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Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is a

complex immune-mediated disease of the gastrointestinal tract that increases morbidity

and negatively influences the quality of life. Intestinal mononuclear phagocytes (MNPs)

have a crucial role in maintaining epithelial barrier integrity while controlling pathogen

invasion by activating an appropriate immune response. However, in genetically

predisposed individuals, uncontrolled immune activation to intestinal flora is thought to

underlie the chronic mucosal inflammation that can ultimately result in IBD. Thus, MNPs

are involved in fine-tuning mucosal immune system responsiveness and have a critical

role in maintaining homeostasis or, potentially, the emergence of IBD. MNPs include

monocytes, macrophages and dendritic cells, which are functionally diverse but highly

complementary. Despite their crucial role in maintaining intestinal homeostasis, specific

functions of humanMNP subsets are poorly understood, especially during diseases such

as IBD. Here we review the current understanding of MNP ontogeny, as well as the

recently identified human intestinal MNP subsets, and discuss their role in health and IBD.
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INTRODUCTION

Crohn’s disease and ulcerative colitis (UC) are chronic inflammatory disorders of the digestive
tract that comprise the term inflammatory bowel disease (IBD) (1, 2). These diseases are complex,
severe, and chronic public health problems for which the incidence and prevalence are increasing
worldwide (1, 2). Prevalence rates are highest in westernized countries, but ethnic and geographical
differences are beginning to fade due to globalization (3, 4). The onset and pathophysiology of
IBD are not fully understood, but the current concept is that uncontrolled immune reactivity
against intestinal microorganisms combined with environmental factors in genetically predisposed
individuals underlie pathogenesis (5–10). Infiltration of pro-inflammatory immune cells into the
intestinal mucosa is induced; this releases cytokines and chemokines, creating a vicious circle and
perpetuating tissue damage (11). Moreover, IBD is characterized by intestinal microbiota dysbiosis,
with a reduction in both bacterial quantity and diversity (10, 12, 13). In some patients, mucosal
inflammation is linked to these alterations and to bacteria-derived factors (14–16). However,
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whether changes in intestinal microbiota is a cause or a
consequence of IBD is currently not known (8, 17–19).
Finally, the disease course is characterized by repeated
cycles of remission and relapse, adding further complexity to
disease pathogenesis.

Crohn’s disease can involve any part of the digestive tract,
but predominantly the terminal ileum, while UC involves only
the large intestine, mainly the rectum (1, 2). Generally, the
onset of IBD is in young individuals, often 20–30 years old,
and most IBD patients have a normal life expectancy thanks to
existing treatments. However, despite very low mortality from
IBD, morbidity remains a significant problem, and conventional
medication involves escalating drug regimens with concomitant
side effects. Moreover, IBD is not curable and increases the risk
for lymphoma, biliary cancer, and colorectal cancer (20, 21). A
significant number of IBD patients do not respond to treatments
and must instead undergo surgery to relieve symptoms, often
multiple times. Surgery is not only amajor procedure for patients,
but can also result in postoperative complications and infection,
and negatively influences the quality of life (1, 2, 22). Regarding
immunomodulators, some, albeit relatively few, targets have been
identified; however, there is unfortunately a loss of treatment
efficacy over time (1, 2, 11). Moreover, immunoregulation
is altered during disease course and flare-ups, which affects
treatment timing and efficacy (23). Thus, there is a great need
to develop new targeted immunotherapies and, importantly, to
identify methods to screen patients for likeliness to respond to
a given therapy prior to starting treatment (24–26). To achieve
these goals, it is important to further our understanding of IBD
immunopathogenesis in humans.

Mononuclear phagocytes (MNPs) consist of multiple
specialized innate immune cell types, including monocytes,
macrophages (Mfs), and dendritic cells (DCs) (27–29). These
cells are central to eliminating pathogens by their ability to sense,
internalize and digest microbes and present antigens to T cells
to drive adaptive immunity. They also secrete chemokines and
cytokines, resulting in the migration and activation of immune
cells (30–33). Importantly, both DCs and Mfs collaborate
to maintain intestinal tolerance against food antigens and
commensal bacteria through the induction and maintenance of
regulatory T cells (Tregs) (34–40). Thus, MNPs have critical roles
throughout the body in maintaining homeostasis and health.
However, inappropriate activation of MNPs can induce sustained
inflammation and tissue damage resulting in autoimmune and
chronic inflammatory diseases such as IBD (41–47).

