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The incidence and number of deaths from non-tuberculous mycobacterial (NTM) disease

have been steadily increasing globally. These lesser known “cousins” of Mycobacterium

tuberculosis (TB) were once thought to be harmless environmental saprophytics and

only dangerous to individuals with defective lung structure or the immunosuppressed.

However, NTM are now commonly infecting seemingly immune competent children and

adults at increasing rates through pulmonary infection. This is of concern as the pathology

of NTM is difficult to treat. Indeed, NTM have become extremely antibiotic resistant,

and now have been found to be internationally dispersed through person-to-person

contact. The reasons behind this NTM increase are only beginning to be elucidated.

Solutions to the problem are needed given NTM disease is more common in the

tropics. Importantly, 40% of the world’s population live in the tropics and due to

climate change, the Tropics are expanding which will increase NTM infection regions.

This review catalogs the global and economic disease burden, at risk populations,

treatment options, host-bacterial interaction, immune dynamics, recent developments

and research priorities for NTM disease.

Keywords: Non-tuberculous mycobacteria, pulmonary infection, mycobacteria, immunology, mycobacteria

pathology

INTRODUCTION

Non-tuberculous mycobacteria (NTM) are ubiquitous, free living, environmental saprophytic
organisms known to occupy water systems, soil, and vegetation. Belonging to the genus
Mycobacterium (which includeMycobacterium tuberculosis (TB) andMycobacterium leprae), there
are over 170 identified NTM species with new species discoveries increasing yearly (1). NTM are
microaerobic organisms which grow in 6–12% oxygen and have lipid-rich cell walls and metabolic
characteristics that result in a slow doubling time of 20–24 h (1). These organisms can withstand a
wide range of environmental temperatures, do not readily grow in standard bacterial culture media
and are antibiotic and disinfectant resistant. Given these characteristics, NTM are found worldwide
and cause infections that are easily missed, difficult to diagnose, and difficult to treat.

First described in the late nineteenth century (soon after Robert Koch’s seminal description
of M. tuberculosis as the causative agent of tuberculosis in 1882), decades passed before
human NTM infection was identified (2). Since then over 90 species have been identified

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00303
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00303&domain=pdf&date_stamp=2020-03-03
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:champa.ratnatunga@my.jcu.edu.au
mailto:john.miles@jcu.edu.au
https://doi.org/10.3389/fimmu.2020.00303
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00303/full
http://loop.frontiersin.org/people/433621/overview
http://loop.frontiersin.org/people/543301/overview
http://loop.frontiersin.org/people/180103/overview
http://loop.frontiersin.org/people/553775/overview
http://loop.frontiersin.org/people/509508/overview
http://loop.frontiersin.org/people/47201/overview


Ratnatunga et al. The Immunology and Risks of NTM Lung Disease

from human samples with several more remaining either
unclassified or unidentified (3). NTM can be split into “slow”
or “rapid” growers. An easy way to narrow down the species
in the diagnostic setting. Species classification based on 16S
rRNA sequencing has revealed a great deal of complexity
within the genus. Human infection is mostly caused by
the slow growing Mycobacterium avium complex (MAC)
which now includes MAC subspecies silvaticum, subspecies
hominissuis, and subspecies paratuberculosis, Mycobacterium
intracellulare,Mycobacterium arosiense,Mycobacterium chimera,
Mycobacterium columbiense, Mycobacterium marseillense,
Mycobacterium timonense, Mycobacterium bouchedurhonense,
and Mycobacterium ituriense (1). Other common NTM
isolated from human samples include Mycobacterium xenopi,
Mycobacterium fortuitum complex, Mycobacterium kansasii,
and the rapidly growing Mycobacterium abscessus group
(MABS) which were recently grouped as a separate clade named
Mycobacteriodes abscessus based on phylogenetic characteristics
(4). The MABS group includes subspecies abscessus sensu stricto,
subspecies massiliense and subspecies bolletii (3, 5). Collectively,
these species comprise 80% of global clinical specimens (3).

