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Scleroderma-associated pulmonary fibrosis (SSc-PF) and idiopathic pulmonary fibrosis

(IPF) are two of many chronic fibroproliferative diseases that are responsible for

nearly 45% of all deaths in developed countries. While sharing several pathobiological

characteristics, they also have very distinct features. Currently no effective anti-fibrotic

treatments exist that can halt the progression of PF or reverse it. Our goal is to uncover

potential gene targets for the development of anti-fibrotic therapies efficacious in both

diseases, and those specific to SSc-PF, by identifying universal pathways and molecules

driving fibrosis in SSc-PF and IPF tissues as well as those unique to SSc-PF. Using

DNA microarray data, a meta-analysis of the differentially expressed (DE) genes in

SSc-PF and IPF lung tissues (diseased vs. normal) was performed followed by a full

systems level analysis of the common and unique transcriptomic signatures obtained.

Protein-protein interaction networks were generated to identify hub proteins and explore

the data using the centrality principle. Our results suggest that therapeutic strategies

targeting IL6 trans-signaling, IGFBP2, IGFL2, and the coagulation cascade may be

efficacious in both SSc-PF and IPF. Further, our data suggest that the expression of

matrikine-producing collagens is also perturbed in PF. Lastly, an overall perturbation of

bioenergetics, specifically between glycolysis and fatty acid metabolism, was uncovered

in SSc-PF. Our findings provide insights into potential targets for the development of

anti-fibrotic therapies that could be effective in both IPF and SSc-PF.
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INTRODUCTION

Systemic sclerosis (SSc), commonly known as scleroderma, is a chronic and systemic autoimmune
connective tissue disease characterized by proliferative/obliterative vasculopathy, immune
dysregulation, and the development of fibrosis in the skin, lungs and other internal organs.
SSc-associated pulmonary fibrosis (SSc-PF) is one of the leading causes of death in patients with
SSc (1). SSc-PF is diffuse and displays inflammatory cell infiltration of the alveoli, interstitium
and peribronchiolar tissues along with excessive proliferation of fibroblasts leading to extensive
deposition of various extracellular matrix (ECM) proteins by mesenchymal cells, such as collagen
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type I and III, fibronectin and tenascin (2, 3). SSc is one of
many chronic fibroproliferative diseases that are responsible for
nearly 45% of all deaths in developed countries (4). No effective
therapy currently exists that can halt the progression of fibrosis
or reverse it.

SSc-PF shares pathobiologic characteristics with other lung
diseases, especially with idiopathic pulmonary fibrosis (IPF),
but also has distinct features (5). Results from clinical trials
emphasized the differences in pathogenesis that exist between
SSc-PF and IPF. Immunosuppressive therapies are more effective
in SSc-PF than in IPF, i.e., cyclophosphamide, mycophenolate
mofetil (MMF) (6, 7), and drugs targeting fibrotic pathways
in PF have shown some benefits in IPF, i.e., nintedanib and
pirfenidone (8, 9). Recently, nintedanib has also been shown to
inhibit macrophage activation and ameliorate SSc-PF (10, 11).
Treatment with an antagonist to lysophosphatidic acid receptor
1 (LPA1) showed promising results in a murine model of SSc-
PF and in clinical trial of IPF patients by improving forced vital
capacity (FVC) and reducing fibrosis and inflammation, even
though the trial was terminated early (12, 13). Therapy with
the anti-oxidant N-acetylcysteine (NAC) ameliorated pulmonary
function in both SSc-PF and IPF patients (14, 15). Despite similar
pathological features, the pursuit of a treatment that would be
equally beneficial in IPF and SSc-PF has been challenging.

This study aims to characterize universal pathways and
molecules driving fibrosis in SSc-PF and IPF lung tissues and
identify potential gene targets for the development of anti-fibrotic
therapies that could improve lung function in both diseases.
In doing so, we will also identify the unique gene signature
of SSc-PF and characterize therapeutic targets specific to SSc-
PF. To achieve this goal, we performed a meta-analysis of the
differentially expressed (DE) genes in SSc-PF and IPF lung tissues
(diseased vs. normal) using microarray data, followed by a full
systems level analysis of the common and unique transcriptomic
signatures obtained. Gene, protein and metabolite interactions
are key to decipher the biological meaning of systems (16). Using
STRING (17), a database of known and predicted protein-protein
interactions, we identified functionally important hub genes in
shared and unique datasets for IPF and SSc-PF. Results from
this analysis provide insights for the development of anti-fibrotic
therapies that could be effective in both IPF and SSc-PF.

MATERIALS AND METHODS

Study Population
Lung tissue samples were obtained from patients with SSc-PF (n
= 13) and IPF (n = 13) who underwent lung transplantation at
the University of Pittsburgh Medical Center, under a protocol
approved by the Institutional Review Board. All patients with
SSc met the American College of Rheumatology criteria for the
diagnosis of SSc (18). Severe PF in SSc was defined as the presence
of restrictive physiology, with a forced vital capacity (FVC)<55%
of predicted. Patients with IPF were confirmed to have usual
interstitial pneumonia (UIP) pathology without evidence of other
known causes and no associated pulmonary arterial hypertension
(PAH). Normal lung tissue specimens (n= 9) were obtained from

organ donors whose lungs were not used for lung transplantation.
Lung tissues were frozen prior to the extraction of total RNA.