Therefore, defining how MNPs control immune homeostasis
in the healthy human gastrointestinal tract, and their
contribution to the aberrant immunoregulation that results
in disease, is critical to improving treatments for IBD
patients (7, 48–50).

This review focuses on the current understanding of MNP
subset ontogeny as well as their role in the human intestine
during health and IBD. Deciphering human intestinal MNP
subset characteristics and understanding their roles in tipping the
balance from intestinal health to IBD will provide insight for the
development of new therapies to reset aberrant cellular functions
that drive the chronic inflammation of IBD.

ONTOGENY, LOCATION, AND
CHARACTERIZATION OF MNP
POPULATIONS

Monocytes and Macrophages
Origin
Monocytes are produced in the bone marrow from common
monocyte progenitors that derived from common myeloid
progenitors (51–54) (Figure 1). They represent 2–8% of
leukocytes in the peripheral blood of healthy individuals and
constitute a versatile and dynamic cell population, composed
of three major subsets: classical, intermediate and non-classical
monocytes (55–57) (Figure 1). Classical monocytes circulate for
only a day in the bloodstream and transmigrate to peripheral
organs where a majority of them differentiate into tissue-specific
resident Mfs and DCs following exposure to growth factors,
cytokines, and microbial products in the local microenvironment
(57, 58). However, a decade of data from mouse models provides
evidence that most tissue-resident Mfs are seeded before birth,
derived from erythro-myeloid progenitors in the yolk sac
during embryonic development; they acquire tissue-specific
characteristics through the microenvironment and possess
self-renewal capacity (53, 59–67) (Figure 1). Interestingly, recent
articles observed equivalent development and characteristics of
tissue-residentMfs in humans (68–70). There are two exceptions,
dermal Mfs (53, 71) and intestinal Mfs, in both mice (53, 72–74)
and in humans (75), which are continuously reconstituted
by blood classical monocytes. Therefore, each organ has its
own unique combination of embryonic and adult-derived Mf
populations that change throughout life according to immune
responses and tissue repair (53, 69, 75–77).

Development
In mouse, development of monocytes and Mfs from progenitors
depends on essential transcription factors such as PU.1, MAFB,
ZEB2, and macrophage colony-stimulating factor (M-CSF) (65,
78–81) (Figure 1). Several other growth factors and interleukins
also play a significant role for theirmaintenance and homeostasis.
This includes granulocyte macrophage colony-stimulating factor
(GM-CSF), granulocyte colony-stimulating factor (G-CSF), IL-3,
IL-4, and IL-34 (41, 82–85). Importantly, a specific combination
of transcription factors is required to maintain the tissue-
specific identity of Mfs (81, 86). In humans, even if it is
more difficult to study cell development, the same transcription
factors and growth factors seem to be involved in monocyte
and Mf development such as PU.1, MAFB, and M-CSF
(87, 88) (Figure 1).

Location and Characterization
As stated above, the blood monocyte population has traditionally
been divided into three subsets: CD14+CD16− classical
monocytes, which represent 85% of the monocyte pool,
CD14+CD16+ intermediate monocytes and CD14−CD16+

non-classical monocytes (55–57) (Figure 1). Each of
these subsets possess specific extravasation and cell fate
properties and are implicated in distinct functions and
diseases (51, 57, 89, 90). Recently, using single-cell RNA
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FIGURE 1 | Ontogeny and development of MNPs. Except EMP and pDC ontogenies, which are exclusively from mice, most of the data are from humans. Red and

green dotted lines represent possible overlaps between compartments. For example, pre-cDCs are present in both bone marrow and blood and cDCs are present in

both blood and solid tissues. Black dashed lines represent possible developmental processes still under debate. CDP, common DC progenitor; CLP, common

lymphoid progenitor; cMoP, common monocyte progenitor; CMP, common myeloid progenitor; EMP, erythro-myeloid progenitor; GMP, granulocyte-macrophage

progenitor; HSC, hematopoietic stem cell; LMPP, lymphoid-primed multipotent progenitor; MDP, macrophage-DC progenitor. See the main text for other acronyms.
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sequencing (scRNA-Seq), Villani et al. have observed
four blood monocyte subsets as a result of the high
heterogeneity of intermediate monocytes (91). Nevertheless,
the frequency of these cells is very low and supplementary
studies are needed to fully understand their biological
relevance. Moreover, two recent studies showed that
one of these four subsets was a contamination by NK
cells (92, 93).