The natural habitats for NTM range from natural brackish
and marshy waters to municipal water distribution systems and
household plumbing including shower heads (6). NTM are also
found in potting soil and other peat rich soils. This overlap
of bacterial habitat with human habitation provides an ideal
opportunity for human infection. The lipid-rich hydrophobic
cell walls of these organisms are ideal for biofilm formation
which allows long-term persistence of bacterial colonies that
are effectively resistant to disinfectants and generate aerosols,
particularly from shower heads (7, 8). Organism density in
shower aerosols is significantly higher than in the main water
stream and is thought to be the most likely source for pulmonary
infection (1, 9). Household based studies have shown a genotype
match between environmental and clinical isolates (8) while a
recent large scale study with multicentre sampling performed
in both Europe and the US showed a high degree of overlap
between geographical areas where NTM lung disease is common
and a high density of potentially pathogenic organisms in
shower and water source samples (10). Disturbingly, NTM have
also been identified in hospital ice machines, water-cooling
systems and haemodialysis unit water supplies. Exposure to these
organisms is therefore likely to occur at home to healthcare
centers (1, 2). Alarmingly, recent data has confirmed person-to-
person transmission of highly virulent, clonal MABS across the
globe (11).

THE PATHOLOGY OF PULMONARY NTM
INFECTION

NTM disease presents a wide variety of clinical syndromes, from
lymphadenopathy (commonly cervical lymph nodes) to aseptic
meningitis. Infection of the lung is the most common clinical
manifestation. Termed pulmonary NTM disease (PNTM), this
manifestation has an evolving and complex pathology. Many
questions remain including the mode of transmission, the period

of incubation and the true disease burden. Three forms of
PNTM are described based on distinct pathology. The three
forms comprise fibro-cavitary disease, nodular bronchiectasis
disease, and hypersensitivity pneumonitis. Given the generally
low virulence of these organisms together with their slow
growth rate, onset of disease symptoms is often insidious.
Incubation periods can vary from months to years making
diagnosis difficult and tracing the source of infection virtually
impossible. A rise in the number of globally documented NTM
infections has led to NTM being recognized as emerging threat
causing significant morbidity and mortality in both immune
competent and immune compromised populations (12). MAC
and MABS are the most common organism groups causing
PNTM worldwide (13, 14).

Risk Groups for NTM Disease
NTMs are considered opportunistic pathogens to humans.
Exposure to these organisms in day-to-day life is common
through shower aerosols but infection and clinical disease
occur in only some individuals (8). Over the last decades it
has become apparent that several groups of individuals are
prone to PNTM disease (Figure 1). These include patients
with both genetic or acquired structural lung diseases such
as cystic fibrosis (CF), chronic obstructive pulmonary disease
(COPD), non-CF bronchiectasis, alpha-1 antitrypsin deficiency,
previous pulmonary tuberculosis, and lung cancer (16–18).
Patients with immune suppression due to primary immune
deficiency syndromes (PIDs) such as Mendelian Susceptibility to
Mycobacterial Disease (MSMD) associated with IL12-p40, IL12,
IFNγ receptor abnormalities and gene deformities (IFNγR1,
IFNγR2, IL12RB1, IL12B, STAT1, IKBKG, CYBB, ISG15, IRF8,
GATA2) are at high risk of NTM infection (19–21). In addition,
patients with acquired immunodeficiency syndromes including
AIDS and hematological malignancies, hairy cell leukemia in
particular, are also identified as susceptible to NTM infection
(22). The latter groups of patients however, usually develop
disseminated NTM infection (DNTM) rather than isolated
pulmonary NTM infection (PNTM) which is seen in patients
with structural lung disease and are considered a separate risk
group (Figure 1). Other acquired states of immune deficiency,
such as haematopoietic stem cell transplantation and solid organ
transplantation are also predisposed to NTM infection. However,
these patients could present with PNTM, DNTM, or other extra
pulmonary sites of NTM infection (23). Other specific PIDs like
Severe Combined Immune Deficiency (SCID) are commonly
associated with BCGiosis, while Common Variable Immune
Deficiency (CVID) predisposes patients to bronchiectasis which,
in-turn, can lead to PTNM infection (21).

The increase in research into the epidemiology, diagnostics,
and treatment of this once obscure disease stems from the
increasing numbers of cases being identified from populations
with previously unknown and currently unidentified risk factors
(12). Advances in therapeutics in all fields of medicine have
seen unexpected NTM disease susceptibilities emerge which
pose a challenge in terms of patient care but also provide
insight into disease pathology. For example, the susceptibility
of patients with rheumatoid arthritis on anti-TNF therapy
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FIGURE 1 | The combined host, environmental and organism risk factors that contribute to developing NTM disease. NTM disease can manifest as pulmonary

infection or the more severe disseminated form of the disease which is seen in patients with some severe systemic immune compromise. Pulmonary infection is seen

in patients who have structural or functional lung defects that lead to innate immune compromise as well as other groups of patients in whom the precise nature of

