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Epstein-Barr virus (EBV) is an oncogenic human herpes virus that was discovered in

1964. Viral non-coding RNAs, such as BamHI-A rightward fragment-derived microRNAs

(BART miRNAs) or BamHI-H rightward fragment 1-derived miRNAs (BHRF1 miRNA) in

EBV-infected cells have been recently reported. Host miRNAs are also upregulated upon

EBV infection. Viral and host miRNAs are important in maintaining viral infection and

evasion of host immunity. Although miRNAs in EBV-infected cells often promote cell

proliferation by targeting apoptosis or cell cycle, this review focuses on the regulation

of the recognition of the host immune system. This review firstly describes the location

and organization of two clusters of viral miRNAs, then describes evasion from host

immune surveillance systems by modulating viral gene expression or inhibiting innate

and acquired immunity by viral miRNAs as well as host miRNAs. Another topic is the

enigmatic depletion of viral miRNAs in several types of EBV-infected tumor cells. Finally,

this review introduces the strong correlation of nasopharyngeal cancer cases with a newly

identified single nucleotide polymorphism that enhances BART miRNA promoter activity.
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INTRODUCTION

Epstein-Barr virus (EBV) is a double-stranded DNA virus that belongs to the Gammaherpesvirus
subfamily and was discovered in a Burkitt’s lymphoma (BL) cell (1). EBV primarily infects B cells via
the high-affinity receptor CD21; it also infects CD21-negative T cells, natural killer (NK) cells, and
epithelial cells using low-affinity receptors (2). EBV causes the primary acute disease “infectious
mononucleosis” in adolescents (3). Following a primary infection in B lymphocytes or epithelial
cells, EBV establishes a chronic infection known as latent infection.

The two infection cycles that enable successful propagation of the EBV progeny viruses are lytic
and latent infection. During lytic infection, all the viral genes are expressed and the viral genome
is rapidly replicated. In contrast, latent infection involves the restricted expression of a number
of viral genes. Here, EBV evades host immune surveillance and the copy number of DNA in the
viral daughter cells are maintained by synchronous duplication of viral and host genomes. A small
subset of viral genes and microRNAs (miRNAs) expressed during the latent infection maintain
viral episomes and stimulate host cell proliferation. EBV propagates viral genomes together with
host cells during latent infection.

Host cell proliferation associated with latent EBV infection induces malignancies, such as BL,
Hodgkin’s lymphoma (HL), EBV-positive diffuse large B-cell lymphoma (DLBCL), extranodal
NK/T-cell lymphoma-nasal type (ENKL), nasopharyngeal carcinoma (NPC), and EBV-associated
gastric carcinoma. EBV also causes the severe infectious disease called chronic active EBV
infection (3–6).
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A miRNA is a non-coding single-stranded RNA comprising
20–22 bases that regulates post-transcriptional gene expression.
More than 60% of protein-coding genes are regulated bymiRNAs
in mammals (7). miRNAs are present in both eukaryotic and
viral genomes, such as the EBV genome (8). Viral miRNAs
are incorporated into the RNA-induced silencing complex and
this miRNA complex interacts with the 3′ untranslated region
of host and viral mRNAs. This suppresses the expression of
target gene(s) via translational repression or mRNA degradation
(9). Viral miRNAs suppress target genes in the EBV and host
genomes to maintain latent EBV infection, evade the host
immune surveillance system, and promote tumorigenic growth
of infected cells among other functions (10).

Here we discuss the role of EBV-encoded miRNAs in
maintaining latent and lytic infection along with the function
of host and viral miRNAs in regulating immune responses in
EBV-associated diseases.

EBV-ENCODED miRNAs (EBV miRNAs)

EBV-encoded BamH I-A rightward transcripts (BARTs) are
alternatively spliced non-coding RNAs abundantly expressed
during latent infection (11). B95-8 is a representative EBV strain
with a deletion in a major portion of BART. This strain can
transform B lymphocytes and produce progeny viral particles in
abundance (12). Because previous EBV studies have mostly based
on the in vitro immortalizing assay of primary B lymphocytes, the
role of BART in the viral life cycle could only be studied after the
discovery of BART miRNAs.

