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Maternal stress is a well-established risk factor for preterm birth and has been associated

with adverse neonatal outcomes in the first and subsequent generations, including

increased susceptibility to disease and lasting immunological changes. However, a

causal link between prenatal maternal stress and preterm birth, as well as compromised

neonatal immunity, has yet to be established. To fill this gap in knowledge, we used a

murine model of prenatal maternal stress across three generations and high-dimensional

flow cytometry to evaluate neonatal adaptive immunity. We report that recurrent prenatal

maternal stress induced preterm birth in the first and second filial generations and

negatively impacted early neonatal growth. Strikingly, prenatal maternal stress induced

a systematic reduction in T cells and B cells, the former including regulatory CD4+

T cells as well as IL-4- and IL-17A-producing T cells, in the second generation. Yet,

neonatal adaptive immunity gained resilience against prenatal maternal stress by the third

generation. We also show that the rate of prenatal maternal stress-induced preterm birth

can be reduced upon cessation of stress, though neonatal growth impairments persisted.

These findings provide evidence that prenatal maternal stress causes preterm birth and

affects neonatal immunity across generations, adverse effects that can be ameliorated

upon cessation.
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INTRODUCTION

Stress can best be understood as the inability to adapt to
environmental demands, namely acute and chronic stressors,
and is known to cause adverse health outcomes (1). These
demands range from traumas to daily nuisances, and the degree
of experienced stress varies based on genetic, regulatory, and
social factors (1). The underlying physiology of stress is well-
understood by way of the hypothalamic-pituitary-adrenal (HPA)
axis, ultimately leading to the secretion of glucocorticoids into
the blood stream (2). Pregnant women are particularly vulnerable
to stress given homeostatic adaptations during this period (3).
Indeed, maternal stress is a well-established risk factor for
preterm birth (4), the leading cause of perinatal morbidity and
mortality worldwide (5, 6). Prenatal maternal stress has also been
associated with physiological, neurological, and psychological
consequences in the offspring (7–14).

The intra-uterine period is a window of vulnerability in the
development of the fetal immune system (15). Hence, prenatal
maternal stress is associated with increased susceptibility to
disease and lasting immunological changes in the offspring
(16, 17). Previous reports have shown that prenatal maternal
stress contributes to an increased risk of immune-related
disorders such as asthma (18) and allergies (19, 20) in children.
Several potential and non-exclusive mechanisms whereby
prenatal maternal stress induces adverse neonatal outcomes
have been suggested, including epigenetic alterations (21) and
dysregulation of the maternal/fetal HPA axis (22). Previous
descriptive studies have also suggested that maternal stress
impacts neonatal immunity (23). However, the mechanisms
underlying the effects of prenatal maternal stress on neonatal
adaptive immunity are poorly understood.

The deleterious consequences of prenatal maternal stress
not only affect the first generation of newborns, but also
may be transmitted across subsequent generations (24, 25). In
fact, recent animal studies have shown that gestational stress
across generations has downstream effects on the endocrine
and metabolic pathways (26, 27). Importantly, intergenerational
maternal stress gradually shortens the length of gestation (26)
and affects physiological and molecular processes in both the
mother and offspring (28).

In the current study, we used mice to evaluate the adverse
effects of prenatal maternal stress on the timing of delivery
across three generations. In addition, we performed deep
immunophenotyping of the neonatal adaptive immune system to
determine the lasting adverse effects of prenatal maternal stress
across generations. Lastly, we evaluated whether the cessation
of stress reverts the adverse pregnancy and neonatal outcomes
induced by prenatal maternal stress.

Abbreviations: ACTH, adrenocorticotropic hormone; BSA, bovine serum

albumin; CRH, corticotropic-releasing hormone; dpc, days post coitum; F0-S,

pregnant mice stressed during gestation; F1-S, pregnant daughters that were

stressed during gestation; F2-SS, pregnant granddaughters that were stressed

during gestation; F1-SNS, prenatally stressed pregnant daughters who were not

stressed during gestation; HPA, hypothalamic-pituitary-adrenal; IFN, interferon;

Ig, immunoglobulin; IL, interleukin; PBS, phosphate-buffered saline.