immune compromise is not clearly defined. Some degree of overlap exists in these risk groups with some patients with systemic immune compromise presenting with

pulmonary disease well (15). Environmental risk factors include the natural and man-made habitats where these organisms survive and thrive. Increasing overlap

between human habitation and NTM habitats is postulated as a reason for the increasing trend in infection. Organism biology also contributes to infection. NTM are a

diverse group of organisms, tolerant to a wide range of physical conditions. Their lipid rich cell wall facilitates biofilm formation and aerosolization of bacteria while

simultaneously mediated inherent resistance to many antibiotics and disinfectants. This makes both removing organisms from the man made habitats like water pipes

as well as treating patients with active infection, difficult. The specific requirements needed to isolate these organisms in laboratory cultures has meant that NTM are

often missed in routine sampling. Though not directly a risk factor for developing infection, this is one of the reasons infections are often missed at early stages.
1Autoantibodies to IFNγ are commonly seen in in adults and have been extensively described in East Asian populations. A genetic component to auto antibody

formation is likely with specific HLA types being associated with the disease. Both DNTM and PNTM disease manifestations are observed. 2Pulmonary alveolar

proteinosis has a genetic-based form and acquired form. The genetic-based form is due to gene mutation in GM-SCF subunits and the acquired form is due to

auto-antibodies against GM-CSF. This results in impaired surfactant disposal which accumulates in the lung and macrophages leading to dysfunction. 3Patients on

anti-TNF therapy and cytotoxic therapy are predisposed to both PNTM and DNTM though lung disease is more common. COPD, Chronic Obstructive Pulmonary

disease; ABPA, Allergic Broncho Pulmonary Aspergillosis.

(infliximab, adalimumab, golimumab, and certolizumab) to
NTM infections is a prime example of unexpected NTM
susceptibility (24–26). These patients commonly present with

PNTM disease though extra pulmonary manifestations are also
common. DNTM infections are rare though they have been
described (27).
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A fourth disease cohort include elderly white post-
menopausal females who present classically with NTM infection
of the middle or lingular lobe of the lung. Described as
“Lady Windermere syndrome” these patients often have a
distinct physical phenotype of slender build, pectus excavatum
or scoliosis and mitral valve prolapse, though notably they
have no known immune dysfunction (16, 19, 28). Recently
identified genetic defects that could contribute to susceptibility
in these “Lady Windemere” patients include cystic fibrosis
transmembrane conductance regulator gene (CFTR) related
mutations, ciliary function, and other connective tissue related
genetic defects as well as the DNA damage response protein TTK
defects (22, 29–31). Finally, gastro-esophageal reflux disease
(GORD), vitamin D deficiency, rheumatoid arthritis (26, 32, 33)
and low body mass index (BMI) are art risk of NTM lung disease
(34). The acquire and genetic risk factors for NTM infection,
both PNTM and DNTM are discussed in a recent reviews by
Honda et al. (35) and Henkle et al. (23) showing the many forms
and known susceptibilities the disease takes.

The Global Disease Burden of NTM
Studies from North America, Europe, and Asia have all shown
increasing NTM disease incidence over the last two decades.
Estimated NTM disease prevalence rose from 2.4 cases/100,000
in the early 1980s to 15.2 cases/100,000 in 2013 in the US
(36). The prevalence in the elderly population (>65 years)
more than doubled from 20 cases/100,000 to 47 cases /100,000
population between 1997 and 2007 (37). Multiple studies in five
US states showed NTM positive culture rates increased from 8.2
cases/100,000 in 1994 to 16 cases/100,000 in 2014 (38). Similar
figures are recorded in a Canadian study published in 2017 with
disease prevalence increasing from 4.65 cases/100,000 in 1998 to
9.08 cases/100,000 in 2010. Laboratory isolation rate increased
from 11.4 isolates/100,000 in 1998 to 22.22 isolates/100,000 in
2010 (39). The prevalence of NTM disease in non-cystic fibrosis
(NCF) bronchiectasis in the US is estimated as 37% with the
most common isolate being MAC (37). Laboratory isolation of
NTM are now more common than M. tuberculosis in the US
and Canada with an increase of 8.4% annually being documented
between 1997 and 2003 (17). A study from the UK showed
similar increases with the NTM infection rates more than tripling
from 0.9 cases/100,000 in 1995 to 2.9 cases/100,000 in 2006
(40). Similar rates have been documented in Denmark (41) and
Germany (42).