Wild-type EBV contains 44 BART miRNAs that are separated
by an intron resulting in BART miRNA clusters 1 and 2 (13).
Double-stranded RNAs transcribed from the EBV genome are
processed by the host miRNA machinery to produce viral
miRNAs (9). BARTmiRNA cluster 1 contains primary transcripts
for eight miRNA (pri-miRNAs), namely pri-miR-BART1, 3–6,
and 15–17. BART miRNA cluster 2 encodes 13 pri-miRNAs,
including pri-miR-BART21, 18, 7, 8, 9, 22, 10, 11, 12, 19, 20, 13,
and 14. The deletion in B95-8 encompasses pri-miR-BART15 to
the 13 pri-miRNAs in cluster 2 (13) (Figure 1A).

The gene for BamH I-H right fragment 1 (BHRF1) encodes
for three pri-miRNAs called pri-miR-BHRF1-1, -BHRF1-2, and
-BHRF1-3. BHRF1 miRNAs are expressed during lytic infection,
inhibit apoptosis, and favor proliferation of infected cells to
enable the early phase of viral propagation (14) (Figure 1A).

Since viruses infect eukaryotic organisms to proliferate,
viral miRNAs regulate host cell function and viral life cycle,
including viral infection and development of viral progeny
(9). EBV miRNAs are more strongly expressed in ENKL and
NPC/EBV-associated gastric carcinoma as compared to B cell
lymphomas (15).

MODULATION OF VIRAL GENE
EXPRESSION BY EBV miRNAs

EBV miRNAs regulate viral antigen expression (10).
miR-BART1-5p, miR-BART16-5p, miR-BART17-5p, and

miR-BART9-5p suppress the increase in expression of the highly
immunogenic viral latent membrane protein 1 (LMP1) (16, 17).
miR-BART22 inhibits the expression of the immunogenic
latent membrane protein 2A (18). miR-BART20-5p represses
the synthesis of viral transcription factors BamH I-Z leftward
reading frame 1 (BZLF1) and BamH I-R leftward reading frame
1 that enable switching between latent and lytic EBV infection
(19). miR-BART2-5p hinders the production of viral DNA
polymerase BamH I-A leftward reading frame 5 during the
latent phase to prevent the transition to lytic replication (13, 20).
Therefore, viral strains deficient in all BART miRNAs cannot
maintain latent infection since they strongly express BZLF1 that
allows the switch to lytic replication (21).

REGULATION OF HOST IMMUNITY BY
EBV miRNAs

Suppression of Host Innate Immunity by
EBV miRNAs
EBV miRNAs target viral and host genes involved in innate
immunity (Figure 1B and Table 1) (10).

During lytic infection, miR-BHRF1-2-5p targets the 3′

untranslated region of the interleukin-1 receptor 1 (IL-1R1) and
suppresses IL-1 signaling (33). miR-BHRF1-3-5p in EBV-infected
B cells downregulates C-X-C motif chemokine 11 (CXCL-11)
that is a downstream effector in interferon gamma (IFN-γ)
signaling (35).

miR-BART6-3p targets the retinoic acid-inducible gene-I
(RIG-I) (an intracellular receptor for double-stranded RNA),
thereby suppressing host innate immune responses (27). miR-
BART20-5p and miR-BART8 target IFN-γ and the signal
transducer and activator of transcription 1 (STAT1), respectively,
ultimately suppressing cellular immunity against tumor cells
(29). miR-BART16 targets the cAMP response element-binding
protein-binding protein (CBP) (a transcriptional coactivator for
type I IFN signaling) in EBV-infected B cells and epithelial cells
to inhibit IFN signaling (26). miR-BART15-3p targets the NLR
family pyrin domain-containing protein 3 (NLRP3; a member
of the inflammasome) and inhibits the synthesis of IL-1β and
IL-18 (25, 36). miR-BART2-5p maintains tumor cell survival by
downregulating the major histocompatibility complex (MHC)
class I polypeptide-related sequence B (MICB) recognized by the
natural killer group 2 member D receptor present on NK cells
(31, 37).

The BART miRNA coding sequence from the Akata strain
was inserted into the B95-8 strain to restore the deleted
region (30). As compared to the parental B95-8 strain, the
restored B95-8 strain showed a decrease in the activity
of nuclear factor kappa light chain enhancer of activated
B cells (NF-κB) (30).

