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Mutation-derived neoantigens are important targets for T cell-mediated reactivity toward

tumors and, due to their unique tumor expression, an attractive target for immunotherapy.

Neoepitope-specific T cells have been detected across a number of solid cancers with

high mutational burden tumors, but neoepitopes have been mostly selected from single

nucleotide variations (SNVs), and little focus has been given to neoepitopes derived from

in-frame and frameshift indels, which might be equally important and potentially highly

immunogenic. Clear cell renal cell carcinomas (ccRCCs) are medium-range mutational

burden tumors with a high pan-cancer proportion of frameshift mutations. In this study,

the mutational landscape of tumors from six RCC patients was analyzed by whole-exome

sequencing (WES) of DNA from tumor fragments (TFs), autologous tumor cell lines

(TCLs), and tumor-infiltrating lymphocytes (TILs, germline reference). Neopeptides were

predicted using MuPeXI, and patient-specific peptide–MHC (pMHC) libraries were

created for all neopeptides with a rank score < 2 for binding to the patient’s HLAs. T

cell recognition toward neoepitopes in TILs was evaluated using the high-throughput

technology of DNA barcode-labeled pMHC multimers. The patient-specific libraries

consisted of, on average, 258 putative neopeptides (range, 103–397, n = 6). In four

patients, WES was performed on two different sources (TF and TCL), whereas in two

patients, WES was performed only on TF. Most of the peptides were predicted from

both sources. However, a fraction was predicted from one source only. Among the total

predicted neopeptides, 16% were derived from frameshift indels. T cell recognition of 52

neoepitopes was detected across all patients (range, 4–18, n = 6) and spanning two to

five HLA restrictions per patient. On average, 21% of the recognized neoepitopes were

derived from frameshift indels (range, 0–43%, n = 6). Thus, frameshift indels are equally
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represented in the pool of immunogenic neoepitopes as SNV-derived neoepitopes. This

suggests the importance of a broad neopeptide prediction strategy covering multiple

sources of tumor material, and including different genetic alterations. This study, for the

first time, describes the T cell recognition of frameshift-derived neoepitopes in RCC and

determines their immunogenic profile.

Keywords: renal cell carcinoma, neoepitopes, neoantigens, frameshift mutations, T cell screening

INTRODUCTION

Tumor neoantigens are important targets for the immune
system to mediate tumor control. Tumor-specific mutations
give rise to altered proteins that are processed into short
peptides. These are presented at the cell surface in the context
of major histocompatibility complex (MHC) molecules, where
they serve as targets for cytotoxic T cell killing of the tumor (1).
Compared to shared tumor antigens, which can be expressed
at low levels in healthy tissue, neoantigens have the advantage
of being uniquely expressed in the tumor. Also, there is less
T cell tolerance toward neoantigens since the T cell repertoire
has not been negatively selected based on these sequences (2).
Therefore, neoantigens are attractive targets for immunotherapy.
Untargeted therapies, such as immune checkpoint inhibitors and
adoptive T cell transfer with tumor infiltrating lymphocytes,
have been shown to increase neoantigen reactive T cells, and
the clinical response correlates with the mutational burden and
predicted number of neoantigens (3–5). Neoantigens have also
been directly targeted in personalized therapies by adoptive
transfer of specifically expanded T cells (6, 7) and in personalized
neoepitope vaccines (8, 9). The challenge for these strategies
is, however, to determine which neoepitopes to preferentially
target in each patient. Neoantigen reactive T cells have been
detected across a number of solid cancers with high mutational
burdens, such as melanoma and non-small cell lung cancer
(10–12). The described neopeptides have, however, mainly been
derived from single nucleotide variations (SNVs) with less focus
on in-frame and frameshift indels, mutation types that are likely
to be immunogenic based on their large sequence variance to
the germline DNA. Even though the total number of frameshift
indels are lower than SNVs, they have been shown to give rise
to three times as many predicted high-affinity (IC50 < 50 nM)
neoantigens per mutation compared to SNVs and are highly
enriched for mutant-specific binding (i.e., neopeptides for which
the wild-type peptide is not predicted to bind the HLA) (13).
Hence, thismutation type is potentially highly relevant as a tumor
neoantigen target (14, 15).

Clear cell renal cell carcinomas (ccRCCs) are medium-
range mutational burden tumors that present with the highest
pan-cancer proportion of frameshift indels (13, 16). ccRCCs
appear to be immune sensitive, as suggested by high levels
of T cells infiltrating the tumor site (17), and clinical benefit
can be achieved using cytokine-based immunotherapies with
interferon-α and high-dose interleukin 2 (18, 19) and checkpoint
inhibitors (20, 21). Nevertheless, the tumor microenvironment
of ccRCCs is characterized as highly immunosuppressive

(22), which is reflected by the poor functional quality of T
cell responses observed, with implications for adoptive cell
therapy (23).