MATERIALS AND METHODS

Mice
C57BL/6 mice were purchased from The Jackson Laboratory
(Bar Harbor, ME, USA), bred in the animal care facility at the
C.S. Mott Center for Human Growth and Development, Wayne
State University, Detroit, MI, and housed under a circadian cycle
(light/dark = 12:12 h). Several generations were inbred in our
animal facility prior to initiating the study. Dams between 8
and 12 weeks of age were mated with males of proven fertility,
also 8 to 12 weeks of age; the dams were checked between
8:00 and 9:00 a.m. daily for the appearance of a vaginal plug,
indicating 0.5 days post coitum (dpc), at which point female
mice were removed from themating cages and housed separately.
Pregnancy was confirmed by a weight gain of≥2 g at 12.5 dpc. All
mouse experiments were approved by the Institutional Animal
Care and Use Committee at Wayne State University (Protocol
No. A-09-08-12 and A-07-03-15). The authors adhered to the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

Murine Model of Stress During Pregnancy
Across Generations
Three generations of mice were bred (Figure 1A) and divided
into several groups: (1) Non-stressed controls; (2) Female mice
stressed during gestation (F0-S); (3) Pregnant daughters stressed
during gestation (F1-SS); and (4) pregnant granddaughters
stressed during gestation (F2-SSS). Females from each litter
were used to breed subsequent generations, and each generation
was composed of subjects from several different mothers
and fathers. Three different cohorts of mice were utilized
in this study; the first two to obtain observational data
in two different years (2013 and 2014) and the third
to determine maternal corticosterone levels and perform
immunophenotyping of the neonates (2014–2015). Each group,
including the control group, refers to an amalgamation of
these cohorts. It is worth mentioning that we did not include
one control group for every generation because we used in-
bred mice under consistent conditions and followed the laws
that mandate replacement alternatives, reduction alternatives,
and refinement alternatives (The Three R’s) in scientific
research (29).

Schedule of Prenatal Stressors
Prenatal stress was applied daily from 10.5 to 17.5 dpc without
interruption. The four stress procedures were adapted from
well-established rodent stress models and included swimming
(30, 31), restraint (30, 31), shaking (32), and white noise (33).
Two of the four procedures were applied daily in an alternating,
unpredictable sequence from 8:00 a.m. to 4:00 p.m. Stress
treatments were performed in a designated room other than
the housing facility. For the swimming procedure, a small tub
was filled with room temperature water (∼22◦C). Mice were
individually placed in the tub and made to swim for 5min
(with a rest of 10 s). The water was deep enough to prevent
the feet or tail from contacting the bottom of the tub (Link to
Supplementary Video 1). For the restraint procedure, mice were
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FIGURE 1 | Maternal outcomes of prenatal maternal stress across generations. (A) Experimental design of alternating, unpredictable stress procedure. (B) Maternal

corticosterone levels across generations 1 week after delivery (control n = 13; F0-S n = 14; F1-SS n = 12; F2-SSS n = 11). (C) Rates of delivery in each generation,

specified as preterm, early, and term delivery (control n = 13; F0-S n = 23; F1-SS n = 27; F2-SSS n = 32). (D) Maternal weight gain across generations (control n =

13; F0-S n = 21; F1-SS n = 27; F2-SSS n = 32). (E) Number of pups per dam across generations (control n = 15; F0-S n = 25; F1-SS n = 27; F2-SSS n = 36). For

box plots, mid-lines indicate medians, boxes indicate interquartile ranges, and whiskers indicate min-max range.

placed inside of a Plexiglas restrainer (2.5 cm inner diameter)
in a standing position without compression of the body for a
period of 20min. The container had perforated ends to allow
ventilation (Link to Supplementary Video 2). For the shaking
procedure, mice were placed inside of a transparent, plastic
1-liter beaker and held on a low-speed vortex (speed 9) for a
period of 5min (Link to Supplementary Video 3). For the white

noise procedure, mice were placed in a clean cage free of bedding.
The cage was placed in a fume hood with a high-speed fan faced
away from the cage generating white noise for 20min (Link to
Supplementary Video 4). Following the stress procedure on 16.5
dpc, dams were placed under recording via video camera (Sony
Corporation, Tokyo, Japan) until delivery to evaluate maternal
and neonatal outcomes. The number of feces produced during
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each procedure was recorded as a readout of stress response
(Supplementary Figure 1).

