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C-type lectin-like receptors (CLRs) represent a family of transmembrane pattern

recognition receptors, expressed primarily by myeloid cells. They recognize not

only pathogen moieties for host defense, but also modified self-antigens such as

damage-associated molecular patterns released from dead cells. Upon ligation, CLR

signaling leads to the production of inflammatory mediators to shape amplitude,

duration and outcome of the immune response. Thus, following excessive injury,

dysregulation of these receptors leads to the development of inflammatory diseases.

Herein, we will focus on four CLRs of the “Dectin family,” shown to decode the

immunogenicity of cell death. CLEC9A on dendritic cells links F-actin exposed by

dying cells to favor cross-presentation of dead-cell associated antigens to CD8+ T

cells. Nevertheless, CLEC9A exerts also feedback mechanisms to temper neutrophil

recruitment and prevent additional tissue damage. MINCLE expressed by macrophages

binds nuclear SAP130 released by necrotic cells to potentiate pro-inflammatory

responses. However, the consequent inflammation can exacerbate pathogenesis of

inflammatory diseases. Moreover, in a tumor microenvironment, MINCLE induces

macrophage-induced immune suppression and cancer progression. Similarly, triggering

of LOX-1 by oxidized LDL, amplifies pro-inflammatory response but promotes tumor

immune escape and metastasis. Finally, CLEC12A that recognizes monosodium urate

crystals formed during cell death, inhibits activating signals to prevent detrimental

inflammation. Interestingly, CLEC12A also sustains type-I IFN response to finely tune

immune responses in case of viral-induced collateral damage. Therefore, CLRs acting in

concert as sensors of injury, could be used in a targeted way to treat numerous diseases

such as allergies, obesity, tumors, and autoimmunity.
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INTRODUCTION

Cell death represents an important process occurring in the natural and physiologic contexts of
embryonic development and tissue renewal, or in protection against factors such as disease or
localized injury. In contrast to apoptosis, representing an orderly method of removing unwanted
cells, necrosis is a more violent form of cell death that ultimately leads to the loss of integrity of
the plasma membrane and the release of damage-associated molecular patterns (DAMPs) into
the extracellular space (1–10). This induces an inflammatory response that subserves a number
of biological functions exerting both positive and negative consequences. Inflammation will lead
to rapid delivery of cellular and soluble defenses to the site of death in order to contain the
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injurious process and to help to clear debris and stimulate
repair. However, release of anti-microbial molecules, such as
reactive oxygen species by myeloid cells can further damage
the tissue. Thus, inflammatory response can cause disease
particularly in the case of dysregulated or excessive cell death
(11). Molecules associated with dying/dead cells are detected
by diverse receptors that via particular signaling, impact cell
function and determine whether death is immunogenic or
tolerogenic. Prominent among death sensors are the members
of the C-type lectin receptor superfamily expressed mostly by
myeloid cells (12). They constitute transmembrane and soluble
receptors containing at least one carbohydrate recognition
domain, in the broader sense, a C-type lectin-like domain
(CTLD) (13–16). Via this domain, these receptors usually bind
carbohydrates through a Ca2+ dependent conserved motif.
However, some of them lack the Ca2+ binding site and are
called C-Type Lectin-Like Receptors (CLRs). CLRs were shown
to play an important role in both innate and adaptive immunity,
particularly the ones from the “Dectin” family whose genes are
localized in the telomeric region of the natural killer cluster
(17, 18). Upon ligation, CLRs not only serve as antigen-uptake
receptors for internalization and presentation to T cells, but
also trigger multiple signaling pathways leading to NF-κB, type-
I interferon (IFN) and/or inflammasome activation (17–20).
CLRs are usually classified as activating or inhibitory receptors,
based on their intracellular signaling motifs (21–23). They can
have a classical immunoreceptor tyrosine-based activating motif
(ITAM) constituted by YXXL tandem repeats in the intracellular
tail or can interact with ITAM-containing adaptor proteins, such
as Fc receptor γ (FcRγ) chain (21, 24). Other CLRs contain
an hemi-ITAM motif composed of a single tyrosine within

TABLE 1 | C-type lectin-like receptors sensing DAMPs.