To our knowledge, as yet, no reports have described the
neoantigens recognized by T cells in ccRCC and investigated
the contribution of frameshift indels to T cell recognition
of neoantigens. Such investigation is critical for using
neoantigens as therapeutic targets and biomarkers of relevance
to immunotherapy in this cancer type. For that reason, we
evaluated the T cell recognition of neopeptides predicted from
SNVs, in-frame, and frameshift indels in six ccRCC patients
previously described in (23). The prediction was performed
with WES from two sources of tumor material (TCL and TF) to
include all potential neopeptides in our screenings.

MATERIALS AND METHODS

Patient and Healthy Donor Samples
Healthy donor samples were collected by approval of the
local Scientific Ethics Committee, with donor written informed
consent obtained according to the Declaration of Helsinki.
Healthy donor blood samples were obtained from the blood
bank at Rigshospitalet, Copenhagen, Denmark. All samples
were obtained anonymously. Peripheral blood mononuclear
cells (PBMCs) from healthy donors were obtained from whole
blood by density centrifugation on Lymphoprep (Axis-Shield
PoC, cat# 1114544) in Leucosep tubes (Greiner Bio-One, cat#
227288) and cryopreserved at −150◦C in fetal calf serum (FCS,
Gibco, cat#10500064)+ 10% dimethyl sulfoxide (DMSO, Sigma-
Aldrich, cat#C6164).

Tumor-infiltrating lymphocytes (TILs), tumor fragments
(TFs), and tumor cell lines (TCLs) from ccRCC patients were
obtained at the Department of Oncology and Center for Cancer
Immune Therapy, Copenhagen University Hospital, Denmark,
under approval by the Ethics Committee of the Capital Region
of Denmark and the Danish Data Protection Agency. Young
TIL cultures were obtained from resected tumor lesions from
individuals with ccRCC with a Fuhrman grade between 1
and 3 (23). Tumor lesions were resected following surgical
removal, and TFs were cultured individually in completemedium
[RPMI1640 + GlutaMAXTM (Gibco, cat#61870010) with 10%
human serum (Sigma-Aldrich, cat#H3667), 100 U/ml penicillin
(P/S, Sigma-Aldrich, cat#P0781), 100µg/ml streptomycin (P/S,
Sigma-Aldrich, cat#P0781), 1.25µg/ml fungizone (Bristol-Myers
Squibb), and 6,000 U/ml IL-2 (Proleukin, Novartis, cat#200-
02)] at 37◦C and 5% CO2, allowing TILs to migrate into the
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medium. TILs were expanded to reach >50 × 106 total cells
originating from∼48 individual fragments, which had expanded
to confluent growth in 2ml wells and eliminated adherent tumor
cells (average of ∼2 × 106 cells per well from each TF). TIL
cultures were further expanded using a standard rapid expansion
protocol (REP) as previously described (24). Briefly, TILs were
stimulated with 30 ng/ml anti-CD3 antibody (OKT-3, Ortho
Biotech) and 6,000 U/ml IL-2 in the presence of irradiated
(40Gy) allogeneic feeder cells (healthy donor PBMCs) at a
feeder/TIL ratio of 200:1. Initially, TILs were rapidly expanded
in a 1:1 mix of complete medium and REP medium [AIM-V
(Invitrogen) + 10% human serum, 1.25µg/ml fungizone, and
6,000 U/ml IL-2], but after 7 days, complete medium and serum
were removed stepwise from the culture by adding REP medium
without serum to maintain cell densities around 1–2 × 106

cells/ml. TIL cultures were cryopreserved at −150◦C in human
serum+ 10% DMSO.

DNA and RNA Extraction and Sequencing
Preparation
DNA and RNA were extracted and purified from TCLs, TFs, and
TILs (germline DNA reference) using the AllPrep DNA/RNA
Mini kit (Qiagen, cat#80204), with the addition of DNase
during RNA purification (Qiagen, 79254). Next, DNA/RNA
concentrations were analyzed by NanoDrop (Thermo Fischer
Technologies), and RNA RIN values were analyzed by 2100
Bioanalyzer (Agilent Technologies). DNA whole-exome and
RNA sequencing (RNAseq) were performed at the DTU Multi
Assay Core (DMAC).