Studies in South Korea showed a 62% increase in NTM lung
disease from 2002 to 2008 with a marked increase in MABS
infection (43). This is in contrast to European studies that
show a predominance of MAC infection (44, 45) Numbers from
Japan have shown a marked increase in both NTM infection
and mortality from 1994 to 2010 (46) while a population-based
Chinese study showed an increase in NTM isolation rate from
3 to 8.5% from 2008 to 2012 (47). As NTM disease is not a
notifiable disease in most countries, accurate epidemiological
data is limited, particularly in countries with low development
indices. Nonetheless, an increasing number of NTM cases have
been recorded in Brazil, Taiwan and the Middle East (48–52).

Globally, the most common NTM pathogens are the MAC
organisms though prevalence varies greatly with geographic
region, gender, and age (49). MABS are a significant problem
particularly because of very high levels of antibiotic resistance
and the disease a growing problem in East Asian countries
including Japan, Korea, and Taiwan (53). NTM are also a
particularly difficult problem in patients with cystic fibrosis,
which is the most common genetics disease in Caucasians, whom
are highly prone to MABS infection (40).

Cultures from CF patients have an∼10,000-fold higher NTM
prevalence compared with the general population (21). NTM
isolation rates in CF vary from 3 to 17% with an increase
in median prevalence from 9 to 13% seen in pre- and post-
millennial studies (54). Increased prevalence of NTM positive
cultures is seen with increasing age (55). Prevalence rates in
the Australian adult CF population was 4.1% in a 2001–2014
retrospective study carried out in Queensland (56). Though not
as common as other bacterial pathogens, NTM infection was
recognized as an important clinical entity in these patients as
it was associated with significant deterioration in lung function
(57). A geographical variance is seen in NTM species prevalent
in the CF population, with MABS and MAC remaining the
most common PNTM infections in these regions (54). Genetic
mutations in CF patients are associated with PNTM (58).

NTM pathology has been a notifiable disease in Queensland
(QLD), Australia since the commencement of the tuberculosis
(TB) control programme in the 1960s and is currently a notifiable
disease (59, 60). The increase in disease incidence in QLD over
the last several decades has been clearly documented. Clinical
cases of MAC disease were reported as 0.63 cases/100,000 in
1985, 1.21 cases/100,000 in 1994 and 2.2 cases/100,000 in 1999
(59). Significant NTM species isolation rates then rose from 9.1
cases/100,000 to 13.6 cases/100,000 from 1999 to 2005. In total,
1,171 isolates were reported in 2016 which is almost double
the 672 isolates reported for the same period in 2012 (60). An
increase in MABS isolates was also seen during this period.
Of note, there was a change in the gender distribution from
male predominance in 1999 to female predominance in 2005,
particularly in the elderly population (59). Overall, a pattern of
increasing non-cavitary disease in elderly females at a rate of
2.2–3.2 cases/100,000 population per year has emerged. Similarly,
an increase in NTM disease has also been seen in the Northern
Territory (NT), Australia from 1989 to 1997 (61). Regarding
infection sources, subsequent investigation showed MAC, and
MABS were present in household and municipal water sources
and shower aerosols in homes (62–64). Projections show cases
could more than triple between 2020 and 2040 [up to 6,446 cases
a year (CI 15 just in QLD] (Figure 2).

THE TREATMENT, COMPLICATIONS, AND
ECONOMIC BURDEN OF NTM

PNTM treatment requires prolonged (12–18months) multi-drug
therapy (66). Disease remission rates vary depending on infecting
species, patient age and comorbidities (37, 67). Recurrence is
common with rates of 30–50% being recorded in MAC infection
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FIGURE 2 | Projected NTM cases in Queensland, Australia from 2020 to

2040. NTM cases from 2012 to 2019 were reported by the Epidemiology and

Research Unit, QLD Department of Health and analyzed using R v3.5.2. The

existing data was converted to a time series object using data from 2012 to

2019. The R package forecast (65) was used to generate the predictions from

2020 to 2040. The order for the model was estimated using the auto. arima()

function which takes in a time series and returns the best AutoRegressive

Integrated Moving Average (ARIMA) model according to either AIC, AICc, or

BIC value. Each model was input to the forecast function with levels average,

5, 10, and 25 plotted.