Maternal and Neonatal Outcome Variables
Gestational length was utilized as a pregnancy parameter, defined
as the day mice were plugged (0.5 dpc) until the time the first
pup was delivered. Based on the gestational length, the rate of
delivery was categorized as (1) preterm delivery occurring 17–
18.5 dpc; (2) early delivery occurring 18.5–19 dpc; and (3) term
delivery occurring after 19 dpc. The rate of each delivery group
was represented by the number of females delivering within
that timeframe among the total number of mice within that
generation. Maternal weight gain was also measured, defined as
the total weight gained from the day mice were plugged until
16.5 dpc. The number of pups per dam was also recorded.
Additionally, the occurrence of neonatal mortality at birth was
recorded, defined as the number of pups born dead among the
total litter size. After delivery, the mother and her pups were kept
under observation and offspring weights were recorded 1, 2, and
3 weeks after birth.

Maternal Corticosterone Determination
One week after delivery, dams (stressed or non-stressed controls)
were euthanized to collect peripheral blood by intra-cardiac
puncture between 9:00 and 10:00 a.m. The peripheral blood was
centrifuged at 1,300 × g for 10min at 4◦C after collection,
and serum was separated to be stored at −20◦C until analysis.
Total corticosterone concentrations were measured using a
multiple species Cortisol Immunoassay Kit (Cat #IRAAKT2546,
Innovative Research, Inc., Novi, MI, USA), according to the
manufacturer’s instructions. The colorimetric reaction was read
using a programmable spectrophotometer (SpectraMax M5
Multi-Mode Microplate Reader, Molecular Devices, Sunnyvale,
CA, USA). The assay sensitivity was 17.3 pg/mL, according to
the manufacturer.

Immunophenotyping of Neonates
Neonates born to stressed or non-stressed control dams were
euthanized 1 week after birth and spleens were collected. The
spleens were dissociated using glass slides and 1X phosphate-
buffered saline (PBS), filtered using FACS buffer (BSA 0.1%,
Sodium Azide 0.05%, and 1X PBS), and centrifuged at 1,300
× g for 10min at 4◦C to obtain a cell suspension and to
perform immunophenotyping. The splenic cell suspensions were
incubated with CD16/CD32 (FcγIII/II Receptor; BD Biosciences,
San Jose, CA, USA) for 10min, followed by extracellular
and/or intracellular staining for immunophenotyping
(Supplementary Table 1). For the staining of T cell and B
cell populations, either the FoxP3 Staining Buffer Kit (Cat
# 00-5523-00, eBiosciences, San Diego, CA, USA) or the
Cytofix/Cytoperm Fixation/Permeabilization Solution (Cat#
554714, BD Biosciences) was used prior to intra-nuclear or
intra-cellular staining, respectively. For the staining of CD71+
erythroid cells, the 1X FACS Lysing Solution (BD Biosciences)
was used. Upon completion of the staining procedures, cell
pellets were washed with 1X PBS and re-suspended in 0.5mL
FACS buffer. Samples were acquired using the BD LSRFortessa R©

Flow Cytometer (BD Biosciences) and analyzed with BD

FACSDiva R© Software Version 7.0 (BD Biosciences). The analysis
and figures were performed using FlowJo software version 10
(FlowJo, LLC, Ashland, OR, USA). The absolute number of cells
was determined using CountBright absolute counting beads
(Molecular Probes, Eugene, OR, USA).