Next-Generation Sequencing Data
Processing
Raw FASTQ files from whole WES and RNAseq were analyzed in
the followingmanner. First, both data sets were pre-processed for
quality using Trim Galore version 0.4.0 (25), which combines the
functions of Cutadapt (26) and FastQC 0.11.2 (27): trimming the
reads below an average Phred score of 20 (default value), cutting
out standard adaptors such as those from Illumina, and running
FastQC to evaluate data quality. Variant calling was performed
following the Genome Analysis Toolkit (GATK) best practice
guidelines for somatic variant detection (28). Reads were aligned
to the human genome (GRCh38) using the Burrows-Wheeler
Aligner (29) version 0.7.10 with default mem options and with
a reading group provided for each sample for compatibility with
the following steps. Duplicate reads were marked using Picard-
tools version 2.6.0 MarkDuplicates. Indel realignment and base
recalibration were performed with GATK version 3.3.0 to reduce
false-positive variant calls. SNV and indel calls were made using
GATKs build in a version of MuTect2 (30) designed to call
variants, both SNVs and indels, frommatched tumor and normal
samples. Kallisto 0.42.1 (31) was used to determine the gene
expression in transcript per million (TPM) from RNAseq data.

Neopeptide Prediction
The VCF output files from GATK’s MuTect2 was given as input
to the neopeptide predictor MuPeXI version 1.1 (32) together
with RNAseq expression values obtained from Kallisto. HLA

alleles of each patient were inferred from the WES data using
OptiType version 1.0 (33) with default settings after filtering
the reads aligning to the HLA region with RazerS version 3.4.0
(34). Identified mutations from TFs and TCLs were used to
predict 9, 10, and 11 amino acid peptides, sorted according to the
eluted ligand percentile rank (EL% Rank) score of the mutated
neopeptides using netMHCpan 2.8 (35). All neopeptides with
a rank score < 2 were selected for peptide synthesis, giving a
total of 1,545 neopeptides across all six patients. Additionally,
the tumor mutational burden of non-synonymous mutations
was determined from the MuPeXI output logfile summarizing
peptides originating from missense variant mutations, in-frame
insertions, and deletions, together with frameshift mutations.
Mutation types were determined by Ensembl’s variant effect
predictor as a dependency ofMuPeXI. The neopeptide prediction
has, prior to publication, been reanalyzed with MuPeXI 1.2.0
using netMHCpan 4.0 (36).

Peptides
All selected mutation derived and virus control peptides
were purchased from Pepscan (Pepscan Presto BV, Lelystad,
Netherlands) and dissolved to 10mM in DMSO.

MHC Monomer Production and Generation
of Specific Peptide–MHC Complexes
The production of MHCmonomers was performed as previously
described (37, 38). In brief, the heavy chains of the included
HLA types and human β2 microglobulin (β2m) light chain
were expressed in bacterial Bl21 (DE3) pLysS strain (Novagen,
cat#69451) and purified as inclusion bodies. After solubilization,
heavy-chain and β2m light-chain complexes were folded using
a UV-sensitive ligand (39, 40), biotinylated with BirA biotin-
protein ligase standard reaction kit (Avidity, 318 LLC-Aurora,
Colorado), and purified using size-exclusion column (Waters,
BioSuite125, 13µm SEC 21.5 × 300mm) HPLC (Waters 2489).
Specific peptide–MHC (pMHC) complexes were generated by
UV-induced peptide exchange (37, 39).

Detection of pMHC Specific T Cells by
DNA Barcode-Labeled Multimers
Patient-specific libraries of predicted neopeptides and virus
control peptides (size range 114–415 peptides) were generated
as previously described (41). Briefly, the pMHC complexes
generated above were coupled to a phycoerythrin (PE)- and
DNA barcode-labeled dextran backbone. Hence, a specific
peptide was given a unique DNA barcode together with a
PE-fluorescent label. ccRCC patient TILs and healthy donor
PBMCs were stained with an up-concentrated pool of all
multimers in the presence of 50 nM dasatinib, followed by
staining with a 5× antibody mix composed of CD8-BV510 (BD
563256, clone RPA-T8) or -BV480 (BD, cat#566121, clone RPA-
T8), dump channel antibodies [CD4-FITC (BD, cat#345768),
CD14-FITC (BD, cat#345784), CD19-FITC (BD, cat#345776),
CD40-FITC (Serotech, cat#MCA1590F), and CD16-FITC (BD,
cat#335035)], and a dead cell marker (LIVE/DEAD Fixable Near-
IR; Invitrogen, cat#L10119). Multimer binding T cells were
sorted as lymphocytes, single, live, CD8+, FITC−, and PE+ and
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pelleted by centrifugation. DNA barcodes were amplified from
the isolated cells and from a stored aliquot of multimer pool
(diluted 50,000× in the final PCR reaction, used as a baseline).
PCR products were purified with a QIAquick PCR Purification
kit (Qiagen, cat#28104) and sequenced at Sequetech (USA) using
an Ion Torrent PGM 316 or 318 chip (Life Technologies).
Sequencing data were processed by the software package
Barracoda (available online at http://www.cbs.dtu.dk/services/
barracoda). This tool identifies the DNA barcodes annotated for
a given experiment, assigns a sample ID and pMHC specificity
to each DNA barcode, and counts the total number of reads and
clonally reduced reads for each pMHC-associated DNA barcode.
Log2 fold changes in read counts mapped to a given sample
relative to the mean read counts mapped to triplicate baseline
samples are estimated using normalization factors determined
by the trimmed mean of M-values method. False discovery rates
(FDRs) were estimated using the Benjamini–Hochberg method.
At least 1/1,000 reads associated with a given DNA barcode
relative to the total number of DNA barcode reads in that given
sample was set as threshold to avoid false-positive detection of T
cell responses due to low number of reads in the baseline samples.
An estimated cell frequency was calculated for eachDNA barcode
from their read count fraction out of the percentage of CD8+