Inhibition of Host Adaptive Immunity by
EBV miRNAs
EBV miRNAs also suppress host adaptive immunity (Table 1)
(10). BART miRNAs regulate adaptive immunity during latent
and lytic infection. In comparison, BHRF1 miRNAs regulate
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FIGURE 1 | Expression and function of Epstein-Barr virus-derived microRNAs (EBV-derived miRNAs). (A) Genomic organization of EBV miRNAs. (B) Signaling

cascades involved in EBV miRNA-mediated repression of host innate immunity.

adaptive immunity only during lytic infection. miR-BART1-3p,
miR-BART2-5p, miR-BART10-3p, miR-BART22-3p, and miR-
BHRF1-2-3p suppress the expression of IL-12B in infected
cells. There is a significant decrease in the levels of IL-12 in

EBV-infected B lymphocytes that impairs the differentiation of
CD4+ T cells into T helper 1 (Th1) cells, thereby abrogating host
immune response. Thus, there is a reduction in cytotoxic T cells
specific for the EBV antigens (22, 32, 38).
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TABLE 1 | EBV miRNAs targeting host immune related genes.

miRNA Host targeting genes Target References EBV infected cells

BART miRNAs cluster 1

miR-BART1-3p IL12B Adaptive immunity (22) LCL

miR-BART1-5p LY75 Adaptive immunity (23) LCL

miR-BART1-5p, 3p IFI30 Adaptive immunity (24) LCL

miR-BART15-3p NLRP3 Innate immunity (25) BL

miR-BART16-5p CREBBP Innate immunity (26) BL, EBVaGC

miR-BART17-5p TAP2 Adaptive immunity (24) LCL

miR-BART6-3p RIG-I Innate immunity (27) NPC

BART miRNAs cluster 2

miR-BART18-5p MAP3K2 BCR signals, Adaptive Immunity (28) BL

miR-BART8-5p, 3p STAT1 Innate immunity (29) NKTL

miR-BART22-3p IL12B Adaptive immunity (22) LCL

miR-BART10-3p IL12B Adaptive immunity (22) LCL

miR-BART20-5p IFNG Innate immunity (29) NKTL

Others

miR BARTs NF-kB signal Innate immunity (30) NPC

miR-BART2-5p MICB Immunoreaction against NK cell (31) LCL

miR-BART2-5p IL12B Adaptive immunity (22, 32) LCL

miR-BART2-5p CSTB Adaptive immunity (24) LCL

miR-BART2-5p LGMN Adaptive immunity (24) LCL

miR-BHRF1 IL-1R1 Innate immunity (33) LCL

miR-BHRF1-2-5p MALT1 BCR signals, Adaptive Immunity (34) LCL, DLBL

miR-BHRF1-2-5p GRB2 BCR signals, Adaptive Immunity (34) LCL, DLBL

miR-BHRF1-2-5p PAG1 BCR signals, Adaptive Immunity (34) LCL, DLBL

miR-BHRF1-2-3p IL12B Adaptive immunity (22, 32) LCL

miR-BHRF1-2-3p CSTB Adaptive immunity (24) LCL

miR-BHRF1-2-3p TAP2 Adaptive immunity (24) LCL

miR-BHRF1-3-5p CXCL-11 Innate immunity (35) BL, DLBCL

LCL, Lymphoblastoid cell lines; BL, Burkitt lymphoma; NPC, Nasopharengeal carcinoma; EBVaGC, EBV asspciated gastridc carcinoma; NKTL, NK/T lymphoma; DLBCL, Diffuce large

B cell lymphoma.

miR-BHRF1-3-5p and miR-BART17-5p target transporter
associated with antigen processing 2 (TAP2) that transports
antigenic peptides to MHC class I molecules, thus, viral antigen
presentation is impaired in CD8+ T cells (24). EBV miRNAs
also target genes involved in antigen processing, such as cystatin-
B (CSTB), asparagine endopeptidase (LGMN), and gamma-
interferon-inducible lysosomal thiol reductase (IFI30). Thus,
antigen presentation is reduced in EBV-infected cells. Similarly,
immunodeficient mice transplanted with human hematopoietic
stem cells and infected with EBV possess proliferating EBV-
infected B lymphocytes owing to reduced immune recognition
by the human CD8+ T cells (39).

The B cell receptor (BCR) that mediates adaptive immunity as

well as lytic infection in EBV-infected B lymphocytes is inhibited

by miR-BHRF1-2-5p and miR-BART2-5p (34). miR-BART18-
5p targets mitogen-activated protein kinase kinase kinase 2

(MAP3K2) that is a downstream effector in BCR signaling (28).

The miR-BHRF1 cluster is considered to suppress constitutive
lytic infection and adaptive immunity.

Lymphocyte antigen 75 (LY75) is a membrane protein that is
expressed on dendritic cells and induces differentiation of Th0 to
Th1 cells. miR-BART1-5p (transferred by exosomes) targets LY75
in dendritic cells suppressing Th1 cell differentiation (23).