RNA Extraction and qRT-PCR Validation
Total RNA was extracted from frozen lung tissues using TRIzol
(Thermo Fisher Scientific, USA) and purified using the RNeasy
Kit (Qiagen, USA). RNA quality was determined by agarose gel
electrophoresis as well as analysis of samples using an Agilent
2100 Bioanalyzer with an RNA integrity number ≥6. For cDNA
synthesis, 1,000 ng of total RNA was used with these reagents
(Invitrogen, USA): Oligo(dT)12-18 Primer (Catalog # 18418012)
and SuperScriptTM IV (Catalog # 18090010). For qRT-PCR, the
TaqManTM Gene Expression Master Mix (Applied Biosystems,
USA, Catalog # 4369016) was used along with the following
primers: IGFBP2 (Hs01040719_m1); IGFL2 (Hs01389017_m1);
IL-6 (Hs00985639_m1); TLR8 (Hs00152972_m1); B2M as
housekeeping gene (Hs00187842_m1) on a StepOnePlus real
time PCR system (Applied Biosystems, USA). The sample size
for qRT-PCR validation was n = 8 for NL and SSc-PF, and n
= 12 for IPF. For statistical analysis, a Kruskal-Wallis test was
performed followed by Dunn’s multiple comparisons test with
significance set at p < 0.05. Error bars indicate standard error
of the mean (SEM).

Gene Level Analysis: Microarray
Gene expression profiling was performed by microarray analysis
using HumanRef-8 v3.0 BeadChips (Illumina, USA) containing
25,440 annotated genes. After sample hybridization, BeadChips
were scanned using an Illumina BeadChip Array Reader.
Intensity data was loaded in Limma version 3.40.2 in R version
3.6.0 and normalization between arrays was performed using the
quantile method. Normalized expression was log2 transformed
before being fitted to a linear model and differential expression
analysis was performed for the following comparisons: SSc-
PF vs. normal (NL) and IPF vs. NL. For each gene, Limma
reported the estimated log2 fold change (log2FC) and provided
a false discovery rate (FDR) adjusted q-value. FDR is the
expected fraction of false positive tests among significant tests
and was calculated using the Benjamini-Hochberg multiple
testing adjustment procedure. Differentially expressed (DE)
genes were identified based on the following criteria: q
< 0.1, log2FC > 1: upregulated (equivalent to linear FC
increase of 2), log2FC < −1: downregulated (equivalent to
linear FC decrease of 2). The dataset is deposited on the
Gene Expression Omnibus database with GSE48149 accession
number (https://www.ncbi.nlm.nih.gov/geo/). The Genotype-
Tissue Expression (GTEx) Portal (https://gtexportal.org/home/)
was accessed on 05/01/2019 to obtain information on IGFBP2
and IGFL2 genes.

Hierarchical clustering was generated using MORPHEUS,
a versatile matrix visualization and analysis software (https://
software.broadinstitute.org/morpheus). The normalized data for
all 425 DE genes (common and unique to both diseases) was
uploaded to the site and the parameters hierarchical clustering,
one minus cosine similarity based, linkage method on average
and cluster on columns were selected (relative color scheme 0.63).
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Systems Level Analysis
Functional Enrichment and Gene Ontology (GO)
Functional enrichment was performed on DE genes (q <

0.1, linear fold change of 2) using ToppFun (19) (ToppGene
Suite), a portal for gene list enrichment analysis and candidate
gene prioritization based on functional annotations and protein
interactions network. ToppFun specifically extracts information
from transcriptome, gene ontology (GO) and biological pathway
annotations. GO terms were then visualized using REViGO
(20), a tool that summarizes long lists of GO terms by
removing redundant ones. The remaining terms were visualized
in semantic similarity-based scatterplots and treemaps, a two-
level hierarchy of GO terms that grouped cluster representatives
under “superclusters” of related terms.

Protein-Protein Interaction Network (STRING)
The Search Tool for the Retrieval Of Interacting Genes/Proteins
(STRING) is a database purposely designed to gather information
on protein-protein interactions (direct experimental evidence
and de novo predictions via computational approaches) and
protein associations in the context of metabolic, signaling or
transcriptional pathways (17). DE genes were entered (q < 0.1,
linear FC of 2) using the following settings: lines thickness
indicates the strength of data support (high confidence 0.7), the
active interaction sources selected were textmining, experiments,
databases, coexpression and gene fusion, number of interactors
in the 1st shell were limited to query proteins only and in the
2nd shell were limited to 2 interactors; disconnected nodes were
hidden in the network. In this study, hub genes are defined as
genes with at least 5 links (connections).

Pathway Impact Analyses and Coherent Cascades
Pathway impact analysis was performed using iPathwayGuide
(Advaita) on DE genes (q < 0.1, linear fold change of 1.5
to capture biologically significant perturbations of relevant
pathways) to include important biological factors such as the
magnitude of the expression change of each gene, the position of
the DE genes in the given pathways, the topology of the pathway
that describes how these genes interact, and the type of signaling
interactions between them (21). This approach better captures
the enrichment and perturbation of a given pathway and applies
coherent cascade analysis to identify putative mechanisms. The
impact analysis is modeled on KEGG Pathways.

RESULTS

Differential Expression Analysis
Differential expression analysis revealed 312 DE genes in the SSc-
PF vs. NL comparison, and 352 DE genes in the IPF vs. NL
comparison (q < 0.1, log2FC > |1|, Supplementary Tables 1, 2).
Out of 425 DE genes identified (common and unique lists
combined), 239 DE genes were commonly deregulated in both
diseases (Figure 1, intersection), representing 56.2% of all DE
genes. Conversely, 113 and 73 DE genes were exclusively
perturbed in IPF and SSc-PF, respectively.