Regarding human Mfs, the main phenotypic markers used
to characterize them are CD14, CD11b, CD16, CD64, CD68,
and CD163 depending on the tissue analyzed (Figure 1).
Indeed, Mfs are tissue-specific populations, such as alveolar
Mfs in lung or Kupffer cells in liver, which acquire and
maintain identities according to their local microenvironment
(32, 66, 81, 94–96). Moreover, each organ comprises Mf
subsets with distinct phenotypes and functions according to
their origin, fate and location. Finally, Mfs are essential to
maintain tissue homeostasis, clear apoptotic cells, provide
immune system regulation, perform tissue remodeling and
repair, as well as defend against pathogens (32, 77, 84, 97–101).
Characterization of human intestinal Mf subsets is discussed in
detail below.

Dendritic Cells
Origin
The DC population is divided into three major subsets according
to their ontogeny and functions: conventional DC1 (cDC1),
conventional DC2 (cDC2) and plasmacytoid DCs (pDCs) (55,
102). Typically, DCs derive from bone marrow common DC
progenitors, which diverge into pre-cDCs and pDCs (103)
(Figure 1). Pre-cDCs undergo maturation in the blood, resulting
in cDC1 and cDC2, where they have a short lifespan, and some
of which transmigrate to organs (103) (Figure 1). Nonetheless,
recent conceptual models in hematopoiesis have shaken up
DC ontogeny, as reviewed in (51, 102). Indeed, even if earlier
studies have shown that pre-cDCs could be programmed to
become cDC1 or cDC2 at several steps of their development
(104–107), it is now thought that each bone marrow progenitor
follows a predestined pathway according to lineage priming
that occurs at early stages in development (51, 108–110). Thus,
each phenotypically defined population contains cells primed
by related yet distinct developmental pathways that share a
common transient phenotype. This has been shown both in
mouse models (108), as well as in humans (109, 110). In
addition, Rodrigues et al. identified two distinct mature pDC
subsets in mouse models (111). One pDC subset is derived
from common DC progenitors and the other is derived from
common lymphoid progenitors and represents the majority of
mature pDCs (111) (Figure 1). However, it is currently unknown
whether these two subsets of mature pDCs also exist in humans.
Moreover, Dress et al. have recently claimed that all pDCs
are derived from common lymphoid progenitors and could
be called “plasmacytoid innate lymphoid cells” (112). Thus,
although the recent development of scRNA-Seq analysis has
led to better understanding of DC subset origins, much work
remains, especially in humans.

Development
In mouse, DC development is dependent on transcription
factors ZBTB46 and PU.1, as well as FLT3 and its ligand, GM-
CSF and IL-4 (80, 113–115) (Figure 1). Further development
of each DC subset then involves specific transcription factors
such as interferon regulatory factor (IRF) 4 and IRF8. More
precisely, pDCs require both IRF4 and IRF8 while cDC1 and
cDC2 require IRF8 and IRF4, respectively (102, 103, 116–119).
Other factors are involved in DC subset development and
sustention including BATF3 and ID2 for cDC1, NOTCH2 and
ZEB2 for cDC2, and TCF4 (also known as E2-2) and IRF7
for pDCs (43, 45, 111, 120–124) (Figure 1). In humans, the
same factors are involved in DC development, particularly PU.1,
FLT3 and GM-CSF (87, 106, 107, 125–127), as well as DC
subset development via IRF4, IRF8, BATF3, ID2, TCF4, and
IRF4 (103, 115). Recently, two studies have shown that adding
NOTCH ligands to FLT3L in bone marrow precursor cultures
increased the yield of cDC1 and that these NOTCH-cDC1
were transcriptionally and functionally closer to in vivo cDC1
(127–129) (Figure 1). However, transcription factor dependency
differs considerably between tissues, and the question remains
whether this specificity is enforced at the precursor level
in the bone marrow or if microenvironmental cues in the
organs are the primary regulators of the final steps in DC
development (124, 130). This phenomenon seems to be tissue-
specific (131). Indeed, Heidkamp et al. showed that DC subsets
in lymphohematopoietic organs, i.e., spleen, thymus and blood,
are strongly defined by ontogeny rather than by signals from the
microenvironment, while it is the opposite in DC subsets from
lung or skin (131).