(68). The majority of these recurrences are due to reinfection
(69, 70) as opposed to relapse. MABS infection is more likely
to result in treatment failure and recurrence. Many patients
develop persistent chronic infection despite treatment while
others succumb to the disease (5, 67). Side effects of antibiotics
are numerous, and regimes are difficult to tolerate. Treatment is
at high cost (USD $14,730 for MAC infection and USD $47,240
for MABS infection) (67). Of concern, long term treatment with
multiple antibiotics increases antibiotic resistance and there is
now evidence of person-to-person transmission of NTM (67).
A multicentre study of MAC infection across Canada, France,
Germany and the UK conducted in 2018 showed average direct
medical costs per person year ranged from $US12,200 in Canada
to $US25,500 in France (71). In addition to direct disease related
costs, patients were also shown to have six times higher secondary
care utilization events for disease-related and disease-unrelated
illnesses (18).

Adjuvant therapies have been tested with little success.
Preliminary trials of adjunctive IFNγ therapy were abandoned
due to lack of response (72–74) although early case studies
performed in patients with refractory disease showed promise
(75, 76). IFNγ therapy (by intramuscular injection, as opposed
to the original trials done with nebulized IFNγ) showed promise
in a recent study (77) but no other studies have supported these
results (34). Other immune modulatory agents tested include
recombinant IL-12 in mice (78, 79) and GM-CSF in HIV infected
patients (80, 81). A phase 2 open labeled drug trial is currently
underway to test the efficacy of inhaled GM-CSF in persistent
NTM infection (NCT03421743).

The Host-Bacterial Interaction
NTM are not classic species-specific pathogens, rather they
are environmental saprophytic organisms that make use of
the new living opportunity presented when human habitation
and bacterial habitation overlap. Unknowns include: (i) the
percentage of a given population who are exposed; (ii) how
infection occurs and by what source; (iii) what host and bacterial
factors determine clearance; (iv) how NTM establishes itself
as a colonizer without causing tissue invasion and; (v) why
NTM are symptomatic in only some individuals. All that is
currently known is that specific groups of individuals are at risk,
some with known immune dysfunction, and others with specific
medical characteristics.

The Immune Response in Pulmonary NTM
Infection
The immune responses seen in human NTM infection has
shown similarities to TB. However, no consistent phenotype of
immune protection or immune susceptibility has been described.
Immune compromise caused by genetic mutations (MSMD)
and acquired defects due to infections like HIV usually lead
to disseminated infection while iatrogenic causes (inhaled or
systemic corticosteroids, anti-TNF therapy, chemotherapeutic
agents), and defects in lung structural and functional integrity
(primary ciliary dyskinesia and other mutations leading to ciliary
dysfunction, CFTR mutations, bronchiectasis, COPD, α1 anti-
trypsin deficiency, lung malignancy, and ATT) and pulmonary
alveolar proteinosis, are known predispositions to pulmonary
NTM disease (18, 22, 82). Previous or concomitant TB infection
and Aspergillosis independently increase risk of PNTM (83).

These predispositions tell a story of both local/systemic and
innate/adaptive immunity being required to combat infection.
Innate defensemechanisms such as effective respiratory epithelial
ciliary function are likely required to keep colonizing NTM
bacterial counts under control. When airway mucociliary
clearance is impaired and/or when virulent strains of bacteria can
locally invade tissue, cellular defense mechanisms are activated.
The immune cascade then follows: (i) macrophage activation and
local recruitment of innate cells including neutrophils, iNKTs
and NK cells to control early infection and; (ii) migration to of
APCs to lymph nodes for antigen presentation and activation of
antigen specific T cells. A review by Tomioka (84) describes the
cytokines and other factors involved in macrophage activation
as well as the key players involved in transforming naïve T cells
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to either Th1 type or Th2 type during mycobacterial infection.
Macrophages and NK cells release IL-12/ IFNγ to guide T cells
toward a Th1 type phenotype. Th1 IFNγ and IL-2 release then
promote intracellular killing of mycobacteria. The exact triggers
for a Th2 type response are not known, but should a Th2 type
response predominate, Type2 cytokines (IL-4, IL-10, and IL-13)
promote suppressive pathways that increased Treg cell frequency.

Mouse studies have shown that RORγt induced Th17/IL-
17 responses during MAC infection promote pulmonary
inflammation (85). However, the mechanism/s and correlates
of protection of these responses during the various stages of
this chronic disease are not understood. Other studies in the
mouse models or murine cells models of NTM infection have
shown the importance of CCL2, CCL5, and TLR signaling
via MAPK, MyD88, and NFκβ for disease protection (86–88).
Robust mouse models for M. avium infection exist though
currently, it is difficult to initiate infection, maintain infection,
andmeasure immune responses inMABSmousemodels (89, 90).
While comparisons between immune competent and immune
deficient mouse models have provided insight into immune
dysfunctions associated with DNTM (90), the chronic stages of
PNTM infection, which are of current clinical relevance are not
yet fully reproducible in mice.