Hierarchical clustering of all 425 DE genes showed 3
main clusters: cluster-1 contains all NL samples, cluster-2

FIGURE 1 | Meta-analysis of DE genes in IPF and SSc-PF. Differential

expression analysis revealed 312 DE genes in the SSc-PF vs. NL comparison,

and 352 DE genes in the IPF vs. NL (q < 0.1, log2FC > |1|); 239 DE genes

were commonly deregulated in both diseases (intersection), representing

56.2% of all DE genes (intersection and unique lists combined = 425).

Conversely, 113 and 73 DE genes were exclusively perturbed in IPF and

SSc-PF, respectively.

and cluster-3 comprise IPF and SSc-PF samples intertwined
together (Figure 2), emphasizing that IPF and SSc-PF patients
have a similar transcriptomic perturbation. Heatmaps
of common and unique DE genes were also generated
(Supplementary Figures 1–3).

Upregulation of IGFBP2 and IGFL2 Is Common to

Both Diseases
We and others have previously shown that the insulin-like
growth factors (IGFs) and their binding proteins (IGFBPs) are
key players in the development and progression of pulmonary
fibrosis (22–27). IGFBP3, IGFBP5, and IGFBP7 have been
previously shown to be upregulated in both lung tissues and lung
fibroblasts from patients with SSc-PF and IPF (24–26). IGFBP4
is downregulated in SSc lung fibroblasts (27), and upregulated in
IPF lung tissues (28, 29). Here we describe perturbation of the
IGF signaling system in SSc-PF and IPF, specifically upregulation
of IGFBP2 and IGF-like family member 2 (IGFL2) (Table 1). At
homeostasis, IGFBP2 is detectable in several organs and without
obvious gender differences in fibroblasts, lung and skin, while
IGFL2 is highly expressed in healthy skin samples of both male
and female donors (Supplementary Figures 4, 5).

Perturbation of Matrikine-Producing Collagens in

SSc-PF and IPF
Collagen-derived matrikines are peptides generated by partial
proteolysis of certain collagens that can regulate cell activity (30).
Out of the 9 DE collagen genes identified in the intersection
of SSc-PF and IPF (Table 2), 4 have been identified as sources
of matrikines: COL1A1, COL1A2, COL15A1, and COL17A1 (30,
31). Note that all 4 collagens are upregulated in both diseases by
at least a linear fold change increase of 2.
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FIGURE 2 | Similarity matrix. The raw data for all 425 DE genes (common and unique to both diseases) was uploaded to MORPHEUS to generate a similarity matrix.

Three main clusters are apparent, cluster-1 made up of NL samples only, cluster-2 and cluster-3 made up of SSc-PF and IPF samples intertwined, emphasizing that

the gene signatures of these 2 diseases are very similar.
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TABLE 1 | Genes deregulated in the IGF pathway.

SSc-PF vs. NL IPF vs. NL

Symbol Entrez_ID log2FC q-value Symbol Entrez_ID log2FC q-value

IGFBP2 3485 1.50 2.16E-05 IGFBP2 3485 1.27 2.30E-04

IGFBP4 3487 0.95 8.37E-04 IGFBP4 3487 0.90 1.58E-03

IGFBP7 3490 0.63 2.24E-03 IGFL2 147920 1.17 4.04E-03

IGFL2 147920 1.07 7.97E-03 IGFBP7 3490 0.56 6.55E-03

IGFL1 374918 0.39 2.72E-02 IGFBP5 3488 0.77 4.70E-02

IGFBP5 3488 0.78 4.24E-02 IGFL1 374918 0.31 8.34E-02

IGF1 3479 0.42 1.07E-01 IGF2BP3 10643 −0.26 1.09E-01

IGF1 3479 0.41 1.22E-01

DE upregulated genes are highlighted in red (q< 0.1, log2FC> |1|, representing a 2 linear fold change increase in gene expression). Genes are sorted by q-value from smallest to largest.

TABLE 2 | Perturbation of matrikine-producing collagen genes.

SSc-PF vs. NL IPF vs. NL

Symbol Entrez_ID log2FC q-value Symbol Entrez_ID log2FC q-value

COL9A2 1298 1.12 1.91E-05 COL9A2 1298 1.10 2.60E-05

COL7A1 1294 2.14 3.20E-05 COL1A1* 1277 2.29 4.71E-05

COL15A1* 1306 1.96 5.14E-05 COL17A1* 1308 1.94 1.31E-04

COL17A1* 1308 2.06 5.21E-05 COL7A1 1294 1.92 1.56E-04

COL1A1* 1277 2.09 1.42E-04 COL15A1* 1306 1.59 6.54E-04

COL10A1 1300 1.31 5.53E-04 COL1A2* 1278 1.69 1.71E-03

COL1A2* 1278 1.68 1.63E-03 COL10A1 1300 1.18 1.79E-03

COL3A1 1281 1.84 5.43E-03 COL3A1 1281 1.83 6.12E-03

COL5A2 1290 1.13 1.46E-02 COL5A2 1290 1.08 1.96E-02

DE upregulated genes are highlighted in red (q ≤ 0.1, log2FC ≥ 1 representing a linear fold change of 2). Genes are sorted by q-value from smallest to largest. Bold*matrikine-producing

collagen genes.

Systems Level Analysis
Our systems level analysis examined gene ontology and pathway
impact analysis to try to decipher the biological relevance of
the gene perturbation observed by taking into consideration the
position and role of every gene in the pathway, the direction
and type of signal from one gene to another, and feedback
mechanisms that may exist (21). The meta-analysis revealed
56 enriched pathways in the IPF vs. NL comparison, and 67
in the SSc-PF vs. NL. A total of 48 pathways were commonly
enriched in both diseases (intersection), while 8 and 19 pathways
were exclusively perturbed in IPF and SSc-PF, respectively
(Supplementary Figure 6).