Immunophenotyping of T cell populations included
the identification of naïve (CD3+CD44–CD62L+),
memory (CD3+CD44+CD62L+), and effector
(CD3+CD44+CD62L−) T cells [CD4+ and CD8+ naïve
T cells (CD4+CD44−CD62L+; CD8+CD44−CD62L+,
respectively), CD4+ and CD8+ memory T cells
(CD4+CD44+CD62L+; CD8+CD44+CD62L+), and
CD4+ and CD8+ effector T cells (CD4+CD44+CD62L−;
CD8+CD44+CD62L−)]. We also identified the following
T cell subsets: conventional T cells (CD3+), CD4+ T cells
(CD3+CD4+), CD8+ T cells (CD3+CD8+), regulatory CD4+
T cells (CD3+CD4+CD25+FoxP3+), CD8+FoxP3+ cells
(CD3+CD8+CD25+FoxP3+), Th1 cells (CD3+CD4+IFNγ+),
Th2 cells (CD3+CD4+IL-4+), Th17 cells (CD3+CD4+IL-
17A+), CD8+IL-17A+ T cells (CD3+CD8+IL-17A+),
CD8+IFNγ+ cells (CD3+CD8+IFNγ+), and CD8+IL-4+
cells (CD3+CD8+IL-4+). B cell subsets were identified as:
total B cells (B220+), B1-like cells (B220+CD5+), and B2-
like cells (B220+CD23+). Lastly, CD71+ erythroid cells
(CD3-CD71+TER119+) were also identified.

Intergenerational Stress Cessation
In a third cohort, first-generation daughters born to prenatally
stressed mothers were not subjected to the prenatal stress
model during their pregnancies (F1-SNS). This cessation of
intergenerational stress was done in comparison tomice from the
same litter that continued to undergo the prenatal stress model.
Maternal and neonatal outcomes were recorded via video camera
and the weights of the offspring were recorded at weeks 1, 2,
and 3.

Statistical Analysis
Data were analyzed using SPSS Statistics Software Version
19.0, 2010 (IBM, Armonk, NY, USA). A Shapiro–Wilk test
was performed to determine whether the data was normally
distributed. For Figures 1–6, multiple comparisons were
performed using ANOVA or Kruskal-Wallis tests with
corresponding post-hoc tests. For Figure 7, the two groups
were compared using a Student’s t-test. An adjusted p ≤ 0.05 was
considered statistically significant.

RESULTS

Prenatal Maternal Stress Induces Preterm
Birth in a Subset of Dams
First, we created a model of multiple, unpredictable stressors
that included swimming, shaking, white noise, and restraint
procedures (Figure 1A). We validated the efficacy and lack
of desensitization to our alternating model by fecal pellet
quantification (Supplementary Figure 1), a well-established
indicator of murine stress (34–36). Continuously marked
fecal production was observed throughout the procedure
between generations, suggesting an incessant stress response.
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FIGURE 2 | Neonatal outcomes of prenatal maternal stress across generations. (A) Experimental design of neonates born to stressed dams across generations. (B)

Rate of neonatal mortality at birth in each generation (control n = 10; F1-S n = 19; F2-SS n = 19; F3-SSS n = 30). (C) Growth trajectory of neonates in the first 3

weeks after birth (control n = 5 litters; F1-S n = 8 litters; F2-SS n = 2 litters; F3-SSS n = 21 litters). Data are presented as mean ± standard error of the mean.

To further corroborate our stress model, we quantified maternal
corticosterone concentrations in serum, a known hormonal
biomarker of stress (37). It was found that the first generation
of dams (F0-S) had the highest corticosterone concentration
compared to the second (F1-SS) and third (F2-SSS) generations
(Figure 1B), suggesting that the first generation suffers from
acute stress while the subsequent generations suffer from
chronic stress.

Next, we investigated whether prenatal stress could induce
preterm birth or early delivery. This research question was
based on strong associations between stress and preterm delivery
(38–44). We found that stress prompted preterm delivery and
early delivery in the first and second generations (Figure 1C).
Specifically, the rate of preterm birth in the first generation (F0-S)
and second generation (F1-SS) was 13% (3/23) and 11.1% (3/27),

respectively. Although some of the controls experienced early
delivery, this rate was elevated in the first stressed generation
(F0-S 26.1% 6/23 vs. controls 15.4% 2/13). The second (F1-
SS) and third (F2-SSS) generations also displayed early delivery
(F1-SS 11.1% 3/27 & F2-SSS 9.4% 3/32), but these rates were
similar to controls (15.4% 2/13). These data show that prenatal
maternal stress can induce preterm birth in the first and second
generations; however, such an effect was not observed in the
third generation.

