce resistance to ICB through stimulation of nitric
oxide synthase 2 (NOS2), resulting in increased infiltration of
Treg and myeloid cells (79). The finding that IFN-pathways can
drive resistance has been reported by Benci et al. (80). Using a
B16 cell line that progressed after ICB, they found that resistance
was due to enhanced IFNγ/PD-L1 signaling in the tumor cells.
Specific blockade of IFNγ signaling in tumor cells resulted in
increased sensitivity to PD-1 blockade in an NK/ILC1-dependent
manner. This is mirrored by the observation that genetic deletion
of the type I IFN pathway in cancer cells increases responses
to ICB (81). Interestingly, by inhibiting tumor derived IFNγ

and decreasing the immune stimulated genes in tumor cells,
IFNγ production by T cells was increased, promoting tumor
cell killing (82). In addition, prolonged IFN signaling can drive
clonal selection leading to recurrence after an initial response to
ICB. In the clinical setting, defects in the pathways involved in
interferon-receptor signaling favored outgrowth and sequential
progression inmelanoma patients treated with anti-PD-1(83, 84).
Together, these data indicate that stimulation of the IFN system
is a balance between priming the TME to subsequent ICB or
rendering it resistant. The spatial and temporal characteristics of
the IFN response likely play a role in this outcome.

Cytosolic Sensor Activation
Interferons can be upregulated via several mechanisms.
Activation of cytosolic sensors by pathogen-associated molecular
patterns (PAMPs) or damage-associated molecular patterns
(DAMPs) results in a robust IFN response. These DAMPs
can be released as a consequence of treatment with some
chemotherapeutics or radiotherapy, resulting in increased

production of type I and II IFNs in the TME (85, 86).
Interestingly, a post-hoc analysis of the KEYNOTE-001 trial
of NSCLC patients treated with anti-PD-1 suggested that
patients who had received radiation prior to anti-PD-1 had
significantly longer survival than those who did not (87).

The stimulator of interferon genes (STING) sensor can be
activated by free DNA, which is released after radiotherapy (88),
or by direct injection of cyclic dinucleotides (89), resulting in
strong immune activation which can overcome tumor immune
suppression (88, 90). Similarly, Toll-like receptors (TLRs) such
as TLR3 and TLR9 can be activated by poly(I:C) and CpG,
respectively, which can result in a potent inflammatory response
when injected into tumors, and can induce long-lasting CD8+

T cell-dependent anti-tumor responses (76, 91). Activation of
these cytosolic sensors results in type I IFN production, which
as described above can control anti-tumor immunity (76, 92).
There is experimental evidence that induction of IFN in the
TME via activation of Toll-like receptors (TLR) increases the
effectiveness of ICB. Peri-tumoral injection of TLR9 ligand
CpG increased sensitivity to anti-PD-1 in murine models of
bladder cancer (93). Similarly, several studies identified that
TLR3 ligand poly(I:C) improved response rates to ICB in
murine models of melanoma, lung, and colon cancer (76, 94).
Importantly, these beneficial effects of poly(I:C) are schedule-
dependent. A short course of treatment with a Poly(I:C)-based
therapeutic combination prior to ICB sensitized several tumor
models to anti-CTLA4/anti-PD-L1. However, treatment with
ICB first, followed by poly(I:C) was not additive over ICB alone,
emphasizing the importance of temporal aspects of an effective
anti-tumor response, and by extension, of scheduling drugs in
combination immunotherapy (9). There are ongoing clinical
trials combining polyICLC [a stable derivative of poly(I:C)] with
ICB (clinicaltrial.gov numbers: NCT02834052, NCT03721679,
NCT02643303). Treatment with immunostimulatory molecules
prior to ICB is a rational strategy to impose a sensitive phenotype
onto tumors, however, they must be applied directly into the
tumor, which may not always be feasible. A novel small molecule
STING agonist has recently been developed for systemic use,
which may overcome this limitation (95).