Laboratory and clinical studies of mycobacteria immunity
have shed light on some aspects of why opportunistic infections
occur. Most studies have either measured cytokine levels directly
in serum or cell culture supernatants where cell preparations have
been stimulated with antigens or other non-specific mitogens
such as lipopolysaccharide (LPS), which activates myeloid
cells, or phytohaemaglutinin (PHA), which stimulates cellular
immunity. A comparison of MAC infected patients with no
evidence of compromised immunity and M. avium sensitin
skin test positive healthy controls, showed that infected patient
peripheral blood mononuclear cells (PBMCs) stimulated with
mycobacterial antigens produced higher levels of IL-10 but lower
levels of IFNγ, IL-12, and TNF. Other studies have shown similar
results for IFNγ and IL-10 but not for the other cytokines (91–
94). A study of serum cytokine levels comparing newly diagnosed
MAC patients showed a significant reduction in IL-6, IL-8, IL-
23, IFNγ, and CD40L (95). Longitudinal assessment of Th1 and
Th17 cytokines in these patients after 1 year of antibiotic therapy
showed that while low Th1 cytokine levels could accelerate
infection, Th17 cytokine levels at diagnosis (IL-17 and IL-23)
could act as indicators of treatment outcome (sputum conversion
vs. failure). A comparison of immune responses in MAC and
MABS infection showed that MABS stimulated PBMC produced
higher levels of TNF, IFNγ, IL-1β, and MIP-1α than MAC
stimulated PBMC (96). A study that compared IFNγ, IL-12,
and IL-10 production in response to mitogen-stimulated PBMCs
in patients with MAC, MABS and healthy controls showed
a reduction in IL-10 production in patients (97). A more
comprehensive study, that used multiplexed bead-based assays
to evaluate 22 cytokines in 24 MABS patients, showed reduced
levels of IFNγ, IL-12, IL-4, and IL-13 and high levels of IL-17
and IL-23 in patients. A hi-dimensional flow analysis between
individuals at risk and not at risk of MABS disease revealed
immune exhaustion in T cells (CTLA-4) may be playing a role

(98). These finding is similar to studies performed in MAC
infection (93, 95). Interestingly, levels of monokine induced by
IFNγ (MIG) and IFNγ induced protein (IP-10) could predict
treatment outcome (99). A recent small study on cytokine levels
in three CF patients with MABS infection compared to three
patients with non-CF PNTM infection and healthy controls
showed no difference in TNF and IL-1β levels between CF and
non-CF patients, however the non-CF patients showed higher
TNF and IL-1β production following LPS stimulation (100). A hi-
dimensional flow analysis between CF individual at risk and not
at risk of MABS disease revealed a several immune biomarkers
with a combined Akaike information criterion (AIC) of−30 and
an area under the curve (AUC) of 1 (101). Additionally, the at
risk CF patients showed a clear deficiency in TNFα release from
both CD4+ and CD8+ subsets.

Preliminary evidence showed that T cell defects may play
a role in MAC infection (102). T cells from healthy control
subjects exhibited superior MAC growth inhibition in monocytes
compared with patients. A recent study by Shu et al. (103)
showed higher PD1 expression in T cell in patients with MAC
lung disease compared to controls. This study also showed
reduced IFNγ and TNF production in MAC patients which was
partially corrected after 2 months of antibiotic treatment and
could also be further increased by blocking PD-1. However,
this report did not study T cell function. A study using
monocyte derived macrophages (MDM) showed no difference in
MDM cytokine responses between patients and controls (104)
while a more recent study showed that Keap 1 (an oxidative
stress sensor) negatively regulated inflammatory signaling from
primary macrophages in MAC infection (105). Other studies of
TLR and dectin-based signaling in MAC and MABS infections
showed TLR signaling to be crucial (96, 104–106). In addition,
MAPK signaling, ERK1/2 and p38 have been shown to be down
regulated in patients with MABS infection with subsequent
reduction in TNF, IL6, and IL10 (107). Similar to studies in
TB, different strains of NTM have been shown to elicit different
immune responses in both human cells and murine models
showing the importance of pathogen genetics on the host
response (101, 108).

Studies on human cells have varied in the specimen
used [PBMC, broncho-alveolar lavage (BAL) fluid and whole
blood], the stimulants used (PHA, LPS, neutralized bacteria)
and patient groups (age, infecting species, and stage of
treatment) as shown in Table 1, making both cross-study
comparisons and interpretation challenging. In addition, patient
age ranges often vary widely, including multiple risk groups, and
other confounders.