Location and Characterization
First, among PBMCs, DCs are identified as CD14−CD16− cells
among MNPs, i.e., CD45+Lin−(CD3/CD19/CD56)HLA-DR+ cells
(132, 133). Then among DCs, cDCs are CD11cint−hi while pDCs
are CD11c− (91).

The cDC2 subset is characterized by CD1c and SIRPα among
cDCs (91, 118, 131, 134, 135) (Figure 1). CD1c is a glycoprotein
involved in the presentation of lipid antigens while SIRPα

is an inhibitory receptor, mainly expressed by myeloid cells
(136). While all SIRPα+ cDCs comprise IRF4+IRF8− bona
fide cDC2 in mouse, two populations of SIRPα+ cDCs have
been detected in humans: a population of bona fide cDC2 with
a CD1c+IRF4+IRF8−phenotype and a population of CD1c−

cDCs showing the typical IRF4intIRF8int expression observed in
the monocyte-macrophage population (118). Therefore, CD1c
is required to define human bona fide cDC2 (Figure 1). In
mice, cDC2 are specialized in CD4+ naïve T cell polarization
in LNs (137, 138). On the contrary, in humans, cDC2 do not
have an enhanced capacity to prime CD4+ T cells compared to
cDC1 (139, 140).

The cDC1 subset was first described as CD141+ cells among
cDCs (55, 141, 142). However, although CD141 is associated
with cDC1, it is also expressed by other blood MNP subsets,
including pDCs (91). Moreover, several human tissues contain
a CD141+CD1c+ double-positive population (143, 144), which
has been associated with either cDC2 (135) or cDC1 (91). This
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makes the subset identity of this double-positive population
unclear. Fortunately, transcriptional profiling identified new
markers that better define cDC1 and can be used for subset
confirmation. Suchmarkers include CLEC9A (also calledDNGR-
1), CADM1, CD26, and CD13 (91, 118, 134, 135, 145–147)
(Figure 1). XCR1, a receptor for XCL1 and XCL2 chemokines,
can also be used and is conserved in many species (91, 118,
134, 148, 149) (Figure 1). Actually, XCR1+ cDCs seem to be the
“final form” of cDC1 subset development (127). Indeed, Balan
et al. showed that the blood CADM1+CD141+CLEC9A+XCR1−

DC fraction proliferates and acquires XCR1 expression during
culture, suggesting that these cells are the immediate precursors
of the XCR1+ cDC1 (127). Moreover, lack of expression of
monocyte-macrophage and cDC2 markers such as CD14, CD1c,
CD11b and SIRPα is also important to thoroughly identify
the cDC1 population. Finally, as some cDC1 have intermediate
CD11c expression, caution needs to be used to include all cDC1
by gating cDCs as CD11cint−hi cells (102, 135, 143). Functionally,
cDC1 are involved in CD8+ T cell priming through antigen
cross-presentation as well as in CD4+ Th1 and Treg polarization
(150, 151). They also seem optimal for the generation of tissue-
resident memory T cells, but not for circulating memory T
cells, during viral infection, at least in mouse models (152).
Thus, the cDC1 population constitutes an interesting DC
subset for the design of immunotherapeutic treatments against
intracellular pathogens or cancer cells. However, in humans,
cross-presentation is also done by cDC2, monocyte-derived
cDCs and monocyte-derived Mfs (140, 153–156). Nevertheless,
it has been demonstrated that only cDC1 have the capacity to
cross-present antigens from necrotic cells (157). Unfortunately,
the human cDC1 subset is rare in blood and tissues (135),
making it difficult to study them ex vivo. Thus, the division
of labor between cDC1 and cDC2 subsets is still not fully
understood (158), but their physical location in the LNs
could contribute to differences in T cell activation, as recently
reviewed (159, 160).

There is also a cDC population double negative for CD1c
and XCR1 among cDCs (called DN cDCs hereafter), which
could be a third bona fide cDC subset or a monocyte-
derived cell type (Figure 1). This population is also present
in several organs (118, 135); however, little is known about
their functions or their involvement in diseases. Thus,
further investigation is needed to fully characterize this DN
cDC population.

Finally, it has recently been shown that the traditional gating
strategy characterizing human pDCs, which is CD123+ cells
among CD14−CD11c− MNPs, also includes pre-cDCs (91,
103). Thus, additional markers such as CD45RA, CX3CR1,
and CD33 are required to analyze bona fide pDCs (103)
(Figure 1). Concerning their functionally, pDCs are mostly
involved in antiviral responses through the secretion of type I
IFNs (102, 122, 161).