Oncolytic Virotherapy
Oncolytic virotherapy is another strategy which has been used
to induce IFN. Combining oncolytic virotherapy and CTLA4
blockade resulted in rejection of distant (non-virally injected)
tumors in the poorly immunogenic B16 melanoma model, which
was dependent on NK cells and type I IFN (96). Oncolytic
virotherapy was also able to sensitize a model of triple-negative
breast cancer to ICB (97). In the clinical setting, intravenous
oncolytic Orthoreovirus increased T cell infiltration in primary
andmetastatic brain cancer and up-regulated IFN-regulated gene
expression and PD-L1 expression, creating a favorable TME for
subsequent ICB therapy (98). Another clinical trial using an
attenuated herpes simplex virus type 1, followed by anti-PD-
1 therapy for melanoma patients resulted in a 33% complete
response rate, with increased CD8+ T cells, and increased PD-
L1 protein and IFNγ gene expression in responders. Baseline
CD8+ T cell infiltration or a baseline IFNγ signature was not
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associated with response (99). Oncolytic viral therapy is therefore
a potential future option to skew the TME toward an ICB
responsive phenotype, provided that at least some of the tumor
is accessible for local injection.

ALTERING PHYSICAL FACTORS OF
TUMORS TO IMPROVE RESPONSE

Recent research has highlighted that, besides biological, and
chemical cues from the microenvironment, physical cues can
also greatly alter cellular behavior of cancer cells. Abnormal
vasculature and barriers to perfusion, such as high interstitial
pressure within tumors can antagonize the effectiveness of ICB by
promoting TME-mediated immune suppression. The impaired
perfusion capacity of tumor blood vessels helps to create an
immune cell unfavorable TME (100, 101). However, these
physical characteristics can vary greatly between tumor types.
For example, biomarkers used for typical ICB-responsive cancer-
types, such as mutational burden, level of tumor-infiltrating
T lymphocytes or expression of immune-checkpoints are not
predictive for glioblastoma, partly due to the different physical
environment (102).

Normalizing Tumor Vasculature and
Immune Cell Infiltration
Responsive tumors are characterized as having greater immune
cell infiltrate, and the baseline infiltration level of T cells has
important predictive and prognostic implications for ICB
(103, 104). Although activated T cells are observed in the
periphery of non-responsive tumors after ICB, they often
fail to infiltrate the tumor itself (105). Tumors exploit many
mechanisms to limit immune cell infiltration. Proangiogenic
growth factors downregulate adhesion molecule expression,
limiting extravasation of immune cells across the tumor
endothelium (101). The tumor endothelium can be manipulated
through selective blockade of angiogenic factors including
VEGF and endothelin-1 (105, 106), or by increasing VE-
cadherin expression (107), resulting in increased T-cell
infiltration. Combination blockade of VEGFA and angiopoietin-
2 normalized tumor blood vessels and increased lymphocyte
infiltration, improving outcomes when combined with anti-
PD-1 in B16-OVA and MC38 mouse models (108). A small
clinical study in 10 patients with metastatic renal cell carcinoma
found that pre-treatment with the VEGF blocking drug
bevacizumab followed by a combination of bevacizumab and
PD-L1 resulted in a 40% response rate, which was high compared
to historical controls for either agent alone (109). A unique
approach using vascular targeting peptides allowed targeted
delivery of the pro-inflammatory cytokine LIGHT to tumor
vessels in murine models (110). This approach normalized
tumor vasculature and increased intratumoral effector T cells
when combined with ICB, resulting in responses in otherwise
immunotherapy-resistant tumors.

Abnormal tumor vasculature promotes resistance to ICB
via various effects. Abnormal vasculature limits access of ICB
antibodies into the TME and reduces oxygen availability, leading

to a hypoxic TME. Hypoxia in turn, upregulates several immune
checkpoints in the TME, including PD-L1, CD47, VISTA and
4-1BB (CD137), impairing anti-tumor responses. Furthermore,
hypoxia facilitates recruitment of MDSCs and enhances their
immunosuppressive function (111). The immunosuppressor
TGF-β1 is promoted by overexpression of HIF-1α in tumor
hypoxia, which fosters exclusion of T lymphocytes (71,
112). Targeting hypoxia-induced immunosuppression improves
outcomes from ICB, but there are few studies addressing whether
targeting hypoxia directly sensitizes to ICB. In one study, in
vitro pre-treatment of B16-OVA tumor cells with GTN, an
agonist of nitric oxide, inhibited hypoxia-induced resistance to
CTL-mediated lysis (113). In another, combining the hypoxia
reducing prodrug (TH-302) with checkpoint blockade in amouse
prostate cancer model significantly reduced the number of tumor
infiltrating MDSCs and cured around 80% of mice (114).