Indirect evidence suggests individuals prone to NTM
infection have underlying immune dysfunction. Mutations
known to cause susceptibility include those affecting IL12β,
IL12Rβ1, IFNγR1, IFNγR2, and transcription factor STAT1 and
RORC (109). Deficiency in NFκβ essential modulator (NEMO)
and other primary immunodeficiency syndromes like GATA-
2 deficiency and isolated CD4+ T cell deficiency have also
been implicated in NTM susceptibility (21, 110). A recent
study showed association between TNFA-1031 and IL10-1082
alleles and NTM infection (111). Additionally, HIV infection
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TABLE 1 | Summary of immune cytokine profiles during in vitro studies of patient immune responses in PNTM infection.

Study population Patient # Organism Sample Stimuli Measurement Result References

PNTM patients before or during

treatment vs. MTBa patients vs.

HCb

32 MAC and

M. kansasii

PBMC

supernatant

PHAc, anti-CD3,

PPDd, and viable

NTM

Cytokines by

ELISA

Patients—↓ IFNγ and TNF (92)

PTNM patients before or during

treatment vs. HC that were MAC

sensitin+

26 MAC PBMC and BALf

supernatant

Heat killed MAC and

MTB

Cytokines by

ELISA and ICSh

Patients—↑ IL10 (produced

by T cells and monocytes)

and ↓ IFNγ, IL12 and TNF

(90)

PNTM patients with persistent

NTM infection vs. HC

5 MAC PBMC

supernatant

PHA, PMAe and

anti-CD3

Cytokines by

ELISA

Patients—↓ IFNγ (91)

PNTM patients vs. HC 29 MAC and

MABS

PBMC

supernatant

PHA +/– IL12 and

LPS +/–IFNγ

Cytokines by

ELISA

Patients—↓ IFNγ, TNF, and

IL12p40i
(96)

PNTM patients before or during

treatment vs. HC (related)

or HC (general population)

17 MAC PBMC

supernatant

SEBg, PPD, and

MAC sensitin

Cytokines by

ELISA and ICS

Patients—↑ IL10, IFNγ,

IFNγ+ by CD4+ T cells and ↓

IL17

(93)

PNTM patients before treatment

vs. HC

42 MAC Serum Cytokine array Patients - ↓ CD40L, IFNγ, IL6,

IL8, and IL23

(94)

PNTM patients vs. HC 50 MAC PBMC and MoDC

supernatant

MAC sensitin, heat

killed MAC and PHA

Cytokines by

ELISA

Patients -↓ IFNγ and TNF (102)

aMTB: Mycobacterium tuberculosis.
bHC: Healthy Controls.
cPHA: Phytohaemagglutinin.
dPPD: Purified Protein Derivative.
ePMA: Phorbol myristate acetate.
fBAL: Bronchoalveolar lavage fluid.
gSEB: Staphylococcal enterotoxin B.
h ICS: Intracellular cytokine staining using flow cytometry.
iSame result for both MAC and MABS.

increases the risk of NTM disease when CD4+ T cell counts
drops below 50/mm3. Broadly immunosuppressed patients with
hematological malignancies, organ transplants, and stem cell
transplants are at high risk. The timing of this increased risk
does not coincide with the neutropenic phase of these diseases
highlighting the lack of importance of neutrophil action in
NTM immunity (21). Current available information supports
the increased risk of NTM in patients being treated with anti-
TNF therapy (24). There is also evidence for increased risk in
patients on the anti-IL6 agent tocilizumab while other agents
including IL12/IL23 inhibitor ustekinumab (associated with TB
reactivation), and the JAK pathway inhibitors tofacitinib and
ruxolitinib (associated with IFN signaling interference) pose a
theoretical risk. However, robust information is not yet available
(21, 25).

NTM disease biomarkers (vs. airway colonization which
is commonly seen in chronic lung diseases like CF, COPD,

and bronchiectasis) are of high clinical value. Likewise, the
identification of patients likely to recover and patients likely to

develop serious life-threatening infection would be of enormous

benefit to clinicians to guide the therapeutic decision-making
process. Information from mouse models of MAC infection are
available and less so for MABS. Human information is limited
to small studies of generally <10 patients (89). Information is
still lacking around the immune profiles of CF patients with
MAC and MABS disease in comparison to non-CF patients
with disease. Longitudinal follow-up information of the changes
seen in the immune profile of these patients during treatment
is also not available. In-depth analysis of the immune function

and dysfunction seen in these groups of patients will provide
much needed insight into disease pathophysiology and ultimately
therapeutics (immune modulators etc) that could be developed
and/or repurposed to enhance immune responses to these life-
threatening infections.