multimer+ T cells. DNA barcodes with a p< 0.001, which is equal
with FDR < 0.1%, and an estimated cell frequency > 0.005%,
were considered to be true T cell responses.

Detection of pMHC-Specific T Cells by
Fluorescently Labeled pMHC Tetramers
pMHCs for which T cell responses were detected with the
DNA-barcode labeled multimers were generated as fluorescently
labeled pMHC tetramers in a combinatorial manner as
previously described (42). Briefly, pMHC complexes were
multimerized on two different streptavidin-conjugated
fluorochromes to give a unique two-color combination.
The following streptavidin-conjugated fluorochromes were
used: PE (Biolegend, cat#405203), allophycocyanin (APC)
(Biolegend, cat#405207), phycoerythrin-cyanin 7 (PE-Cy7)
(Biolegend, cat#405206), PE-CF594 (BD, cat#562284), brilliant
ultraviolet (BUV)737 (BD, cat#564293), brilliant violet (BV)605
(BD, cat#563260), BV650 (BD, cat#563855), BUV395 (BD,
cat#564176), and BV421 (Biolegend, cat#405226). RCC patient
TILs were stained with tetramers, followed by a 5× antibody
mix composed of CD8-BV510 or -BV480, dump channel
antibodies (CD4-FITC, CD14-FITC, CD19-FITC, CD40-FITC,
and CD16-FITC), and a dead cell marker (LIVE/DEAD Fixable
Near-IR). Multimer positive T cells were gated as single, live,
CD8+, FITC− (dump channel), multimer color1+, multimer
color2+, and negative for the remaining colors, and defined by a
minimum of 10 dual-color positive events.

Flow Cytometry
All flow cytometry experiments were carried out on LSRFortessa
and FACSAria Fusion instruments (BD Biosciences). Data were
analyzed in FACSDiva Software version 8.0.2 (BD Biosciences)
and FlowJo version 10.4.2 (TreeStar, Inc.).

Determination of T Cell Diversity
T cell diversity was determined through the identification of
CDR3 sequences from bulk RNAseq data with MiXCR version
2.1.1 (43) with the optimized setting for this specific purpose
(44). The quality trimmed reads from RNAseq were used as
input to MiXCR, which identify specific clones with reference
to known CDR3 sequences from the ImMunoGeneTics (IMGT)
database. The clone count of each clone detected refers to the
reads aligning to this specific clone of the CDR3 reference
library. Shannon entropy (45) was calculated as a T cell diversity
measurement (46).

Self-Similarity Score
MuPeXI predicts the corresponding normal peptide for any
predicted neopeptide. For a neopeptide derived from SNVs, the
most similar normal peptide is identified from the unmutated
amino acid sequence in the reference proteome. However, for
a neopeptide derived from indels, the reference proteome is
searched for themost similar peptide with up to fourmismatches,
referred to as the nearest normal peptide (32). The self-similarity
score between a neopeptide and normal peptides was calculated
using the kernel similarity measure (47). In short, this similarity
is calculated from matching, at different length scales, all kmers
(a substring of length k) in one peptide to the kmers in the other
peptide using a Blosum similarity measure. The measure gives a
value between 0 and 1 for the similarity of two peptides, where a
value of 1 indicates a perfect match.