Gene name Expression DAMP ligand/s Functional effects Associated diseases

CLEC8A, OLR-1,

LOX-1

OLR1 (Hs)

Olr1 (Mm)

EC, mDC, moDC, B, MØ

(Hs and Mm)

oxLDL, oxHDL,

apoptotic bodies,

phospha-tidylserine

↑ ROS, corpse uptake; ag

capture and presentation

Promotes atherosclerosis,

hypertension, diabetes,

metabolic syndrome, coronary

artery diseases and cancers

CLEC4E, MINCLE,

CLECSF9

CLEC4E (Hs)

Clec4e (Mm)

MØ, PMN (Hs and Mm) SAP130,

β-GlcCer, cholesterol

sulfate and crystal

Necrotic cell uptake,

↑TNFα, IL-6, CXCL1, IL-1,

MIP-1α/β, MIP-2

Promotes obesity, rheumatoid

arthritis, allergic contact

dermatitis, ischemic stroke,

traumatic brain injury, hepatitis,

sepsis and multiple sclerosis

CLEC12A, MICL,

DCAL-2,

CLL-1, CD371

CLEC12A (Hs)

Clec12a (Mm)

CMP, GMP, MEP, MØ, Bs,

Gr, Mo, DC (Hs and Mm)

Mono-sodium

urate crystals

Necrotic cell ag

cross-presentation, SYK

inhibition,

↓CXCL1/10 and excessive

neutrophil infiltration

↓ ROS, IL-8

↑Type-I IFN

Reduces gout arthritis

CLEC9A, DNGR-1,

CD370

CLEC9A (Hs)

Clec9a (Mm)

CDPs; XCR1+ DC, pDC

(Mm)

BDCA3+ DC (Hs)

F-actin Necrotic cell ag

cross-presentation,

↓ MIP-2 and excessive

neutrophil infiltration

Promotes atherosclerosis and

pancreatitis

CLRs reported to interact with DAMPs and discussed in this review. Hs, Homo sapiens; Mm, Mus musculus; CDPs, common DC progenitors; CMP, common myeloid progenitor; GMP,

granulocyte myeloid progenitors; MEP, megakaryocyte-erythroid progenitors; Gr, Granulocytes; Bs, Basophils; MØ, Macrophages; Mo, Monocytes; B, B cells; EC, Endothelial cells;

PMNs, polymorphonuclear leukocyte; moDCs, monocyte-derived DCs; mDC, myeloid DC; pDC, plasmacytoid DC; ag, antigen.

an YXXL motif (20, 25). Upon ligation, tyrosine(s) present in
the ITAM or hemITAM motifs are phosphorylated, allowing
the recruitment of SYK family kinases and the formation of
the Card9/Bcl10/Malt1 complex (19, 21, 26–29). This leads to
activation of NF-κB pathway and various cellular responses
such as the production of reactive oxygen species (ROS) and
the expression of diverse cytokines and chemokines to regulate
both innate and adaptive immune responses (19, 28–33). In
contrast, some CLRs contain an immunoreceptor tyrosine-based
inhibitory motif (ITIM) that induces the recruitment of tyrosine
phosphatases such as Src homology region 2 domain-containing
phosphatase (SHP)−1 or −2, to negatively regulate the activity
of activating signaling pathways (34–37). At last, some CLRs
have neither ITAM nor ITIM domains and their signaling is
either uncharacterized or utilizes alternative pathways such as
via the serine/threonine kinase RAF-1 (17, 35, 38, 39). However,
classification of CLRs as activating or inhibitory receptors is not
as simple. A same CLR can according to the ligand (physical
nature, affinity, avidity) or the environment, integrate distinct
positive and negative signals, to shape immune response in
complex scenarios (37). In addition, sensing of tissue damage
by CLRs can complement detection of pathogens. This crosstalk
in CLR recognition and signaling of both pathogen-associated
molecular patterns (PAMPs) released following viral infections
and DAMP from collateral injured cells may ensure microbial
control while preserving integrity of the infected organs (40).
Moreover, several studies have highlighted the fundamental role
of these receptors during excessive cell death induced by sterile
inflammation and their dysregulations were shown to lead to
the development of inflammatory and auto-immune diseases
(40–42). As shown herein in Table 1 and Figure 1, we will
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present a brief overview of the four CLRs of the dectin family
largely described to decode the immunogenicity of cell death,
thereby representing important medical therapeutic targets. This
list is however not exhaustive. A recent study demonstrates
that CLEC7A on DCs binds to annexins on apoptotic cells and
induces by a selective SYK phosphorylation, the production of
ROS to prevent auto-immune disease development (43).