Given that stress can cause a reduction in litter size
and resorption of implanted embryos (33), we investigated
whether prenatal stress impacts maternal weight gain across
generations. Consistently, it was found that total weight gain
successively decreased throughout the generations (Figure 1D),
a likely consequence of the decreased numbers of pups per
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FIGURE 3 | Immunophenotyping of naïve, memory, and effector T cells in prenatally stressed neonates. (A) Gating strategy used to identify T cell subsets. (B–D)

Number of naïve T cells, (E–G) memory T cells, and (H–J) effector T cells (control n = 19; F2-SS n = 21; F3-SSS n = 9). Mid-lines indicate medians, boxes indicate

interquartile ranges, and whiskers indicate min–max range.
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FIGURE 4 | Immunophenotyping of T cell subsets in prenatally stressed neonates. (A) Gating strategy used to identify T cell subsets. (B) Number of conventional T

cells, (C) CD4+ T cells, (D) CD8+ T cells, (E) regulatory CD4+ T cells or CD4+ Tregs, (F) CD8+FoxP3+ T cells, (G) Th1 cells, (H) Th2 cells, (I) Th17 cells, (J)

CD8+IFNγ+ T cells, (K) CD8+IL-4+ T cells, (L) CD8+IL-17A+ T cells (control n = 19; F2-SS n = 21; F3-SSS n = 9). Mid-lines indicate medians, boxes indicate

interquartile ranges, and whiskers indicate min–max range.

dam (Figure 1E, non-significant). The data provide supporting
evidence showing that prenatal maternal stress affects overall
reproductive health.

Prenatal Maternal Stress Impairs Neonatal
Growth
Next, we investigated the impact of prenatal maternal stress on
the immediate and long-term health of the offspring (Figure 2A).
We first measured the rate of mortality at birth and found no
significant differences amongst the stressed groups compared
to controls (Figure 2B). However, we continued to monitor the
growth of the offspring and found that neonatal weight was
significantly decreased in each generation within the first week of
life (Figure 2C). A similar non-significant trend was consistently
observed at weeks 2 and 3 (Figure 2C). Indeed, pups born to
stressed dams seemed smaller compared to controls (data not
shown). This data shows that while prenatal maternal stress does
not induce neonatal mortality, it does impact neonatal growth in
early life.

Prenatal Maternal Stress Alters the
Neonatal T Cell Repertoire
Thus far, our findings show that stress compromises early
offspring growth development in the second (F1-SS) and third

(F2-SSS) generations of stressed dams. Therefore, we further
explored any potential immunological detriments in F2-SS
and F3-SSS neonates, born, respectively, to F1-SS and F2-SSS
stressed dams. To measure the effect of cumulative prenatal
maternal stress on immunocompetence, we first quantified
neonatal T cell populations using flow cytometry (Figure 3A). In
general, T cells can be divided into naïve, effector, and memory
populations; these states are acquired through early recognition
of self- or non-self-antigens (e.g., early-life microbiota) (45–
48). We found that naïve T cells and naïve CD8+ T cells were
significantly reduced in the F2-SS generation, while a downward
trend was seen in naïve CD4+ T cells (Figures 3B–D). This
observed reduction was overcome in the F3-SSS generation
(Figures 3B,D). The memory T cell population was not changed
in either the F2-SS or F3-SSS generation compared to controls
(Figures 3E–G). There were non-significant alterations in the
total effector T cells (Figures 3H–J). These results show that
prenatal maternal stress reduces the pool of neonatal naïve T cells
in the second generation, but not in the third generation.

After observing an alteration in the naive T cells of neonates
born to stressed dams, we further investigated the impact of
prenatal maternal stress on T cell subsets in F2-SS and F3-
SSS neonates, born, respectively, to F1-SS and F2-SSS stressed
dams (Figure 4A). We first broadly looked at conventional T
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FIGURE 5 | Immunophenotyping of B cells in prenatally stressed neonates. (A) Gating strategy used to identify B cells. (B) Total number of B cells, (C) B1-like cells,

and (D) B2-like cells (control n = 19; F2-SS n = 21; F3-SSS n = 9). Mid-lines indicate medians, boxes indicate interquartile ranges, and whiskers indicate min–max

range.