RECENT DEVELOPMENTS AND
RESEARCH PRIORITIES

Recent findings of increased NTM pathophysiology are cause
for global concern. Firstly, the recent emergence of person-to-
person transmission of highly antibiotic resistant MABS across
continents is highly alarming (11). These findings have led to
new infection control practices in the US, UK, and Australia
(34, 55, 112). Secondly, evidence suggests there is increasing
incidence of childhood NTM disease. A nationwide, population-
based study showed a significant increase in childhood NTM
infection following a change in national policy on BCG
vaccination from “universal” to “selective” (113). This study
suggests that while BCG may provide some degree of protection
to children from NTM infection, unvaccinated children, and
other populations with respiratory deficits like CF could be
a susceptible to this disease. Other studies have documented
similar trends, particularly in relation to extra-pulmonary NTM
infection in children, support this theory (114). Thirdly, it
has been postulated that that MAC infection increases tumor-
genes inflammatory responses which could lead to an increased
risk of breast and lung cancer (115). Studies have associated
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NTM infection with diseases such as Sjogren’s syndrome in
Taiwan (116) and Sweets syndrome in Japan (117), though few,
these studies highlight the possibility that NTM infection may
catalyze non-infective sequalae that add to morbidity. Fourthly,
there are alarmingly high death rates in patients following
diagnosis with NTM lung infection. A systematic review showed
a 5 years mortality showed 27% in Europe, 35% in the US
and 33% in Asia (118). Predictors of high mortality included
male gender, presence of comorbidities, and fibro cavitary
disease. These findings have been validated in other studies
that showed that male patients, with fibro cavitary disease, low
BMI and malignancy were prognostic indicators of poor clinical
outcome (41, 119, 120). In addition, patients with persistent
infection (those who remain culture positive despite 12 months
of treatment) have higher rates of death attributable to NTM
infection compared to those who manage to clear NTM in the
sputum (34). Significantly higher numbers of hospitalizations
due to illness, leading to increasing health care costs compound
this issue (42).

Research priorities recommended in the US and UK include
rapid diagnostic tools fast identification of infecting species (34)
and simple and cheap screening tool to identify patients at risk
(83, 98, 112). These are considered high impact research goals
that would alert clinicians to at risk patients enabling faster
initiation of appropriate treatment and ultimately, superior care.

DISCUSSION

NTM infection presents a growing global health problem,
complicated by ubiquitous exposure to the organisms,
incomplete understanding of the immune susceptibility to
disease, increasing numbers of immune compromised patients,
cumbersome diagnostic tests (with no prognostic tests) and
costly, multi drug treatment regimens that often fail to
cure. However, we must keep in mind that different disease
mechanisms may be operating between different risk groups and
preclinical models.

NTM disease is frequently slow and progressive, affecting
predominantly already vulnerable patient populations.
Epidemiological and descriptive studies of patients are many,
but gaps in knowledge remain. Foremost among these is a
deconstruction of the immune susceptibilities to NTM lung
disease. If we can understand potential patient risk profiles,

screening tests could be efficiently deployed to identify infection

at risk individuals within hours. Such screening tests as well as
prognostic tests that can predict outcome (disease remission
vs. persistence, optimal treatment course, life changes etc)
during early treatment would be extremely beneficial for
clinicians to make therapy decisions as soon as possible, with
potential improvement of patient outcomes. In the current age
of immunotherapy, where targeted augmentation of immune
responses is now possible, research into adjuvant immune
therapies that could be used to “boost” a weakened immune
system would beneficial and could be redeployed from the cancer
field. Such immune modulating interventions would go a long
way in reducing the global burden of NTM disease.

The true level of morbidity caused by NTM lung disease is
slowly being revealed, in both developed and developing nations
and in both immune competent and immune compromised
populations. Disease burden is being documented in both
childhood and adulthood disease in terms of both direct and
indirect morbidity. A cohesive solution to the global challenge of
NTM lung infection requires a multipronged approach involving
not just epidemiological data, but also clinical and laboratory-
based research for new diagnostics, prognostics, and treatments
for use in machine learning. These cohesive approaches are
urgent as NTM is more common in the warmer climates (60).
Forty percent of the world’s population live in the tropics1

and due to climate change, the tropic are expanding in
area (121).
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