We also analyzed STRING-generated networks for protein-
protein interactions to identify hub genes in the intersection
and unique gene sets using the principle of “network centrality”
which states that genes with the highest degree of centrality
(more connected) are three times more likely to be essential
than genes with a smaller number of connection to other
genes (32, 33).

Intersection
The meta-analysis revealed 239 DE genes at the intersection of
IPF and SSc-PF. GO analysis of these genes revealed perturbation

of “immune response,” “extracellular matrix organization,” and
“collagen metabolism” biological processes as well as enrichment
of “ECM-receptor interaction,” “cytokine-cytokine receptor
interaction,” “chemokine,” and “IL-17” signaling pathways
(Figure 3A and Supplementary Figures 6, 7), reflecting ongoing
inflammatory immune responses in both IPF and SSc-PF, even at
such a late stage of pulmonary fibrosis.

Hub proteins identified in the functional protein association
network generated using STRING (Figure 3B) included
interleukin 6 (IL6), several CXC chemokine family members
(CXCL8, CXCL10, CXCL12), two CC motif chemokine
ligands (CCL2, CCL19), APLNR, SERPIND1, VCAM1, several
coagulation factor fibrinogens (FGA, FGB, FGG), CDH2, SPP1
and several collagens proteins (COL1A1, COL1A2, COL3A1,
COL5A2, COL7A1, COL9A2, COL10A1, COL15A1, COL17A1).
Note that CXCL8, APLNR, FGA, and FGB were not DE genes
but were hub proteins in the network as 2nd shell interactors. All
identified hub proteins in this network were upregulated genes,
except FGG which was downregulated (Supplementary Table 3)
in both DE analyses, showing that these genes are similarly
regulated in both diseases.

The fibrinogens and VCAM1 are involved in all 3 major
biological processes “extracellular structure organization,”
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FIGURE 3 | Systems level analysis—intersection. (A) Gene ontology analysis for biological process. Data obtained from ToppFun and visualized with REViGO

treemaps (abs_log10_pvalue). (B) Protein-protein interaction network generated by STRING.
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“immune system processes,” and “positive regulation of cell
adhesion,” while IL6, CCL2, CCL19, and CXCL12 are involved
in both “immune system processes” and “positive regulation
of cell adhesion” terms. COL1A1 and COL1A2 are hit genes
in “extracellular structure organization” and “immune system
processes” GO terms.

Unique to SSc-PF
The 73 DE genes exclusive to SSc-PF mainly pertained to
“regulation of vasculature development” and “response to
endogenous stimulus” biological processes as these terms
were super clusters in the GO analysis (Figure 4A and
Supplementary Figure 7). Pathways related to immunity
and inflammation were also enriched, including “C-type lectin
receptor,” “TNF,” and “PI3K-Akt” signaling pathways, suggesting
that both innate and adaptive immune responses are still active
in SSc-PF even in late stage disease (Supplementary Figure 6).
Additionally, pathways related to metabolism and bioenergetics
were also perturbed in SSc-PF, including “fatty acid
(FA) degradation,” “biosynthesis of unsaturated FA,” and
“glycolysis/gluconeogenesis” (Table 3). Figure 5 is a heatmap
showing the DE genes associated with these pathways and how
they cluster. For column clustering, all NL and all SSc-PF samples
clustered together except for NL31 that clustered with SSc-PF
samples. For row clustering, several of the DE genes involved
were downregulated in SSc-PF as compared to NL (ACSS2,
PCK2, PTPLA, DCI, SCD, FASN, FADS1, ADH1A, ADH1B, and
ACADL). On the other end, ALDH1A3, ALDH3A1, ALDH3B2,
CPT1C, PFKP, BAAT, and ADH7 were upregulated in SSc-PF.
These findings reflect an overall deregulation of FA metabolism
and glycolysis in SSc-PF patients.

Several hub proteins were evident in the STRING network
generated (Figure 4B), including toll-like receptor 8 (TLR8),
myeloperoxidase (MPO), prostaglandin-endoperoxide synthase
2 (PTGS2 aka COX2), arginase 1 (ARG1), and endothelin 1
(EDN1) genes. PTGS2, ARG1, and EDN1 are associated with
several enriched GO terms: “regulation of localization,” “tube
development,” “regulation of response to external stimulus,”
and “system development.” PTGS2 and EDN1 are also present
in “blood circulation” process. All identified hub proteins in
this network were downregulated genes, except PTGS2 which
was upregulated (Supplementary Table 4). Note that EDN1 was
not a DE gene but was a hub gene in the network as a 2nd
shell interactor.

Unique to IPF
One hundred and thirteenDE genes were unique to IPF and these
generated the super-cluster “lymphocyte chemotaxis” in the GO
analysis (Figure 6A and Supplementary Figure 7), emphasizing
the importance of the immune response to external stimuli in
IPF. The immune signature was also present in the unique
pathways to SSc-PF, such as “intestinal immune network for IgA
production,” “toll-like receptor signaling pathway,” emphasizing
on-going innate immune response (Supplementary Figure 6).

Several hub proteins are associated withmultiple enriched GO
terms, including “response to oxygen-containing compound,”
“microtubule-based movement,” “inflammatory response,”

“lymphocyte migration,” and “response to lipopolysaccharide”:
CSF2, CCR7, CCL3, CCL4L1, CCL13, CXCL13, CCL5, and
NLRP3 (Figure 6B). APOE and CCDC114 were hub proteins
only associated with “response to oxygen-containing compound”
and “microtubule-based movement,” respectively. All identified
hub proteins in this network were upregulated DE genes, except
CSF2 which was downregulated (Supplementary Table 5). Note
that CCDC114 was not a DE gene but was a hub gene in the
network as a 2nd shell interactor.