FIGURE 6 | Immunophenotyping of CD71+ erythroid cells in prenatally stressed neonates. (A) Gating strategy used to identify CD71+ erythroid cells. (B) Number of

CD71+ erythroid cells (control n = 18; F2-SS n = 21; F3-SSS n = 9). Mid-lines indicate medians, boxes indicate interquartile ranges, and whiskers indicate min–max

range.

cells and found a reduction in T cells (Figure 4B), CD4+ helper
T cells (Figure 4C), and CD8+ cytotoxic T cells (Figure 4D)
in the F2-SS neonates compared to controls. These reductions
were all overcome by the F3-SSS generation. Since regulatory
T cells play a critical role in neonatal development (49–51), we
investigated whether prenatal maternal stress alters such a T cell
subset. Interestingly, we found that regulatory CD4+ T cells
tended to decrease in F2-SS neonates compared to controls, but
this effect was restored in the F3-SSS generation (Figure 4E).

Given that CD8+ T cells also express the transcriptional factor
FoxP3 and seem to have regulatory properties (52–54), we also
investigated whether such cells were altered in neonates born to
stressed dams. No significant differences were seen in CD8+ cells
expressing FoxP3 (Figure 4F). Furthermore, we quantified the
Th1, Th2, and Th17 cell subsets of these neonates. In the Th1
cell subset, no differences were observed between the F2-SS and
F3-SSS groups compared to controls (Figure 4G). However, the
Th2 and Th17 cell types were significantly reduced in the F2-SS
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FIGURE 7 | Experimental outcome of stress cessation cohort. (A) Experimental design of stress procedure. Animals of the parental generation (F0-S) were stressed

and their pregnant daughters were either stressed (F1-SS) or not stressed (F1-SNS). (B) Rates of delivery in the control, F1-SS, and F1-SNS groups (control n = 13;

F1-SS n = 27; F1-SNS n = 17). (C) Growth trajectory of F2-SS and F2-SNS neonates in the first 3 weeks after birth (F2-SS n = 2 litters; F2-SNS n = 10 litters). Data

are presented as mean ± standard error of the mean.

generation, but these reductions were phenotypically overcome
in the F3-SSS generation (Figures 4H,I). The Th2 and Th17
findings mirrored our data in CD8+ T cells expressing IL-4 or
IL-17A (Figures 4K,L). However, no differences were seen in
the cytotoxic T cells expressing IFNγ (Figure 4J). In summary,
prenatal maternal stress causes a systematic reduction of CD4+
T cells and, to a lesser extent, CD8+ T cells, expressing the
cytokines IL-4 and IL-17A in the second generation, but such
effects are restored in the third generation.

Prenatal Maternal Stress Reduces B Cell
Subsets
In addition to T cells, neonatal immunocompetence requires the
function of B cells, and given their immaturity, B cells are quite
distinct from those present in adults (55). B cells are generally
divided into two predominant subsets: B2 cells that circulate
through the blood and secondary lymphoid tissues and respond
to antigens (56), and B1 cells that produce IgM and IgA for
protection against pathogens (57–59). Using flow cytometry,
we investigated the total number of B cells as well as B1-like
and B2-like cell subsets in neonates born to prenatally stressed
dams or controls (Figure 5A). Total B cells and the evaluated
B cell subsets were decreased in F2-SS neonates compared to
controls (Figures 5B–D). Yet, there was a re-establishment of
total and B cell subsets in the F3-SSS generation to values

comparable to controls (Figures 5B–D). These results indicate
that prenatal maternal stress causes a systematic reduction in the
B cell repertoire, which is restored in the third generation.

Prenatal Maternal Stress Does Not Alter
Neonatal CD71+ Erythroid Cells
Growing evidence shows that neonatal immunity depends on
the critical immunosuppressive function of CD71+ nucleated
erythroid cells (60–65). Indeed, we have shown that cord blood
CD71+ erythroid cells play a central role in the modulation of
inflammatory responses of neonates, which may be defective in
those delivered prematurely (66, 67). Therefore, we investigated
whether prenatal maternal stress alters the number of CD71+
erythroid cells in neonates (Figure 6A). To our surprise, neonatal
CD71+ erythroid cells were unchanged in the F2-SS and F3-SSS
generations (Figure 6B). The data show that prenatal maternal
stress does not affect the neonatal CD71+ erythroid cells in
number, yet further studies are required to investigate whether
maternal stress alters the functionality of such cells.