Circumventing High Interstitial Pressures
in Tumors
Another feature of the TME is “solid stress,” defined as
a growth-induced increase of physical pressure, commonly
exacerbated by overproduction of hyaluronic acid (HA). This
leads to high interstitial pressure and vessel collapse which
may result in the exclusion of immune cells (115). Treatment
with pegvorhyaluronidase alfa, which enzymatically degrades
HA, has been tested to ameliorate solid stress, increasing both
infiltration of immune cells and intratumoral uptake of anti-PD-
L1 antibodies. Pre-treatment with pegvorhyaluronidase alfa 24 h
prior to anti-PD-L1 resulted in significant growth inhibition in an
anti-PD-L1-resistant breast cancer model which was genetically
engineered to express hyaluronan synthase 3 (116). Desmoplasia,
the growth of fibrous or connective tissue produced by cancer-
associated fibroblasts, can also contribute to solid stress. A
dense fibrotic stroma is associated with poor prognosis and is
a common feature of immunotherapy resistant tumors such as
pancreatic and breast cancer. One approach to decrease tumor
interstitial pressure is to reprogram cancer associated fibroblasts
to a quiescent state using angiotensin receptor blockers.
Treatment with tumor-targeted angiotensin receptor blockers
increased tumor perfusion, reduced immunosuppression, and
enhanced the efficacy of anti-PD-1 treatment (117). Fibroblast
function is also modulated by hypoxia, which induces signaling
by CXCL12 via CXCR4, which promotes CAF recruitment,
activation, andmatrix production. Inhibition of CXCR4 signaling
alleviated solid stress and increased the response to anti-
CTLA4/anti PD-1 ICB in three metastatic breast cancer
models (118).

ALTERING THE MICROBIOME TO
AUGMENT IMMUNE CELLS WITHIN THE
TME

The microbiome has been shown to directly impact the TME,
as antibiotic-treated or germ-free mice have defective tumor-
infiltrating myeloid-derived cells with lower cytokine production
and tumor necrosis after CpG-oligonucleotide treatment
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compared to controls (119). Conversely, commercialization with
the bacterial species Bifidobacterium improved dendritic cell
function and subsequent tumor-killing capabilities of cytotoxic
T cells, resulting in reduced growth of subcutaneous melanoma
xenograft models in mice. Additionally, Bifidobacterium
administration in combination with anti-PD-L1 nearly abolished
tumor growth (120). Other bacterial species such as Bacteroides
thetaiotamicron and non-toxigenic B. fragilis have shown to
improve antitumor cytotoxic T-cell immunity improving the
efficacy of anti-CTLA-4 in multiple cancer mouse models
(121). In melanoma patients treated with anti-PD-1, a positive
correlation was found between the number of tumor infiltrating
CD8+ T cells and the abundance of Faecalibacterium in
responders (122). Several studies have found a link between
the fecal microbiome and response to ICB (120–125). Fecal
transplants from responding patients into mice has shown to
improve tumor control, augment T cell responses, and increase
the efficacy of anti-PD-L1 therapy (124) or PD-1 therapy (125),
showing promise as a potential sensitizing strategy.

MODULATING GENE SIGNATURES
TOWARD A PERMISSIVE TME

In the context of immune checkpoint blockade, important
biological changes in the tumor microenvironment are reflected
in changes in gene expression. Gene expression data from

pre-treatment melanoma samples revealed immune-related
signatures that were highly expressed in patients whose tumors
responded to anti-CTLA4 or anti-PD-1 therapy, compared to
non-responders (73, 126). In another study using bulk RNAseq
data, non-responders to anti-PD-1 had higher pre-treatment
expression of genes involved in mesenchymal transition,
immunosuppression (including genes associated with wound
healing and angiogenesis), and monocyte and macrophage
chemotaxis (127). More recently, time-dependent transcriptomic
changes have been associated with response to checkpoint
blockade. RNA sequencing before and during anti-PD-1 therapy
showed that tumor samples from responsive patients displayed
upregulation of immune checkpoint genes and activation of
response-specific transcriptional networks (128). Taken together,
these results highlight the importance of transcriptomic changes
in the tumor microenvironment. Moreover, it raises the
possibility that manipulating gene expression patterns in the
tumor microenvironment will impact treatment with ICB.