Statistical Analyses
The difference in the distribution of predicted peptides and
detected responses (Figure 1A) was analyzed with Fisher’s exact
test with the Freeman–Halton extension. The data presented in
Figure 2 were assessed for normal distribution with a Shapiro–
Wilk normality test with a significance level of 0.05. Data
were analyzed with a non-parametric Mann–Whitney U-test
or Kruskal–Wallis test with Dunn’s correction for multiple
comparisons. The correlations presented in Figure 3 were
analyzed using Spearman’s non-parametric correlation. These
statistical analyses were conducted using either GraphPad Prism
8.1.2 or R statistically software version 3.5.1.

RESULTS

Neopeptides Predicted From Two Sources
The mutational landscape of tumors from four of the six ccRCC
patients was analyzed byWES and RNAseq from TFs, autologous
TCLs, and TILs (germline reference). For two patients, TCLs
were not established, and the analysis was done on TF solely.
In silico extraction and prediction of neopeptides based on
tumor sequencing data was performed with MuPeXI (32). The
mutational burden ranged from 51 to 159 mutations in the six
patients (Table 1). From these, neopeptides were predicted as
9-, 10-, and 11-mer peptides with predicted binding capacity
to the patients’ HLAs. Based on available MHC monomers
produced in-house, we selected only the HLA types we could
cover for the generation of the peptide (p)MHC libraries. Based
on this, four to five HLA types per patient were included in the
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FIGURE 1 | Comparison of tumor cell lines and tumor fragments as sources for neopeptide prediction. (A) Distribution of predicted peptides (P) and detected

responses (R) across tumor cell lines (TCL), tumor fragments (TF), and tumor cell line-tumor fragment overlap (TCL+TF) in each patient. Distribution of peptides

analyzed with Fisher’s exact test with Freeman-Halton extension. (B) T cell responses in patient RCC12 detected against neoepitopes and virus control epitopes with

DNA barcode labeled multimers presented as —log10 of their significance level, distributed on HLA types. Dotted line at x = 3 [—log10(0.001)] represent the selected

threshold of FDR < 0.1%. Filled labels indicate responses verified by tetramer staining. (C) Examples of tetramer verification plots for two of the responses detected in

patient RCC12 against peptide 521 (C*0701) and peptide 282 (B*4402). (D) Distribution of responses, where the mutational event gave rise to more or less than 1

epitope in each patient.

neopeptide prediction. Binders were defined with a predicted
rank score below 2 using NetMHCpan 2.8. On average, 258
putative neopeptides were predicted per patient, ranging from
103 to 397 (Table 1).

In the four patients with two tumor sources available for
prediction, we conducted a comparison of the peptide origin. The
mutational landscape overlapped substantially with average 50%
of mutations detected in both tumor sources, and consequently,
more than half of the neopeptides were predicted from both

sources (57%, range 40–74%, n = 4). However, a proportion
of the neopeptides were only predicted from one source: 17%
from TF only (range, 8–27%, n = 4) and 26% from TCL only
(range, 18–34%, n = 4). A similar trend is observed in the
neoepitopes recognized by T cells (described in detail in the
following section) with 40% of the neoepitopes being predicted
from both sources (range, 22–57%, n = 4), whereas 20% were
predicted only from TF (range, 0–44%, n = 4) and 40% only
from TCL (range, 29–57%, n = 4) (Figure 1A). In three of
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FIGURE 2 | Characterization of the contribution of different mutation types to immunogenicity. (A), Distribution of frameshift indel (red), in-frame indel (light blue), and

single nucleotide variation (SNV) (dark blue) mutations in each patient across tumor mutational burden (M), predicted peptides (P), and detected responses (R). (B)

Percentages of immunogenic neoepitopes out of predicted peptides. NS difference found between mutation types (Mann-Withney U-test). (C) Examples of T cell

responses detected against SNV mutation (left) and frameshift indel (right) derived neoepitopes. (D) Illustration of the frameshift mutational events giving rise to T cell

responses in patients RCC04, 12, 16, and 17. (E) The difference in % eluted ligand (EL) rank scores between neoepitope and the corresponding wild-type. No

difference between non-immunogenic and immunogenic neopeptide within the same mutation type. However, ****p < 0.001 and *p = 0.0315 for comparison

between mutation types within the same immunogenicity group (Kruskal-Wallis test with Dunn’s correction). (F) Self-similarity score between neopeptide and the

corresponding wild-type. No difference between non-immunogenic and immunogenic neopeptides within the same mutation type. However, ****p < 0.001 and