Validation of IGFBP2, IGFL2, IL6, and TLR8
by qRT-PCR
The DE and systems level analyses emphasized the deregulation
and importance of IGFBP2, IGFL2, and IL6 in both diseases,
as well as TLR8 in SSc-PF. Using qRT-PCR, these genes of
interest were validated (Figure 7). In both SSc-PF and IPF
lung samples, the expression levels of IGFBP2, IGFL2, and IL6
were significantly increased compared to NL (Figures 7A–C),
and TLR8 was noticeably decreased in SSc-PF lungs, albeit not
significantly (Figure 7D). These results are consistent with and
validate the microarray data.

Comparing Inflammatory Responses in IPF
and SSc-PF
Next, we aimed to tease out similarities and differences in the
inflammatory response signature of both diseases by specifically
looking at two biological pathways present in the intersect:
“Cytokine-cytokine receptor interaction” and “IL-17 signaling
pathway” (Figure 8 and Supplementary Figures 8–11). At first
glance, the inflammatory response in both diseases looked
very similar and nearly all of the hit genes in these pathways
were differentially expressed in both diseases with the same
direction of regulation. However, subtle differences were
captured, especially in the pathway impact analysis that revealed
perturbations and coherent cascades. Specifically, in the SSc-
PF “cytokine-cytokine receptor interaction” pathway under
TNF Family (Supplementary Figure 8), TNFSF14-associated
perturbation (labeled LIGHT) that leads to upregulation
of LTBR, HVEM, and DCR3 was not observed in IPF
(Supplementary Figure 10). Additionally, upregulation of LIF
that cascades to upregulation of LIFR and IL6ST was exclusive
to SSc-PF. In the “IL-17” signaling pathway, all DE chemokines,
cytokines and anti-microbial genes were the same in both
diseases (Supplementary Figures 9, 11), but upstream of this
cascade IL-17RA and FOSB (labeled API) were only differentially
expressed in IPF (Supplementary Figure 11). Together these
findings revealed overall similar inflammatory responses in IPF
and SSc-PF with subtle differences in TNF and IL6/IL12/IL17
signaling pathways.

DISCUSSION

SSc-PF and IPF are distinct diseases but they do share several
pathobiologic characteristics (5). The goal of this study was to
(1) characterize the similarities existing in the development of
pulmonary fibrosis in scleroderma and IPF to find potential
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FIGURE 4 | Systems level analysis—unique to SSc-PF. (A) Gene ontology analysis for biological process. Data obtained from ToppFun and visualized with REViGO

treemaps (abs_log10_pvalue). (B) Protein-protein interaction network generated by STRING.
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therapeutic targets that could be beneficial in both diseases, and
(2) to tease out the exclusive signature that each disease has,
using a systems level and protein-protein interaction network
approach. In both diseases, inflammation and immune responses
were highly enriched, revealing that even at an advanced stage of
pulmonary fibrosis, these “first-response” feedback mechanisms
are still active and on-going.

The Intersection Signature Highlights
Potential Therapeutic Targets Beneficial
for Both SSc-PF and IPF
The systems level analysis we performed on the DE genes in the
intersection between IPF and SSc-PFwas dominated by “immune
response,” “collagen metabolism,” and “ECM organization” super

TABLE 3 | Enriched pathways in SSc-PF pertaining to FA metabolism and

glycolysis.

Pathway SSc-PF vs. NL

(p-value)

Fatty acid degradation 0.044

Biosynthesis of unsaturated fatty acids 0.022

Glycolysis/gluconeogenesis 0.006

p < 0.05.

clusters (Figure 3) and most of the query genes entered in
the network were hit genes in “immune system processes”
term, including hub proteins IL6, COL1A1, COL1A2, VCAM1,
CXCL10, CXCL12, CCL2, CCL19, and FGG. Our data also
showed that the IGF family members IGFBP2 and IGFL2 are
significantly upregulated in both SSc-PF and IPF lung tissues, and
that the coagulation cascade was a prominent protein-protein
interaction sub-network in the intersection signature.

Interleukin 6 (IL6) and Its Role in Autoimmunity,

Inflammation, and Fibrogenesis
The IL17 signaling pathway is critical for the activation
of inflammatory genes and production of chemokines and
cytokines such as IL6 (Supplementary Figures 9, 11) (34). IL6
is a multi-faceted pro-inflammatory cytokine synthesized by
fibroblasts, peripheral blood mononuclear cells (PBMCs), B cells,
macrophages, dendritic cells, monocytes and mast cells, that
plays a role in chronic inflammation, autoimmunity, endothelial
cell dysfunction, vascularization/angiogenesis and fibrogenesis
(35–41). We characterized IL6 as a hub protein upregulated in
both IPF and SSc-PF tissues (Supplementary Table 3) that has a
strong influence on the immune response. IL6 is overexpressed in
dermal fibroblasts, PBMCs, mononuclear and endothelial cells of
SSc patients (37, 38, 42). Interestingly, few effector cells express
the functional membrane IL6 receptor (IL6R); lymphocytes,
hepatocytes, monocytes, B cells, neutrophils and a subset of

FIGURE 5 | Heatmap of DE genes pertaining to fatty acid metabolism and glycolysis. The clustering is established based on one minus cosine similarity on both

columns and rows. Table on the right side shows in which pathways each gene is involved, note that some genes are associated with more than one pathway. Blue:

downregulation, red: upregulation.
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FIGURE 6 | Systems level analysis—unique to IPF. (A) Gene ontology analysis for biological process. Data obtained from ToppFun and visualized with REViGO

treemaps (abs_log10_pvalue). (B) Protein-protein interaction network generated by STRING.
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FIGURE 7 | The expression levels of (A) IGFBP2, (B) IGFL2, (C) IL6, and (D) TLR8 were quantified in tissue lysates from SSc-PF (n = 8) and IPF (n = 12) patients and

healthy individuals (NL, n = 8). *p < 0.05, **p < 0.01, ***p < 0.001 vs. NL. Error bars = SEM.