Cessation of Prenatal Maternal Stress Can
Reduce Preterm Birth Rate, but Does Not
Restore Neonatal Growth Impairment
Lastly, we investigated the inheritability of stress-induced
alterations and evaluated whether these consequences could be
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overcome by the cessation of stress. We separated the litter
delivered by an F0-S mother into two groups: one group that
continued with intergenerational stressors (F1-SS) and another
group in which stress was ceased (F1-SNS) (Figure 7A). We then
compared the rate of preterm birth between the stressed F1-SS
group and cessation F1-SNS group. Importantly, the cessation
of stress resulted in all dams delivering at term or having an
early delivery, which is comparable to controls. Specifically, the
rate of preterm birth in F1-SS dams was 11.1% (3/27) whereas
no animals delivered preterm in the control and cessation
groups (Figure 7B). The rate of early delivery in the cessation
group, 17.6% (3/17), was similar to that of controls, 15.4%
(2/13) (Figure 7B). We further examined the impact of the
cessation of stress on neonatal growth and did not find any
significant differences between the F2-SS and F2-SNS neonates,
indicating that the weight reduction observed in neonates born
to stressed dams (Figure 2C) was not recovered with cessation of
stress (Figure 7C). The data show that prenatal maternal stress-
induced preterm birth can be fully attenuated by the interruption
of stressful stimuli in the second generation, yet neonatal growth
may still be impacted.

DISCUSSION

The current study provides evidence that prenatal maternal
stress: (1) induces preterm birth across the directly exposed first
and second generations in mice, (2) impairs neonatal growth
at weeks one, (3) reduces the number of neonatal conventional
CD4+ and CD8+ T cells in the second and third generations,
(4) alters the neonatal T-cell subsets (Th2 and Th17) in the
second generation, but not in the third generation, (5) causes
a systematic reduction in the number of neonatal B cells in
the second generation, but not in the third generation, and (6)
does not alter the number of neonatal CD71+ erythroid cells
across generations. Importantly, we report that the cessation of
prenatal maternal stress in the second generation can attenuate
preterm birth; yet, this intervention does not restore neonatal
growth impairment. These findings provide insights into the
causal relationship between prenatal maternal stress and neonatal
immunity, which is further discussed below.

Pregnancy itself can be classified as a stressor given that
endocrine and immune adaptations, largely mediated by the
placenta, must occur in order for the mother to support
the developing fetus (15, 68). Under normal circumstances,
the systemic levels of adrenocorticotropic hormone (ACTH)
and corticotropin-releasing hormone (CRH) progressively rise
throughout early gestation, followed by an exponential increase
prior to parturition (69–71). External stressors can further
activate the placental maternal pituitary-adrenal axis in a manner
consistent with the classic endocrine response, leading to the
production of glucocorticoids (72, 73). Therefore, external
stressors are perceived to prematurely activate such a pathway,
leading to preterm labor and birth (70–72, 74). Consistent with
this hypothesis, in the current study, we report that systemic
corticosterone levels were increased in dams stressed during
their first pregnancy. However, corticosterone levels remained at

their basal state during the second and third generations. This
finding is consistent with the attenuation of cortisol increase
that has been observed in both repeat exposures to stress,
as well as in the offspring of stressed parents (75–77). The
mechanism whereby this attenuation occurs involves epigenetic
programming processes, namely, increased DNA methylation of
the gene coding for the glucocorticoid receptor NR3C1 (78).
Epigenetics modifications have also been held responsible for
the effects of prenatal maternal stress on gestational length
(26); however, whether these pathways include the regulation of
glucocorticoid synthesis is unknown.

In the current study, we also report that stress during gestation
modestly reduced the litter size in the directly exposed second
and third generations, suggesting that fecundity is impacted
by maternal stress (79, 80). Yet, all neonates born to stressed
dams were viable, suggesting that prenatal maternal stress afflicts
reproductive health but does not cause neonatal death. It is worth
mentioning that the reduced litter size was not associated with
a rise in corticosterone levels. Thus, we suggest that cumulative
stress skews the HPA axis in a manner that is not reflected
in systemic corticosterone levels. Importantly, we observed that
prenatal maternal stress delayed the growth of neonates at week
1. These findings are in line with prior studies showing impaired
offspring growth upon maternal stress (26, 81). These data
could be explained by the substantial compilation of evidence
suggesting that exposure to prenatal stress impacts health and
disease susceptibility in the offspring (7–9, 13, 15–17, 82, 83).