****p < 0.001 for comparison between mutation types within the same immunogenicity group (Kruskal-Wallis test with Dunn’s correction).
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FIGURE 3 | Correlation between T cell diversity, functionality and immunogenicity. (A,B) Correlation between the number of detected responses (A) or the

accumulated estimated frequency (B) and T cell diversity in each patient. (C,D) Correlation between the number of detected responses (C) or the accumulated

estimated frequency (D) and the mean expression of immunological genes, measured as transcripts per million (TPM). The Spearman correlation coefficient is

denoted in each plot.

the four patients, there was no difference in the distribution
of peptides between predicted peptide and detected responses.
However, in patient 02, the distribution was significantly
different (Fisher’s exact test with Freeman–Halton extension,
p < 0.05). These results indicate the advantage of applying
multiple sources of tumor material for neopeptide prediction to
provide a comprehensive identification of T cell responses toward
potential neopeptides.

Neoepitope-Specific CD8+ T Cells Are
Detected in ccRCC Patients
The 1,545 predicted neopeptides were synthesized and used
to generate patient-specific libraries of DNA barcode-labeled
pMHCmultimers, as previously described (41). Included in each
library were HLA matching epitopes derived from common
viruses: influenza virus (FLU), Epstein–Barr virus (EBV), and
cytomegalovirus (CMV). This resulted in patient-specific library

sizes of 114 to 415 pMHC multimers that were used to stain
cryopreserved TILs from the corresponding RCC patient and
PBMCs from healthy donor controls. All CD8+ T cells binding to
a given pMHC multimer were selected and sorted based on their
positive PE signal. The associated DNA barcodes were amplified
and sequenced to reveal the neopeptide specificities recognized
within the TIL samples. T cell responses were defined as any
pMHC complex enriched in the sorted T cell fraction with a
p < 0.001 and an estimated cell frequency above 0.005%.

T cell responses toward 54 neopeptides were detected across
all patients, ranging from 4 to 18 responses per patient.
Figure 1B shows a representation of patient 12. Results from
the remaining patients are presented in Figure S1 and with
peptide information in Table S1. The recognized neopeptides
spanned two to five HLA restrictions and covered, on average,
76% of the HLAs screened for (range, 50–100%). A number
of the neopeptides were derived from the same mutational
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TABLE 1 | Overview of number of mutations, predicted neopeptides, and detected T cell responses for each of the six patients.

Mutations Predicted neopeptides Detected responses

TCL TF TCL/TF Total TCL TF TCL/TF Total TCL TF TCL/TF Total

RCC02 30 13 43 86 56 24 113 193 3 4 2 9

RCC04 – 138 – 138 – 397 – 397 – 18 – 18

RCC12 28 19 97 144 67 30 282 379 3 0 4 7

RCC16 24 21 38 83 52 51 88 191 2 2 3 7

RCC17 55 39 65 159 95 73 114 282 4 0 3 7

RCC19 – 51 – 51 – 103 – 103 – 4 – 4

TCL, tumor cell line; TF, tumor fragment.

event, resulting in peptides with varying degrees of overlap
in sequence. On average, 38% (range, 0–85.7%) of the T
cell responses were directed toward mutations where >1
neoepitope was recognized by T cells (Figure 1D). Furthermore,
in three of the six patients, T cell responses toward the
common virus epitopes were detected (ranging from one to
eight responses per patient) (Figure 1B, Figure S1). In the
healthy donor cohort, we detected T cell responses toward
several epitopes derived from common viruses, as expected.
However, low-frequency responses toward neoepitopes were
also detected.

The recognized neoepitopes were unique to each patient
and none originated from known shared mutations. In a
search of the COSMIC database, none of the mutations were
previously described in renal cell carcinoma (n = 6), and in
a broader search of kidney cancer [carcinoma (n = 4512),
leiomyoblastoma (n = 3), renal cell carcinoma (n = 6), Wilms
tumor (n = 1354), not specified (n = 106), and other (n
= 143)], only two mutations were reported with a frequency

above 1%: COL14A1 (1%, n = 2168) and PCDH11X (2.4%,

n= 2168).
Fluorescently labeled combinatorial encoding pMHC

tetramers were generated for the neoepitopes for which we
observed responses with the barcode-labeling method, and

these were used to validate the T cell reactivity for a number
of the T cell responses observed (filled symbols, Figure 1C

and Figure S1). Due to the combinatorial encoding of the

tetramers, peptides with great sequence similarity (<2 amino
acid difference) were not allowed in the same screen. This was,

for instance, the case in patient 16 for neoepitope 144 and 173

with one amino acid difference. Tetramers were only generated
for peptide 173, for which we detected T cell response toward,

and we, therefore, consider peptide 144 as indirectly validated. In

most cases, due to low cell numbers, the cells used for verification

screens were from another TIL expanded cell product than

the ones used in the original screen, whereby variation might
occur—especially as many of the detected responses were of

very low frequency. For patient 17 only, a CD107a sorted and
expanded cell culture was available, and we screened it with the

DNA barcode-labeled multimers. We detected T cell responses

toward some of the same neopeptides, as in the original TIL
sample (Figure S1).