T-cells (35). Other cell types that do not express IL6R (i.e.,
fibroblasts and endothelial cells) can still respond to IL6 due to
trans-signaling of soluble IL6R (sIL6R) and gp130 receptor (39).

In both SSc-PF and IPF, the IL17 signaling pathway is
enriched (Supplementary Figures 9, 11) and the expression of
the ubiquitin-editing enzyme A20 (TNFAIP3), a major regulator
of NFκB activation, is upregulated (43, 44). A20 reduces NFκB
activation by inhibiting TNF receptor signaling and removing
K63-linked ubiquitin chains conjugated to TRAF6 (45, 46).
The observed upregulation of A20 suggests downregulation of
the IL17 signaling pathway (47). However, several chemokines
and cytokines downstream of IL17 signaling were upregulated
(IL6, CXCL8, CXCL10, CCL2, and COX2), indicating that other
regulatory mechanisms are likely at play that affect the expression
of downstream genes in this pathway. Inhibition of TNFα
signaling has shown promising results in many patients with
inflammatory disorders (48), but has also generated adverse side
effects (49), highlighting that TNFα signaling is a double-edged
sword that can be both pro- and anti-inflammatory.

Serum IL6 is a predictive marker of early functional
decline and mortality in SSc-PF (50). Here we found that IL6
levels are still significantly increased in advanced SSc-PF and
IPF, suggesting that IL6 lingers to stimulate more collagen
synthesis and chronic inflammation, consistent with Koch et al.
(51). Activated lung macrophages have also been shown to
enhance IL6 trans-signaling via ADAM-17 leading to fibroblast
proliferation and ECM deposition, and inhibition of sIL6Rα can
attenuate pulmonary inflammation and fibrosis (52). In recent

clinical trials, blocking IL6 trans-signaling using the monoclonal
antibody tocilizumab showed promising trends in patients with
SSc (53), suggesting that IL6 might be a viable therapeutic target
in SSc. Our current findings also suggest that targeting IL6
trans-signaling may be a suitable therapeutic approach for the
treatment of IPF.

Targeting IGFBP2 and IGFL2
We show here that the IGF family members IGFBP2 and IGFL2
are significantly upregulated in both SSc-PF and IPF lungs
tissues. IGFBP2 is secreted into the bloodstream where it binds
IGF1 and IGF2 with high affinity, can interact with several
different ligands, and can be localized intracellularly (54). Guiot
et al. showed that IGFBP2 levels are increased in serum and
sputum samples of IPF patients, and characterized IGFBP2 as
a biomarker of IPF severity (55, 56). In patients with diffuse
cutaneous SSc (dcSSc), IGFBP2 levels are also increased in
both serum and skin biopsies (57). Additionally, IGFBP2 is
abundant in collagen1-stimulated peripheral blood mononuclear
cells (PBMCs) from juvenile and adult dcSSc patients (58).

Findings with IGFBP2 are consistent with our previous
studies showing increased expression of IGFBP3 and IGFBP5
in IPF and SSc-PF (25, 26) and reinforced the crucial role
that IGFBPs and the IGF pathway play in the development
and perpetuation of pulmonary fibrosis (22–24). Note however
that IGFBPs can also signal via membrane bound proteins
such as integrins in a IGF-independent pathway (59). We
previously showed that IGFBP5 induces fibrosis by promoting
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FIGURE 8 | Inflammatory response signatures in IPF and SSc-PF. DE genes (q < 0.1, log2FC > |0.6|, linear FC of 1.5) that are hit genes in the “cytokine-cytokine

receptor interaction” and “IL-17 signaling” pathways are shown here, color-coded by DE analysis. Peach: IPF vs. NL, and green: SSc-PF vs. NL.
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fibroblast activation into myofibroblasts and recruitment of
pro-inflammatory cells (60, 61) via p44/p42 mitogen-activated
protein kinase (MAPK) pathway and induction of EGR1 and
DOK5 (62, 63). Additionally, IGFBP5 induces the expression of
collagen 1, fibronectin, CTGF and lysyl oxidase, as well as its own
expression by positive feedback mechanism (26).

IGFBP3 induces tenascin C (TNC), a biomarker of SSc-
PF (3). Importantly, both IGFBP3 and IGFBP5 contribute to
extracellular (ECM) deposition in IPF (25) and promote fibrosis
in human skin maintained in organ culture (64), demonstrating
direct relevance to the human disease. Targeting IGFBPs that
are elevated in SSc-PF and IPF is an appealing therapeutic
strategy yet no clinical trials employing this approach have
been reported.

IGFL2 expression is also increased in SSc-PF and IPF, however
its biological function is not well-characterized. IGFL2 does not
have a transmembrane domain, it is found in secreted form in the
ECM, and it may play a critical role in cellular energy metabolism
as well as in growth and development (65). In human skin
fibroblasts undergoing mitochondrial depletion, IGFL2 levels
are substantially decreased (dataMED, ID: E-GEOD-24945),
suggesting a connection between mitochondrial physiology and
IGFL2 secretion. Its specific role in SSc-PF and IPF remains to
be elucidated.