CLEC8A (LOX-1, OLR-1)

The lectin-like oxidized low-density lipoprotein receptor-1
(LOX-1) is a homodimer expressed by macrophages, DCs, B
cells, endothelial cells, activated platelets and smooth muscle
cells (17, 44–53). Its basal expression is relatively low but is
dynamically upregulated by pro-inflammatory cytokines, stress,
oxidized low-density lipoprotein (oxLDL), angiotensin II and
endothelin (54, 55). LOX-1 is involved in numerous physiological
functions and binds a broad spectrum of structurally distinct
ligands including oxLDL (46), oxidized hypochlorite modified
high-density lipoprotein (oxHDL) (56), phosphatidylserine (PS)
(52), apoptotic bodies (57), advanced glycation end-products
(AGEs) (58), bacteria (59), heat shock proteins 60 (Hsp60) (60),
and platelets (61). LOX-1 has no known enzymatic or catalytic
activity in its cytoplasmic tail and may require interaction with
protein(s) for intracellular signaling. Following uptake of its
ligand, LOX-1 induces pro-inflammatory signaling pathways
leading to production of ROS, secretion of pro-inflammatory
cytokines and induction of apoptosis signals (Table 1 and
Figure 1). Thus, LOX-1 plays a pivotal role in the development
of atherosclerosis, by inducing oxLDL uptake, lipidosis, foam cell
generation and ultimately atheroma plaque formation (62, 63).
This OxLDL/LOX-1 axis was also shown to play a role in cartilage
degeneration during age-related osteoarthritis progression in the
murine knee (64). Similarly, the triggering of LOX-1 by AGEs,
contributes to diabetic complications such as atherosclerosis (65,
66). LOX-1 was also reported to play a key role in endothelial
cell phagocytosis of apoptotic/aged cells due to the ability to
recognize the exposure of PS on the surface of apoptotic cells (57).
Interestingly, LOX-1 can be cleaved as a soluble form released
in the circulation (67). This soluble form is overexpressed
in patients with hypertension, diabetes, metabolic syndrome,
and coronary artery diseases (58, 68), making soluble LOX-
1 a non-invasive biomarker of disease. Importantly, numerous
studies described the importance of LOX-1 in the progression
of distinct types of cancer. Thus, a high expression of LOX-
1 is correlated with a worse prognosis in patients suffering
from gastric (69), colorectal (70), or prostate (71) cancer.
Functionally, the triggering of LOX-1 by oxLDL was shown
to induce TNF-α expression, tumor angiogenesis and tumor
cell trans-endothelial migration and metastasis in prostate or
breast cancers (71, 72). Interestingly, a high expression of LOX-1
was reported on polymorphonuclear myeloid-derived suppressor
cells from peripheral blood and tumor of cancer patients (up to
5–50%), whereas its expression is almost undetectable on blood
neutrophils from healthy donors (73). Therefore, expression of
LOX-1 on these suppressive cells that is due to endoplasmic

reticulum stress and lipid metabolism, may represent a specific
therapeutic target in cancer. Besides, LOX-1 on DCs was shown
to bind to Hsp to potentiate cross-presentation of chaperoned
peptides (51) and apoptotic cells-coupled antigens (74) to
cytotoxic CD8+ T cells. In addition, LOX-1 on B cells was shown
to promote B cell differentiation into class-switched plasmablasts,
their exit from germinal centers and their migration toward local
mucosa and skin (48). Although the specific ligands remain to be
characterized, this study demonstrates that triggering of LOX-1
could be applied for the design of new vaccines.