Monocyte-Derived Cells
The fate of monocyte-derived cells is an area of active research
and contains issues that are actively debated (51, 130, 162, 163).
Indeed, it is now clear that blood DCs and blood monocytes

arise from bone marrow precursors (Figure 1). In tissues,
Mfs can arise from both embryogenic precursors and blood
monocytes while DCs can arise from blood pre-DCs, blood
DCs, tissue pre-DCs or even blood monocytes (Figure 1).
Thus, the origin of tissue Mfs and DCs are multiple and
complex and also depend on the tissue type as well the
inflammatory and wound healing status (35, 58, 164, 165).
Therefore, phenotype and functions of these cells during
tissue homeostasis and their alterations during disease are not
fully understood.

In human tissues, Segura and colleagues have suggested
that HLA-DR+CD14+CD1c+ monocyte-derived cells, which
increase during inflammation, are inflammatory DCs (162,
166, 167). These cells display a typical DC morphology and
possess hallmark DC functions, such as the ability to stimulate
naïve T cells (162). However, these CD14+CD1c+ monocyte-
derived cells also expressed markers found on Mfs, including
CD64 (166, 167). In addition, Schrøder et al. have recently
shown that a fraction of CD14+ monocytes already expressed
CD1c in blood (168). These CD14+CD1c+ cells characterized
by Schrøder et al. possess hallmarks of monocytes such as
CCR2 expression, TNF induction after LPS treatment and
lower efficiency to promote naïve T cell proliferation compared
to blood CD14−CD1c+ cDCs (168). Together, these data
support that tissue CD14+CD1c+ monocyte-derived cells could
represent a highly plastic Mf subset, which shared some
capacities with cDCs, rather being than a bona fide cDC subset
(130, 169). These data underscore that nomenclature within
the MNP compartment should be based on ontogeny rather
than phenotypic characterization. Thus, labeling a cell as a
“DC” should be restricted to cells derived from dedicated
precursors, pre-DCs. Consequently, CD14+CD1c+ cells with
DC-like functions should be referred to as monocyte-derived
cells rather than CD14+ DCs (163).

To note, a new twist has come from a recent publication by
Ginhoux’s lab, where data indicate that human inflammatory
CD14+ DC3, a subset of blood cDC2, are not monocyte-
derived cells, but are FLT3L responsive and rather belong
to DC lineage (92). In addition, the most inflammatory
CD14+ DC3 subset, namely CD163+CD14+ DC3, increase
in the blood of patients with systemic lupus erythematosus
(92). Therefore, the use of powerful single-cell techniques will
likely continue to add to the depth and breadth, as well
as the complexity, of the seemingly ever-expanding human
MNP family.

Nevertheless, monocyte-derived cells, which have high
plasticity, and bona fide cDCs are synergistic close collaborators
that complement each other in time and space and work
toward the same goal—the clearance of pathogens without
inducing an immunopathological response (130). Furthermore,
DC heterogeneity is highly variable among individuals (133),
and surface markers, TLR repertoire and functions of MNP
subsets are tissue-specific, as discussed above. Therefore, the
continuing delineation of MNP subsets underscores the ongoing
need to determine the specific functions of these cells to better
understand the development and propagation of diseases such
as IBD.
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HUMAN INTESTINAL HOMEOSTASIS AND
DISRUPTION DURING IBD

Homeostasis
In addition to the skin, the intestine is one of the major interfaces
with the external environment; it is in contact with pathogens
as well as commensal microbiota and food antigens (Figure 2).
To maintain homeostasis, this bodily niche thus requires a
balance between immune tolerance and immune responses
against pathogens (170–182). The intestinal epithelium, mainly
composed of a single-cell layer of enterocytes, forms a critical
continuous physical barrier with tight junctions connecting
adjacent cells and regulates selective permeability for luminal
content (Figure 2) (183, 184). In addition to this physical
barrier, stem cells located at the base of intestinal crypts (185)
continuously give rise to several other epithelial cell types that
are involved in specialized functions to maintain homeostasis
(186, 187). This includes Paneth cells (188) and goblet cells
(189) that secrete antimicrobial peptides andmucins, respectively
(Figure 2). The small intestine has a single mucus layer while
the colon has an inner mucus layer, lacking bacteria, and
an outer mucus layer, which forms a habitat for numerous
microorganisms (189) (Figure 2). Despite these systems, luminal
antigens can cross the epithelial barrier using one or more routes,
such as microfold cells in Peyer’s patches, as recently reviewed
(50, 190, 191) (Figure 2). Subsequently, antigens come in contact