Exposure to chronic stress impacts the adaptive immune
system (84); thus, we investigated whether prenatal maternal
stress alters neonatal adaptive immunity. In this study, we
observed a consistent reduction in the pool of naïve and
conventional T cells, as well as B cells, in neonates born to F2-SS
dams. These findings are in line with previous reports showing
that stress induces a decrease in the number of lymphocytes
(i.e., lymphopenia) in subsets such as CD4+, CD8+, and B220+
cells (85, 86). A possible mechanism whereby prenatal maternal
stress induces neonatal lymphopenia involves the triggering of
a fetal systemic inflammatory response that, in turn, may cause
involution of the lymphatic organs (87, 88).

Prenatal maternal stress also induced a neonatal
immunosuppression-like syndrome characterized by reduced
numbers of IL-4- and IL-17-expressing T cells, as well as
regulatory CD4+ T cells, in the second generation. All of
these T cell subsets have regulatory and anti-inflammatory
functions (89–93); therefore, it is likely that prenatal maternal
stress alters the T cell repertoire in utero. Yet, further research
is required to investigate the mechanisms whereby prenatal
maternal stress induces immunosuppression in neonates
born to mothers and grandmothers who underwent stress
during pregnancy.

Notably, we found that the neonatal immunosuppressive-like
syndrome induced by prenatal maternal stress was overcome in
the third generation. Indeed, neonates born to third generation
stressed dams had greater numbers of Th2 cells, IL-4+ CD8+
T cells, and tended to have higher numbers of regulatory CD4+
T cells. To our knowledge, this is the first demonstration to
show that chronic exposure to multigenerational stress boosts
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the neonatal immune system. We ought to propose that this
response is observed as a compensatory mechanism against
prenatal maternal stress.

Importantly, in the mouse model, the cessation of stress
in the second generation restores the timing of delivery. Our
results in mice are partially in agreement with those reported
in rats; cessation of prenatal maternal stress in rats does not
fully restore timing of delivery (26). This discrepancy could
be explained by variations in how different species respond to
stress (94, 95). Yet, our finding in mice holds tangible and
immediate public health relevance given the implication that
daughters of stressed mothers may be able to manage the impacts
of ancestral stress during their pregnancy. Additional research is
warranted to investigate whether the cessation of stress impacts
neonatal immunity given that neonatal growth impairment was
not restored.

There are some limitations to the current study that we
must acknowledge and address. First, using a murine model
presents inevitable discrepancies given the fundamental mouse-
human differences. However, studying stress in humans is very
difficult due to a multitude of variables and uncontrollable
co-factors, and can only be done from an epidemiological
standpoint. Past studies have demonstrated that efficiently
inducing stress in rodents is difficult due to their adaptability
(96, 97), but we compensated for this condition by prolonging the
period of stress and utilizing an unpredictable, multi-procedural
stress schedule. Another limitation of our study is that we
utilized a syngenic mating model, which does not allow us to
evaluate the contribution of allo-antigenicity; yet, this syngenic
model was chosen to maintain prenatal stress as our singular
variable. It is worth mentioning that, in this study, we did not
include non-stressed controls for every generation; therefore,
our experimental design does not allow us to distinguish the
transgenerational effects of stress in the second and third
generations. An important strength of our study is that we
performed two different cohorts of observational studies in which
we observed very similar results; both cohorts included animals
that delivered preterm. Yet, the execution of this study required
a large investment of time and funds as well as the creation of a
multidisciplinary team.

CONCLUSION

The data presented herein provides a causal link between
prenatal maternal stress and preterm birth, as well as neonatal
adaptive immunity, across generations. We report that the
impact of ancestral prenatal maternal stress results in inheritable
consequences, but these alterations can be mitigated by
intervention, as well as progressive stress sensitization over time.

These findings may hold clinical importance for individuals
exposed to direct or ancestral chronic stress and their ability to
overcome adverse pregnancy and neonatal outcomes.
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