CLEC4E (MINCLE, CLECSF9)

CLEC4E, more commonly known as MINCLE (Macrophage-
inducible C-type lectin), associates with the FcRγ chain, an
ITAM-containing adapter. In addition, it forms a functional
heterodimer with Macrophage C-type Lectin (MCL). Through
this complex, MINCLE is translocated to the plasma membrane
and benefits the endocytic capacity ofMCL tomediate an efficient
phagocytosis. Moreover, through this complex, both receptors
increase their affinity and specificity toward their ligands (75).
MINCLE is expressed by antigen-presenting cells including
macrophages, neutrophils, DCs and B cells (76). Its expression
is induced by several inflammatory stimuli and stresses, such
as lipopolysaccharide (LPS), tumor necrosis factor (TNF), IL-6
and saturated fatty acids (76–79) and was found over-expressed
in numerous inflammatory diseases (77, 80–86). Interestingly,
a polymorphism in this receptor has been linked to protection
against rheumatoid arthritis in humans (87). MINCLE is largely
described to recognize glycolipids from pathogens (88), but
binds also ligands released by dead cells such as spliceosome-
associated protein 130 (SAP130) (21, 89), β-glucosylceramide (β-
GlcCer) (90), cholesterol sulfate and crystals (82, 91) (Table 1 and
Figure 1). This triggers the recruitment of SYK and the activation
of NF-κB, mitogen-activated protein kinase (MAPK), activator
protein 1 (AP-1) or nuclear factor of activated T cells (NFAT)
and downstream transcription of inflammatory genes (21, 88,
92–97). MINCLE induces the expression of several cytokines
and chemokines such as TNF-α, IL-6, MIP-2, and CXCL1 (21,
28, 29). In vivo, MINCLE was shown to potentiate neutrophil
infiltration following tissue damage induced by non-homeostatic
cell death (21). Indeed, authors demonstrated that administration
of anti-MINCLE blocking antibody following whole-body
irradiation reduces MIP-2 production by thymic macrophages
and consequently neutrophil infiltration. It remains to determine
whether the recruitment of inflammatory cells induced by
MINCLE is beneficial or exacerbates tissue damage. However, in
an intriguing way, no such effect on neutrophilic inflammatory
responses was observed in MINCLE-deficient mice following
intra-peritoneal injection of necrotic cells or in response to
liver cell necrosis induced by acetaminophen (98). One could
speculate that this specific role of MINCLE on neutrophils
may depend on the model or be due to some compensatory
change with other dead-cell receptors in MINCLE-deficient
mice. Alternatively, as neutrophils also express MINCLE, the
use of antibodies may have exerted pleotropic effects by directly
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FIGURE 1 | DAMPs recognition by C-type lectin-like receptors and signaling pathways C-type lectin-like receptors (CLRs) of the “Dectin family” recognize not only

pathogen-associated molecular patterns (PAMPs), but also various self-derived ligands such as damage-associated molecular patterns (DAMPs). This recognition

triggers activation of immune-receptor tyrosine-based activation motif (ITAM), leading to the recruitment and activation of SYK family kinases. Subsequent activation of

the Card9–Bcl10–Malt1 complex through SYK induces NF-κB activation and gene transcription of various chemokines and cytokine (CLEC4E alias MINCLE).

Alternatively, CLEC4E can also signal through PLCγ2 to induce the calcineurin/NFAT pathway. Alternatively, immune response can be regulated through increase of

ROS and IL-1β production (CLEC8A) modifying gene expression and releasing ROS to the extracellular matrix. By contrast, activation of immune-receptor

tyrosine-based inhibition motif (ITIM) induces the recruitment and activation of protein tyrosine phosphatases such as SHP-1 and SHP-2 and the dephosphorylation of

activation motifs to inhibit cellular activation mediated by other pattern-recognition receptors (PRRs) (CLEC12A). CLEC9A, via Hemi-ITAM (HITAM) plays a key role in