Collagen-Derived Matrikines
Collagen-derived matrikines are peptides generated by partial
proteolysis of certain collagens that can regulate cell activity (30).
Out of the 9 DE collagen genes identified in the intersection of
SSc-PF and IPF, 4 have been identified as sources of matrikines:
COL1A1, COL1A2, COL15A1, and COL17A1 (30, 66, 67).

Two matrikines are derived from COL1A1: DGGRYY peptide
that can inhibit human neutrophil activation by collagen (68),
and COL1 matricryptin p1158/1159 that has recently shown
promising results in generating new ECM and stimulating
angiogenesis post myocardial infarction (69).

The tripeptide GHK is produced from cleavage of COL1A2
and forms the complex GHK-Cu due to its high affinity to
copper ions (30). This complex regulates a plethora of biological
processes relevant for ECM remodeling: (1) chemoattraction
of repair cells, (2) anti-inflammation, (3) synthesis of collagen,
elastin, MMPs, anti-proteases, VEGF, FGF2, NGF, and EPO,
(4) stimulation of angiogenesis, and (5) proliferation of
fibroblasts and keratinocytes (70). Recently, the GHK-Cu
complex was shown to inhibit bleomycin-induced PF in mice by
suppressing TGFβ1/Smad-mediated epithelial to mesenchymal
transition (71).

Restin is a COL15-derived matrikine that can inhibit
endothelial cell proliferation and has anti-angiogenic properties
similar to endostatin, with the latter being a cleavage product of
COL18 (72, 73).

COL17A1 sheds a soluble triple-helical ectodomain (aka
BP180) under the regulation of ADAM9 and ADAM10 (67, 74).
Less is known about the function of BP180. BP180 acts as
a core anchor protein due to its multiple binding sites (i.e.,
extracellular domains of integrin α6, cytoplasmic domains of

integrin β4, laminin-5 and plectin) connecting intra- and extra-
cellular hemidesmosomal proteins and playing a role in the
development of bullous pemphigoid (75). Cleavage of BP180
enhances neutrophil chemotaxis and initiates the release of
inflammatory factors (75, 76).

Fibrinogen Hub Proteins
Fibrinogen proteins FGA, FGB, and FGG are essential for a
variety of processes, including blood clot formation, wound
healing, inflammation and blood vessel growth (77). When
fibrinogen is cleaved by thrombin into insoluble fibrin polymer,
the formation of a fibrin clot occurs, a process that is essential for
hemostasis and wound healing. As part of the fibrinolytic system,
fibrin binds and cleaves plasminogen into plasmin, leading to
fibrin digestion and removal of fibrin clots.

In this study, we found that FGG was a hub protein
in the protein-protein network interacting with IL6, FGA,
FGB, CDH2, CPB2, SPP1, TGFβ3, and SERPIND1 that
was significantly downregulated in both IPF and SSc-PF
lung tissues (Figure 3), in agreement with recent work by
Vukmirovic et al. (78). During PF, impaired coagulation
cascade plays a role in orchestrating inflammatory and
tissue repair responses as well as fibrogenesis via activation
of proteinase-activated receptors (79). Additionally, the
fibrinolytic pathway has been shown to have anti-fibrotic
actions in PF thanks to COX2 induction by plasminogen
leading to prostaglandin E2 synthesis and repression of collagen
expression (80).

TLR8: Autoimmunity, Fibrosis, and Angiogenesis
Because the respiratory airways are constantly exposed to
environmental pathogens and other elements, TLRs play a crucial
role in innate immunity to endogenous and exogenous ligands
(81). TLR2 and TLR4 have been shown to trigger immune
and fibrotic responses in PF (82). TLR4 activation induces the
release of profibrotic and proangiogenic chemokines from anti-
fibroblast antibodies stimulated fibroblasts (83). Furthermore,
activation of TLR4 signaling in skin and lung fibroblasts
increased TGFβ1 sensitivity and ECMproduction, both processes
contributing to persistent fibrogenesis in SSc (84).

In this study, we determined that TLR8 was a hub protein
in the SSc-PF network (Figure 4) that was downregulated
at the transcript level in both SSc-PF and IPF, albeit not
significantly. Another study examining TLR expression levels in
bronchoalveolar lavage fluid of patients with IPF and fibrotic
interstitial pneumonias associated with collagen tissue disorders
reported no significant difference in TLR8 levels in these 2 patient
cohorts as compared to a control group (85). The role of TLR8
during the development of SSc-PF remains elusive, but TLR8
activation has been shown to promote inflammatory responses
and fibrogenesis in skin fibrosis and lung injury (86, 87).
Together this suggests that TLR8 expression may be upregulated
in early and intermediate stages of PF when inflammation is
more prominent, and its activation contributes to enhanced
inflammation and fibrogenesis, whereas TLR8 expression returns
to low levels in late stages of PF, when inflammation is
less evident. In the skin of SSc patients, the infiltration and
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activation of plasmacytoid dendritic cells (pDCs) via PI3Kδ

pathway leads to aberrant expression of TLR8 (otherwise not
expressed in pDCs) that induces CXCL4, IFN-α, IL6, and TNF
secretion contributing to skin fibrosis and autoimmunity (87).
Inhibitors of PI3Kδ have been approved for treatment of cancer,
inflammatory and autoimmune diseases (88), and our data
provide rationale to further explore the targeting of the PI3Kδ-
TLR8 axis in SSc-PF and IPF, via repurposing drugs used for
cancer treatment.