with immune cells, including MNPs, in secondary and tertiary
lymphoid organs in the lamina propria (LP) (192, 193). After
internalization by MNPs, processed antigens are presented to
lymphocytes to induce oral tolerance (173, 191, 194–196) and
thus establish homeostatic interaction with dietary factors and
intestinal microbiota (37–40, 197). To this end, in addition
to their interaction in solitary intestinal lymphoid tissues and
Peyer’s patches, cDCs are able to migrate to mesenteric lymph
nodes (mLNs) through afferent lymphatic vessels to polarize
naïve T cells (198) (Figure 2). In contrast, Mfs lack active
migratory properties and rather contribute to amplifying T cell
responses in the LP. Additionally, intestinal Mfs maintain tissue
homeostasis by removing apoptotic and dead cells, remodeling
the epithelium and secreting cytokines to sustain Treg functions
(32, 35, 38, 42, 45, 71, 98, 199–204). These active regulatory
processes, as well as deletion and anergy of T cells, have been
implicated in maintaining oral tolerance (191, 205–207). Finally,
in response to microbial sensing, cDCs also favor class switching
of IgM and IgG to IgA on B cells (208, 209). This is essential
for gut homeostasis as IgA transcytoses across the epithelial
cell layer to restrain interaction between microorganisms and
epithelial cells (210) (Figure 2). To conclude, MNPs control
intestinal homeostasis by maintaining immune tolerance to
diet- and commensal-antigens while sustaining the capacity
to trigger immune responses against pathogens (38, 42, 194,
201, 211). Ideally, these immune responses are a self-limiting

FIGURE 2 | Schematic of human intestinal mucosa and submucosa structure. The schematic is an overall representation of intestinal organization. For example, only

the small intestine has Peyer’s patches while only the colon has both inner and outer mucus layers composed of firm and loose mucus, respectively. In addition, this

schematic does not represent the villi or the crypts of the intestinal mucosa. The color coding of macrophage subsets and dendritic cell subsets matches that in

Figures 1, 3, 4 and 6 to allow continuity in the Figures. Black dashed lines represent the maturation waterfall of macrophages. Questions marks represent remaining

unresolved issues regarding differentiation and function of the Mf4 subset. Red arrows show processes that increase or decrease during IBD. ILF, isolated lymphoid

follicle; SED, subepithelial dome.
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process that leads to a complete resolution of inflammation and
rapid return to tissue homeostasis. Unfortunately, repeated and
aberrant activation of the immune system can result in a chronic
inflammatory microenvironment leading to IBD.

Disruption of Intestinal Homeostasis
Through MNPs During IBD
Several defects in intestinal homeostasis have been linked to IBD.
These include immune responses against commensal bacteria,
epithelial barrier dysfunction, diminution of nutrient absorption,
alterations in tissue oxygenation and in autophagy, which induce
immune cell recruitment such as MNPs (25, 184, 187, 191, 212–
217). In addition, expression of genes associated with variation
in Crohn’s disease prognosis can be mapped to MNPs (218).
Thus, MNPs have a key role in cellular signaling pathways that
modulate tolerance vs. chronic inflammation during IBD, as
described in detail below (Figure 2).

HUMAN INTESTINAL MUCOSA MNP
POPULATIONS DURING HOMEOSTASIS
AND IBD

First, we summarize MNP subset characteristics and their
functions during homeostasis, as assessed in tissue from control
individuals, and thereafter we describe MNP alterations during
IBD. To note, several layers add complexity to this field, such as
various surface markers and gating strategies used in different
studies, low number of cells available to perform functional
analyzes, and differences between intestinal regions such as the
ileum and colon (219, 220). Finally, a caveat to samples used as
“controls” is that they are typically from colorectal cancer patients
or obese patients.