CD8+ T cell cross-priming. In addition, CLEC9A can activate SHP-1 to exert inhibitory feedback and restrain excessive immune response.
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targeting or depleting neutrophils (98). Although MINCLE
contributes to inflammation and immunity to contain the
insult and initiate tissue repair, it can amplify collateral tissue
damage and was therefore demonstrated to be implicated in
numerous inflammatory diseases such as obesity, rheumatoid
arthritis, allergic contact dermatitis, ischemic stroke, traumatic
brain injury, hepatitis, sepsis, and multiple sclerosis (77, 80–
86). Besides, MINCLE recognizes cholesterol crystals abundantly
present in atherosclerotic plaques, triggering in macrophages the
production of pro-inflammatory molecules (91). MINCLE was
also shown to play a specific role on plasmacytoid DCs in skin
allergies by recognizing cholesterol sulfate and inducing secretion
of pro-inflammatory mediators such as IL-1α, IL-1β, MIP-1α,
and MIP-1β (82). Furthermore, β-GlcCer whose accumulation
leads to the systemic inflammation of Gaucher disease, was also
characterized as a ligand forMINCLE, able to potentiate acquired
immune response (90). Thus,MINCLE, via its high expression on
M1-type macrophages and its ability to sense dead cells was also
shown to be an important mediator of additional inflammatory
diseases such as obesity and acute kidney injury (77, 78, 99, 100).
In addition, MINCLE, by initiating inflammation, participates in
the pathogenesis of cerebral ischemic stroke (83) and neuropathic
pain by sensing damaged nerves (101). In cancer, the recruitment
of macrophages induced by MINCLE appeared to be detrimental
in a mouse model of pancreatic ductal adenocarcinoma. Authors
demonstrated that ligation of MINCLE by its ligand SAP130,
both highly expressed by inflammatory cells from tumors,
promotes adaptive immune suppression and drives necrosome-
induced accelerated oncogenesis (102). Interestingly, MINCLE
not only acts as an activating (ITAM) receptor but can also
act as an inhibitory-ITAM (ITAMi) receptor. Indeed, following
recognition of the pathogen moieties of Leishmania, MINCLE
shifts to an ITAMi configuration that impairs DC activation.
Thus, ITAMi configuration exploited by a pathogen for immune
evasion, may represent a paradigm for ITAM-coupled receptors
sensing self and non-self (103, 104). As DAMPs are “mimics”
of PAMPs, it will be interesting to investigate whether such
a ligand-dependent dual sensing pathway exists also for a
DAMP counterpart.

CLEC12A (MICL, DCAL2, CLL-1, OR
CD371)

CLEC12A, is a homodimer expressed mostly by myeloid
cells such as neutrophils, monocytes, macrophages and DCs,
and is considered as a marker of acute myeloid leukemia
blasts (22, 105–111). CLEC12A expression is downregulated by
inflammatory stimuli (108, 112) and its ITIM domain recruits
the tyrosine phosphatases SHP-1 and SHP-2 to counteract
activating positive regulatory signals (22). CLEC12A was
the first inhibitory receptor of the dectin cluster of genes
described to sense a DAMP (Table 1 and Figure 1). It binds
monosodium urate (MSU) crystal formed by crystallization of
soluble uric acid following contact with extracellular sodium
ions, when cells are dying. Thus, CLEC12A deficient mice,
after in vivo challenge with MSU or necrotic cells or after
radiation-induced thymocyte killing, exhibit hyperinflammatory

responses (105). Functionally, CLEC12A limits the neutrophil
recruitment in tissue following cell damage by inhibiting
CXCL1 and CXCL10 production and by limiting ROS and IL8
production by neutrophils (105, 113). Therefore, by sensing
cell death, CLEC12A represents an immune checkpoint that
provides negative feedback mechanism for immunoregulation
and protection of tissues from an overexuberant inflammatory
response. As deposition of MSU crystal is observed in a variety
of inflammatory responses such as in the arthritis disease “gout,”
(105, 114), the development of a selective agonist for CLEC12A
may represent a valuable therapeutic challenge. Interestingly,
a link between CLEC12A and the type-I IFN response that
is important for host immunity against viral infection, was
recently demonstrated. Authors elegantly showed that following
viral infection, CLEC12A triggered by MSU released by host
dead cells, positively activates a type-I IFN response thereby
amplifying anti-viral immune response (115). By sensing
tissue integrity, CLEC12A can therefore finely modulate the
equilibrium between infection-driven inflammation and control
of pathogens. Authors proposed that as prolonged type-I
IFN signaling during chronic virus infection facilitates virus
persistence by inducing negative immune regulators, CLEC12A
inhibition may be clinically beneficial in cases of persistent
infection (116, 117). Similarly, the inhibitory receptor DCIR was
shown to sustain type-I IFN signaling in DCs through interaction
with an unidentified endogenous ligand(s) (118). Although both
of these CLRs contain an ITIM in their cytoplasmic tail, and are
thought to act as negative regulators of immune cell signaling,
these results suggest that ITIM can somehow activate, rather
than inhibit, some signaling pathways (22, 118). Whether these
receptors deliver a signal on their own through the ITIM motif
or require a co-receptor will need further molecular dissection.
In fact, it will be interesting to investigate whether ITIM-
coupled CLR-deficient animals develop autoimmune diseases as a
consequence of impaired type-I IFN signaling, thereby increasing
IL-12 production and Th1 differentiation (118). Interestingly,
CLEC12A-deficient mice were reported to develop exacerbated
arthritis in a collagen antibody-induced model characterized
by cell death in the synovium (114). Astonishingly, authors
proposed that during arthritis development, CLEC12A acts as an
autoantigen that modulates threshold of myeloid cell activation.
To support their hypothesis, they mentioned that this receptor
is the target of autoantibodies in a subset of rheumatoid arthritis
patients (114). Besides, several studies demonstrated in bothmice
and humans that CLEC12A on DCs serves as a specific target for
antigen delivery to enhance CD8+ T cell and antibody responses
(106, 110).