As proof of concept of this approach, gene expression
changes in non-responsive tumors to ICB were used to inform
computational drug discovery. Using single cell data of 33
melanoma patients, Jerby-Arnon et al. identified a transcriptional
program expressed in malignant melanoma cells indicating
a poor response to checkpoint blockade (129). They linked
this poorer response to a less permissive TME, as evidenced
by intratumoral niches of T-cell depletion. In a drug screen
on 131 cell lines, they found their transcriptional signature

FIGURE 3 | A personalized pre-treatment strategy to optimize outcomes to immune checkpoint blockade. We propose a pre-treatment approach to treating cancer

patients, where tumors displaying features of a non-responsive TME can be first sensitized to attain a favorable TME, to improve chances of response to immune

checkpoint blockade. Figures made in ©BioRender-biorender.com. Adapted from a figure we published recently in Science Translational Medicine (7).

Frontiers in Immunology | www.frontiersin.org 7 February 2020 | Volume 11 | Article 223

https://www.biorender.com
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zemek et al. Sensitizing Tumors to Checkpoint Therapy

to be antagonized by CDK4/6-inhibitors such as abemaciclib
and palbociclib. Combining CDK4/6-inhibitors with checkpoint
blockade inhibited tumor outgrowth in mouse models of
melanoma, validating the approach of using gene signatures and
bioinformatics interrogation to identify effective combination
therapies (129).

In our own work, we used a systems biology approach to
contrast responsive and non-responsive tumors prior to therapy
in two murine models, to identify upstream regulators of the
gene signature response signature to ICB (6, 9, 10). We found
that responsive tumors were characterized by an inflammatory
gene expression signature consistent with upregulation of STAT1
and TLR3 signaling, and down-regulation of IL-10 signaling.
Therapeutically targeting these drivers using poly(I:C), IFNγ

and an anti-IL-10 monoclonal antibody sensitized the TME
and significantly increased response to ICB in multiple murine
models. The triple combination was superior to any of the
single drugs, validating the approach to identify complex
therapeutic combinations for tumor sensitization (9). Similarly,
by interrogating drug repurposing databases for the response-
associated gene expression profile of anti-CTLA4 treated mice,
we identified all-trans retinoic acid as a potential drug candidate
to improve outcomes to ICB therapy. Treatment with all-trans
retinoic acid indeed significantly increased the response rate
when combined with anti-CTLA4 over either treatment alone
(10). Bioinformatics approaches will facilitate rapid identification
of new ways to sensitize the TME.

DISCUSSION

Going Forward: Personalized
Biomarker-Based Adaptive Therapy
There are likely to be many different ways to increase the chance
that a patient will respond to ICB, and these are likely to
differ between individuals. A personalized pathway to improve
treatment effectiveness may be possible in the future (Figure 3).
We propose that a pre-treatment biopsy will determine the
baseline TME. If the patient’s tumor has many characteristics
associated with a responsive TME, they can start treatment with
ICB. If not, a sensitizing therapy could be considered first, based
on the genetic and immunological profile of the tumor. If, for
example, the biopsy demonstrates many macrophages, but little
IFN/STAT1 signaling, therapy aimed to polarize macrophages
could be considered; if there are many T-regs in the biopsy,
therapy aimed at reducing those could be considered. An on-
treatment biopsy shortly after initiation of the sensitization
strategy can verify whether the biological endpoint has been
achieved. If so, the patient can progress to treatment with ICB.

If not, another sensitization strategy could be considered, or

another therapy altogether. Although this proposal is attractive,
and would prevent patients from undergoing potentially futile
therapy with attendant physical and financial toxicity, none of
the biomarkers discussed are currently robust enough to justify
withholding ICB in patients with an appropriate indication, and
none of the sensitization strategies have been clinically validated
in prospective trials.

How can we progress toward personalized immunotherapy
and sensitization? Firstly, preclinical studies must include
more robust study of scheduling effects. As the anti-tumor
immune response is a highly orchestrated program involving
many cells from both innate and adaptive immunity, changing
over time, it is likely that temporal aspects are important
for optimal immunological control, similar to the antiviral
response (6, 130). However, as discussed above, most murine
cancer studies do not rigorously study scheduling when
investigating combination treatments. Secondly, human window
of opportunity trials could help screen for drugs that induce
a response-associated TME, by making use of the short
period between cancer diagnostic biopsy and primary surgery
(131). Sequential biopsies in clinical trials can also provide
more insight into how drugs change the TME. Lastly,
bioinformatics approaches will also need to continue to
develop, to improve our understanding of a responsive
TME (132).

The future goal of this personalized biomarker-based adaptive
treatment approach is to give each patient the best chance of a
successful response to immunotherapy.
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