Macrophages in Intestinal Mucosa During
Homeostasis
Phenotype and Frequency of Intestinal Mucosa

Macrophages
The first step to characterize intestinal Mfs by flow cytometry
is gating on MNPs, i.e., CD45+Lin−(CD3/CD19/CD56)HLA-
DRint−hiCD14neg−hi cells (Figures 3A, 4). Then, among MNPs,
CD14 (Figures 3A, 4), CD64 and CD163 are used to distinguish
Mfs from DCs (72, 75, 221–225). To note, various studies have
shown that CD64 alone was not sufficient to distinguish intestinal
Mfs from DCs, as some cDC2 are CD64+ (72, 135, 220, 224). In
control intestinal mucosa, several studies showed that Mfs, i.e.,
CD14+ cells, represent ∼0.2 and 0.5% of LP cells (Figure 5A),
and 20 and 40% of MNPs (Figure 5B), in ileum and in colon,
respectively (132, 225–227). This suggests that the frequency
of Mfs is higher in colon than in ileum. However, Granot
et al. showed the contrary by analyzing CD14+ cells among
CD45+ cells in organ donors (135), underscoring once again the
complexity of working with human tissues.

Concerning Mf subsets, it is now well-defined that the
human intestinal Mf population comprises a continuum of blood
monocyte-derived cells differentiating first into a newly recruited
monocyte population (called immature Mfs hereafter) and then
into a mature Mf population, similar to the situation in mouse

intestine (42, 72, 73, 75, 221). Based on flow cytometry expression
of HLA-DR, CD14, CD11c and CD11b, Bujko et al. recently
described four Mf subsets (75). More precisely, they showed
that both immature and mature Mf populations are composed
of two subsets, Mf1 and Mf2, and Mf3 and Mf4, respectively
(75) (Figures 3A,B, 4, 6). These four Mf subsets are comparable
with those described in human ileum by Bain et al. using HLA-
DR, CD14, CD11c, CD163, and CD209 (221) (Figure 6). The
Mf maturation waterfall from Mf1 to Mf3 includes a decreased
expression of a set of blood monocyte markers such as CD11c
and CCR2, as well as an increased expression of CD163 and
CD209 (75) (Figures 3B, 6). The Mf4 population is primarily
located deep in the mucosa and in the densely innervated
submucosa and muscularis propria/externa (75) (Figures 2, 6).
Thus, the Mf4 population might be specialized in nervous system
interactions, as described in mice (195, 230–233). However,
further investigation is needed to better understand the origin
and function of these cells in the human intestine.

As previously shown by Jahnsen’s group (75, 168, 234),
Bernardo et al. confirmed that immature Mfs are characterized
as CD11c+ Mfs and expressed monocyte-associated markers
such as CCR2 and CX3CR1, while mature Mfs are characterized
as CD11c− Mfs (225) (Figure 6). However, they did not find
a difference of CD206 and CD163 expression between Mf
populations (225), which are markers typically associated with
mature Mfs (75, 221) (Figure 6). Regarding frequency, mature
Mfs were the most abundant Mf population in duodenum but
decreased from duodenum to colon while the opposite was
observed for the frequency of immature Mfs (75, 225).

To summarize, circulating classical monocytes enter in
the intestinal mucosa and differentiate in situ, first into
transient immature Mfs and then to mature Mfs. The Mf
maturation waterfall is based on stepwise acquisition of a set of
markers related to bacteria clearance concomitant with loss of
inflammatory markers (Figure 6).

Function of Intestinal Mucosa Macrophages
Intestinal mucosal Mfs are strategically located in the
subepithelial area where they regulate lumen-derived commensal
microbe penetrance through their capacities of phagocytosis
and degradation. Thus, intestinal mucosal Mfs are involved
in pathogen clearance and immune regulation by maintaining
tolerance to commensal microbiota and food antigens as well
as tissue repair (42, 195, 235–237). The three intestinal mucosal
Mf subsets described by Bujko et al. are highly proficient at
endocytosis, antigen uptake, and intracellular degradation
of proteins, although less than blood monocytes, while the
submucosal Mf4 population is weakly competent in these
capacities (75) (Figure 6). Compared with the other intestinal
Mf subsets, unstimulated and LPS stimulated Mf1 release
significantly higher amounts of numerous chemokines and
cytokines (75, 225) (Figure 6). To note, the frequency of blood
monocyte-derived CD11c− Mfs, related to intestinal mature
Mf3, increased in the presence of mucosa-conditioned medium
from control intestine (225). In addition, Maheshwari et al.
showed that blood monocyte-derived Mfs developed LPS
tolerance on exposure to mucosa-conditioned medium, mainly
provided by TGF-β2 (238). This suggests that intestinal mature
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FIGURE 3 | Gating strategy and phenotypic characteristics of human intestinal mucosa MNP subsets and human mLN cDC subsets. (A) Gating strategy to analyze

human intestinal mucosa MNP subsets from lamina propria cells. This example is from ileum of a Crohn’s disease patient. Lineage is composed of CD3, CD19, and

CD56. (B) Expression level of HLA-DR, CD14, and CD11c on human intestinal MNP subsets. The red arrow indicates the Mf maturation waterfall from Mfl to Mf3.