Frameshift Indels Contribute to
Immunogenicity
The tumor mutational burden of the patients included several
non-synonymous mutation types: SNVs, frameshift indels, and
in-frame indels (deletions and insertions) (Figure 2A). As
expected, SNVs accounted for the largest fraction of mutations
in the tumors of all six patients and resulted in a greater number
of predicted neopeptides. The two other mutation types are
less frequent; on average, across all patients, 12% of mutations
and 16% of predicted neopeptides were frameshift indels (range,
9–15 and 9–25%), and 3% of mutations and 1% of predicted
neopeptides were in-frame indels (range, 1–6 and 0–2.5%). Only
neopeptides derived from SNVs (41/52, 79%) and frameshift
indels (11/52, 21%) were recognized by T cells in our screen.
There was no significant difference between the percentages of
immunogenic neoepitopes out of predicted peptides between the
two mutation groups (Figure 2B). However, a slightly increased
average fraction was observed for frameshift indels (4.5%, range
0–12%) compared to SNVs (3.2%, range 1–6%). Validation plots
of two responses toward each mutation type are presented in
Figure 2C. The position of the original mutation that resulted
in the frameshift varied between each event. In most cases, the
mutation was upstream of the predicted neoepitope, and only
a couple of neoepitopes were predicted at the mutation site
(Figure 2D).

Frameshift Indels Have Increased Binding
Capacity and Less Similarity to Self
The neoepitope predictor MuPeXI provides the corresponding
wild-type peptide for any predicted neopeptide but through
different means depending on the mutation type. For a
neopeptide derived from SNVs, it is simply the unmutated
amino acid sequence in the reference proteome. However,
frameshift indels result in an entirely changed amino acid
sequence. Instead, the reference proteome is searched for the
most similar peptide with up to four mismatches, which will
be defined as the nearest normal peptide to the neopeptide
(32). In the following, both types will be referred to as wild-
type peptides. We first investigated how both mutation types
change the MHC binding capacity compared to wild-type. The
prediction of neopeptides was performed with NetMHCpan
2.8. However, at the time of publication, a new version was
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available (NetMHCpan 4.0) (36). Therefore, a second prediction
of the current libraries was performed, and the % eluted ligand
rank scores from the two versions were compared (Figure S2A).
The outputs correlated well, with outliers representing a
difference in prediction algorithms between the two versions.
We continued with the prediction values from the newest
version of NetMHCpan and used it to compare the binding
capacity of neopeptides compared to wild-type peptide. The
predicted rank scores for neopeptides were generally lower than
the wild-type peptides (Figures S2B,C for individual patients).
This difference was calculated as a delta(EL %Rank) value
and divided into immunogenic and non-immunogenic peptides
based on the T cell responses detected with the barcode-
labeling method (Figure 2E). Within each mutation group,
there was no significant difference between peptides based on
their immunogenicity, even though, for both groups, slightly
higher average delta values were detected for the immunogenic
neoepitopes (SNVs: 2.6 and 5.4; frameshift indels: 9.4 and 16.7
for non-and immunogenic peptides, respectively). Furthermore,
between the two mutation types, frameshift mutations had
significantly enhanced MHC binding capacity compared to
SNVs, relative to their wild-type sequence. Next, we determined
the similarity between neopeptide and wild type using the kernel
similarity measure giving a score between 0 and 1, where a value
of 1 indicates a perfect match (47) (Figure 2F). This approach
has previously been shown to focus on the central part of
the peptide and could be an indication of similarity in T cell
recognition of the presented peptide (48). As before, there is no
significant difference within the same mutation group between
non-immunogenic and immunogenic neopeptides. However,
between the mutation types, neopeptides derived from frameshift
indels are significantly less similar to wild type compared to SNV
(SNVs: 0.96 and 0.97; frameshift indels: 0.9 and 0.89 for non- and
immunogenic peptides, respectively).