TLR8 is a gene hit in the “Regulation of localization”
biological process and has protein-protein interaction with other
hub proteins including PTGS2, MPO, and ARG1 (Figure 4). In
SSc-PF lungs, TLR8, MPO and ARG1 are downregulated while
PTGS2 is upregulated (Supplementary Table 4). Expression
profiling for these 4 hub proteins may indeed capture
advanced stages of fibrosis in SSc-PF lungs, emphasizing
that the damage caused by inflammation and fibrosis
is so far advanced that lung transplantation is necessary
and justified.

The Unique Transcriptomic Signature in
SSc-PF Relates to Vasculature
Development and Perturbation of
Bioenergetics
Even though SSc-PF and IPF have common characteristics, SSc-
PF has a unique transcriptomic signature and features (5). Here
we found that “regulation of vasculature development” was a
Biological Process super cluster in the GO analysis of DE genes
unique to SSc-PF, and PTGS2, ARG1 and EDN1 were related hub
proteins under the subcategories “tube development” and “blood
circulation.” This is consistent with vascular complications
and angiogenesis impairment being trademarks in SSc patients
(89), and with structural disintegration of vasculature and
loss of endothelial cell numbers observed in late stage of
SSc-PF (2).

ARG1
ARG1 is a key enzyme in the urea cycle that converts L-
arginine to L-ornithine, which is further metabolized into
proline and polyamines, drivers of collagen synthesis (90).
ARG1 is also a marker of activated macrophages (M2),
producers of angiogenic factors (91, 92). Macrophages have
been shown to regulate the rate of conversion to proline
and IL4Rα-induced stimulation of macrophages increases
ARG1, proline output and fibrosis sequentially (93). Targeting
ARG1 metabolism is an emerging therapeutic strategy in the
treatment of inflammation-induced suppression of T lymphocyte
proliferation (immunosuppression) (94).

PTGS2 (Aka COX2)
Cyclooxygenase (COX) enzymes contribute to the release
of lipid mediators in arachidonic acid metabolism, and
PTGS2/COX2 plays a key role not only in prostaglandin
signaling, but also in the fibrinolytic pathway and fibrogenesis,
as well as in inflammatory cytokine-induced angiogenesis
(80, 95). PTGS2/COX2 was exclusively upregulated in SSc-PF

lung tissues (Supplementary Table 4) and is a hub protein
that interacts with TLR8, IRF1, ARG1, CAMP, LIF, MMP10,
RCAN1, GGT1, EDN1, and MPO. Prostaglandin signaling
has been shown to promote PF independently of TGFβ
and loss of the prostaglandin F receptor reduced fibrosis in
the bleomycin-induced PF model without affecting alveolar
inflammation (96). Additionally, PTGS2/COX2 selective
inhibitors markedly reduced IL1β-induced angiogenesis in vivo
(95). Together these data suggest that targeting PTGS2/COX2
with a therapeutic drug could modulate both fibrosis and
angiogenesis in SSc patients.

Overall Perturbation of FA Metabolism and Glycolysis

in SSc-PF
Altered cellular bioenergetics as a driving force behind
fibrogenesis is an emerging field (97–100). Here we found that
FA metabolism (FA degradation and biosynthesis of unsaturated
FA) and glycolysis pathways were significantly perturbed in SSc-
PF lungs.

Metabolic reprogramming is a hallmark of cancer that is also
observed during immune response and inflammation during
which glycolysis becomes the alternative pathway to oxidative
phosphorylation for ATP production (101, 102). Interestingly,
inhibition of glycolysis has been shown to attenuate lung
fibrosis (103), suggesting that metabolic reprogramming also
plays a crucial role in the development of PF. Additionally,
Selvarajah et al. (99) concluded that glycolysis (but not
mitochondrial respiration) was necessary for TGFβ1-induced
collagen deposition in primary human lung fibroblasts. This
may also be true for other cell types that are present in whole
lung tissue.

Fluctuation between glycolysis and fatty acid oxidation (FAO)
has been shown to govern macrophages and dendritic cells as
well as fibroblasts during inflammation and ECM remodeling,
respectively (100, 102). In fact, the FA transporter CD36 has
been identified as crucial mediator of COL1 internalization
and degradation that can be targeted to reduce murine skin
fibrosis (100). Our data show that biosynthesis of unsaturated
FA and FA degradation, the steps that ultimately generate
acetyl-CoA required for the citric acid cycle to produce energy
within mitochondria, are significantly deregulated in SSc-
PF. Interestingly, this signature has also been uncovered in
renal epithelial cells from patients with kidney fibrosis (104).
Additionally, in TGFβ1-induced fibrotic models, suppression
of FAO and enhancement of glycolysis are observed (99,
104), highlighting that a shift in bioenergetics, similar to
the Warburg effect characteristic of cancer cells, is ongoing
during fibrogenesis.

In all, metabolic reprogramming appears to hijack energy
production of several cell types that are the drivers of
inflammation, fibrogenesis and ECM remodeling, disturbing the
homeostatic balance between glycolysis and FAO, ultimately
shifting the cellular fuel source and activating pathological
processes. Once key players regulating this reprogramming are
identified, the development of anti-fibrotic therapies targeting
metabolic molecules will be possible. Such potential therapeutic
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targets have already been identified and tested in experimental PF
models (100, 103).

CONCLUSION

By conducting differential expression analyses on lung tissues
from IPF and SSc-PF, we were able to compare the gene
signature of these two pulmonary fibrotic diseases that share
many pathobiologic features and identify shared features as
well as exclusive characteristics for each disease. Our data
suggest that therapeutic strategies targeting IL6 trans-signaling,
IGFBP2, IGFL2, and the coagulation cascade may be efficacious
in both SSc-PF and IPF. In SSc-PF, additional potential targets
include mediators of fatty acid metabolism and glycolysis as well
as TLR8.
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