The roles of EBV miRNAs in suppressing innate and adaptive
immunity has been summarized in Figure 1B.

HOST miRNA-MEDIATED EVASION OF THE
IMMUNE SYSTEM BY EBV-INFECTED
CELLS

EBV exploits host miRNAs to escape from the immune system.
EBNA2 is a viral protein that expressed during type III
latency and upregulatesmiR-21, that subsequently downregulates
myeloid differentiation factor 88 (MyD88) and IL-1 receptor-
associated kinase 1 (IRAK1) (40). The miR-17-92 cluster, which
is essential for the differentiation of immune cells, is highly
expressed in EBV-positive tumors, such as NPC (41) and DLBCL
(42). High expression of miR-17-92 in B cells, T cells, NK cells,
macrophages, and dendritic cells is known to inhibit cellular
differentiation and function (43).

In EBV-infected B lymphocytes, viral LMP1 activates NF-
κB signaling and host miR-155. But miR-155 attenuates NF-κB
signaling to stabilize persistent infection (44). The miR-155 also
targets suppressor of cytokine signaling 1 (SOCS1), a suppressor
of the JAK-STAT signal (45). Though miR-155 is upregulated,
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strong expression of SOCS1 can be observed in EBV-infected
cells (46). Simultaneous upregulation of SOCS1 and miR-155
has become an important controversy for researchers who study
herpesviruses (47). It might be possible that miR-155 may target
another gene expressed higher than SOCS1 in NPC cells.

DEPLETION OF VIRAL miRNAS IN
EBV-ASSOCIATED TUMORS

In EBV-infected epithelial tumor cells, BART miRNAs are
highly expressed and help in evading immune recognition (10).
However, the BART miRNA clusters are frequently depleted
in virus causing chronic active EBV infection, ENKL, and
DLBCL (48, 49). BART miRNA were found lacking in 71%
of DLBCL cases (49). On the other hand, DLBCL patients
with high BART miRNA expression in the blood showed worse
prognosis than patients with low expression (50). Although high
expression of BARTmiRNAs is possibly important for malignant
transformation of lymphoma, it may be disadvantageous for
lymphoma cells survival by escaping immune surveillance.

Similarly, LMP1 is expressed in all the early NPC tumor cells
and contributes to pleiotropy in NPCs (51). However, once NF-
κB signaling is sufficiently active in NPC tumor cells, LMP1 is
frequently downregulated (52).

As mutations and/or promoter methylation accumulate in the
host genome, the presence of the viral genome may no longer
be required for the growth of the tumor cell. In such a situation,
carrying large EBV genomes may be a burden for host cells;
thus, cells harboring the defective, but oncogenic, EBV genome
may proliferate faster than cells infected with EBV having the
complete genome. Alternatively, the increased levels of BART
miRNAs may repress the expression of genes important for
survival of EBV-positive cells. Therefore, further investigation
is necessary to discern the physiological significance of BART
miRNAs in EBV-positive tumor cells.

SINGLE NUCLEOTIDE POLYMORPHISMS
(SNPs) IN THE VIRAL miRNA PROMOTERS

BART miRNAs are important in evading the immune system
and inhibiting apoptosis. However, multiple BART miRNAs
frequently target the same gene to induce a high level of

repression (16, 17). This hinders the development of efficacious
drugs that must target each BART miRNA in EBV-associated
malignancies. Thus, blocking the BARTmiRNA promoters could
be a better strategy to target all the necessary miRNAs (53, 54).
We have recently reported a characteristic SNP in the promoter
of BART that increases BART promoter activity. This SNP is
frequently detected in EBV-associated NPC with an odds ratio
of 5.7 (55). Therefore, studying the promoter of BART and the
SNPs associated with it can help develop strong candidates that
suppress BART transcription.

CONCLUSION

EBV uses miRNAs to switch between lytic and latent infection.
This helps maintain EBV infection and evade recognition of EBV
by the host immune system by reducing viral gene (antigenic)
expression. EBVmiRNAs also target and suppress genes involved
with host immunity. This oncogenic virus also exploits miRNAs
for malignant transformation. Exosomes secreted from EBV-
infected B lymphocytes contain a large amount of host and viral
miRNAs that are transferred to epithelial cells (56). Therefore,
miRNAs derived from EBV-infected cells may affect infected and
uninfected host cells. Finally, future researchmay help treat EBV-
associated malignancies by developing anti-tumor drugs that
inhibit BART promoter activity.
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