T Cell Diversity and Functionality
We next investigated the T cell tumor infiltration and associated
functional markers in the six ccRCC patients. The T cell
receptor (TCR) CDR3 sequences were detected from bulk
RNAseq data with MiXCR and T cell diversity was calculated
using the Shannon Entropy, taking the number of reads per
sample into account. Generally, few reads were detected, which
is expected when extracting TCR CDR3s from RNAseq data.
As a control measure, no TCRs were detected in the TCL
samples, except one clone with a single read (data not shown).
T cell diversity correlated with both the number of detected
responses and accumulated estimated frequency from the DNA
barcode screen (Figures 3A,B). The correlation was stronger for
the accumulated estimated frequency than for the number of
detected responses (Spearman correlation coefficient of 0.992
and 0.359, respectively), indicating T cell diversity as a potential
surrogate marker for the number of (neo)antigen-specific T
cells in the tumor. We further evaluated CD8 expression and
expression of the perforin-granzyme pathway associated with
CD8+ T cell activation. The mean expression of these genes
correlated with both the number of detected responses and
the accumulated estimated frequency from the DNA barcode

screen (Figures 3C,D). Again, a strong positive correlation
was observed for accumulated estimated frequency, whereas
a weak correlation was observed for the number of detected
responses (Spearman correlation coefficient of 0.982 and 0.167,
respectively), demonstrating that the cell frequencies are better
measurements relative to the number of recognized neopeptides.

DISCUSSION

This study details for the first time the identification and
characterization of neoepitopes in renal cell carcinoma. By
using a novel, high-throughput technology of DNA barcode-
labeled pMHC multimers, we identified a total of 52 neoepitope-
specific CD8+ T cell responses in TILs from six patients with
ccRCC. Renal cell carcinomas are known to harbor the highest
number of insertions and deletion of all cancers (ccRCCs scoring
highest of renal cell cancer subtypes), and in line with this,
mutational analyses revealed the presence of frameshift and in-
frame indel mutations in all six patients in the study cohort.
Although we detected no responses toward in-frame indels,
we observed a tendency of enrichment for T cell responses
toward frameshift indel-derived neoepitopes compared to SNV-
derived neoepitopes. This supports the notion that indels are
a highly immunogenic subgroup of mutations, given their low
self-similarity to the wild-type sequence and previous reports of
enrichedmutant-specific binding.We, therefore, advocate for the
inclusion of indel-derived neopeptides in T cell investigational
studies and neoepitope-based therapies, also in cancers with low
numbers of indels. Although neoepitope prediction pipelines
are undergoing intense development and optimization in these
years, no consensus exists with respect to the material source
for extraction of DNA and RNA for mutational mapping. Our
comparison of TFs and TCLs revealed a substantial overlap in the
mutational landscape identified based on the two sources (∼40%
overlap), but none of the source materials performed better than
the other in terms of identifying neoepitopes subjected to T cell
recognition. Since a large number of epitopes were predicted
from only one source or the other, it is advisable (when possible)
to include both material sources as input for mutational analyses.
A fraction of the variability that we observe between TFs and
TCLs might be evenly present between two individual biopsies.
Such tumor heterogeneity is well-documented, especially in
renal cell carcinoma (49, 50). In the current study, the TFs
and TCLs were generated from the same lumps of surgically
removed tumors. However, they might still be influenced by
tumor heterogeneity.

The neoepitopes detected in this study are all MHC class I
restricted. Within recent years, growing interest have been on
MHC class II neoantigens and the important role of CD4+

T cells in tumor recognition and in generating a strong anti-
tumor response (51, 52). Several cancer vaccines have shown to
generate immune responses to class II neoepitopes either alone
or in combination with class I neoepitopes (9, 53). CD4+ T
cells have also been suggested to be critical for tumor regression
during checkpoint inhibitor therapy (54). Still, limitations in both
in silico prediction algorithms and MHC-II multimer staining
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reagents make identification of neoepitope-specific CD4+ T cells
challenging (55).

Although the number of RCC patients evaluated in this study
is limited, the neoepitope screening presented here covers 1,545
predicted neoepitopes, derived from 572 SNV mutations and 99
frameshift/indel mutations, with ligands binding to 16 different
HLA class I molecules. Thus, despite the limited number of
patients analyzed, this represents a broad screening effort of
class I neoepitopes from both SNVs and frameshift mutations,
providing new insight into the neoepitope landscape in renal cell
carcinoma patients. In line with previous studies of neoepitopes
in other cancer types, all of the neoepitopes derived from
mutations were unique to the given patient. Thus, therapeutic
utilization in precision-targeted approaches will require patient-
specific mutational mapping and prediction of neoepitopes,
which can then be applied to tailor-made therapies such as
personalized cancer vaccines or adoptive transfer of expanded
neoepitope-specific patient TILs. The identification of virus-
specific bystander T cells in the TIL products of half of the
patients document the presence of therapeutically irrelevant T
cells in current treatment products and further supports the
rationale of developing precision-targeted therapies.
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