CLEC9A (CD370, DNGR-1, UNQ9341)

CLEC9A is a homodimer highly expressed on common
dendritic cell (DC) progenitors (CDPs) and type 1 conventional
DCs (cDC1) (XCR1+ in mouse and BDCA3+ counterparts
in human) (119–124). CLEC9A, whose expression is lost
after Toll-like receptor-mediated maturation (122), binds to
a fibrous polymer of actin, termed F-actin, an evolutionarily
conserved ligand from yeast to mammals exposed by pathogens
and dead cells (125, 126) (Table 1 and Figure 1). CLEC9A
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has a hemi-ITAM cytoplasmic tail with a highly conserved
tyrosine that upon phosphorylation allows binding to SYK
(23). Following F-actin recognition, CLEC9A signaling does
not influence cell debris uptake nor maturation of dendritic
cells (127). However, CLEC9A diverts phagocytosed dead cell
cargo to a non-degradative recycling endosome compartment
thereby facilitating cross-presentation of the dead-cell-associated
antigens to CD8+ T cells (23). Myosin II, an actin-associated
motor protein, potentiates the binding of CLEC9A to F-
actin by facilitating co-operative binding of the two CTLD
domains of the CLEC9A dimer, thereby rendering the cross-
presentation more efficient (128). Thus, CLEC9A plays an
important function in CD8+ T cell cross-priming during
herpes virus infection (127, 129) and specifically induces
optimal generation of tissue-resident memory T cells during
influenza infection (130). The targeting of CLEC9A with
tumor-expressed peptides together with adjuvant was shown
to induce efficient cross-priming of CD8+ T cells and to
control tumor immunity in a mouse model of melanoma
(124). Moreover, during atherosclerosis, CLEC9A on cDC1,
activated by the accumulation of necrotic cell debris, leads
to disease progression by inducing macrophage and T-cell
infiltration within lesions and by decreasing the expression
of the anti-inflammatory cytokines TGFβ and IL-10 (131).
Interestingly, in addition to its role in cross-presentation,
CLEC9A exerts also an inhibitory feedback mechanism following
tissue damage by activating the negative regulatory signal
SHP-1 to dampen neutrophil-mediated immunopathology (132)
(Figure 1). In this elegant study, authors showed that the lack
of CLEC9A specifically in cDC1 increases the production of
MIP-2 and consequently amplifies the recruitment of neutrophils
and collateral tissue damage in mouse models of sterile and
infectious injury (132). However, the mechanism by which F-
actin could, according to the context, trigger opposing signals
through SYK or SHP-1 remains to be elucidated. Taken together,
these results suggest that the targeting of CLEC9A to regulate

the antigenicity of dead or virus-infected cells, could have
a clinical therapeutic impact for vaccination, infection and
sterile inflammation.

CONCLUSION

To conclude, we discussed in this mini review the recent
studies that widened the array of identified responses elicited
by these receptors and that shed light on the physiological and
pathological functions of CLR in response to cell death. By
sensing cell death, CLRs seem to protect against potential danger
to cellular stress and excessive or deregulated cell death caused
by non-infectious or infectious insults (133, 134). CLRs can
therefore be considered as new immune checkpoint pathways
acting as a safeguard to regulate the powerful and potentially
harmful immune reactions and to prevent the accidental
triggering of responses against the host’s own tissues. As
dysregulation of these checkpoint pathways induces development
of diverse pathologies such as auto-immune diseases or cancers
(40–42), understanding the mechanisms by which CLRs are
triggered, beyond cell death, can pave the way for future targeting
therapies (42, 134–136).
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