(A,B) Based on reference (75). (C) Expression level of CD11c, SIRPα, CD26, CD103, and XCR1 on human intestinal cDC subsets. (D) Gating strategy to analyze

human cDC subsets from mesenteric lymph node cells. This example is from mLN of a ulcerative colitis patient. Lineage is composed of CD3, CD19, and CD56. LP,

lamina propria; mLN, mesenteric lymph node.

CD11c− Mfs are generated from newly recruited monocytes
through the intestinal microenvironment, which promotes an
anti-inflammatory and anergic state during the Mf maturation

waterfall. This would result in matureMfs that are less responsive
against food antigens and commensal microbiota. Indeed, several
studies have shown that, contrary to monocytes and most other
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FIGURE 4 | Schematic overview of human intestinal MNP subsets. Main surface markers to identify human intestinal MNP subsets using the gating strategy in

Figure 3. This schematic is not intended to show the ontogenic or developmental relationship between the human intestinal MNP subsets.

FIGURE 5 | Frequency of human intestinal MNP subsets in homeostasis and during IBD. These values do not take in account the number of patients or the standard

error of the mean from each study. The dashed lines are only to clarify the difference between the type of tissue and do not represent paired values. (A–D) Frequency

of human intestinal MNP subsets in homeostasis. (E–G) Comparison of human intestinal MNP subset frequencies in homeostasis and during IBD. a, active lesion

areas; q, quiescent lesion areas. References: (A) (132, 225); (B) (226, 227); (C) (75, 134, 220); (D) (132); (E) (223, 228); (F) (132, 225, 228); (G) (132, 229).

tissue-resident Mfs, intestinal Mfs lack surface expression of
TLR2, TLR4 and FcαRI, and are consequently down-regulated
for LPS- and IgA-mediated activities (75, 239, 240) (Figure 6).
Moreover, mature Mfs reduce the release of proinflammatory
molecules together with desensitization to TLR ligands, which is
a functional feature of anergy (75, 239, 241, 242). This anergic

status is thought to be driven by several micro-environmental
factors, as recently reviewed (237), such as TGF-β, which induces
downregulation of the MyD88 pathway in blood monocytes
and results in a hyporesponsive mature Mf-like phenotype
(242, 243). Confirming this, Kelly et al. recently showed that
human intestinal Mfs highly expressed integrin αvβ8, which
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FIGURE 6 | Phenotypic and functional characteristics of human intestinal mucosa Mf subsets during homeostasis. (a–d) Expression level of major surface markers on

blood monocytes and intestinal mucosa Mf subsets assessed by flow cytometry (intensity level from blood monocytes to Mf4 subset). (e–g) Functional characteristics

of blood monocytes and intestinal mucosa Mf subsets assessed ex vivo (intensity level from blood monocytes to Mf4 subset). (h) Time of replenishment of intestinal

mucosa Mf subsets assessed in duodenum-pancreas transplanted patients. n.a, not analyzed.

down-regulated TNF production via TGF-β activation, at least
in blood monocytes (244). Some earlier studies also support
the hyporesponsive nature of intestinal Mfs. Indeed, more
than 10 years ago, using an unconventional Mf definition, i.e.,
CD13+CD14−CD33−CD64−CD16− cells, Smith et al. showed
that even if jejunum Mfs had strong basal phagocytic and
bactericidal activities they were anergic (239, 242, 245). More
precisely, they did not secrete cytokines and chemokines, except

low amounts of IL-8, with or without LPS stimulation (239, 242)
and did not activate the NF-kB pathway (243). However, in
contrast, several recent studies showed that intestinal Mfs,
defined more conventionally as CD14+ cells, express TLRs
and secrete pro-inflammatory molecules with or without TLR
stimulation (75, 226, 227, 246). Indeed, intestinal Mfs from
controls produced few cytokines in the absence of stimulation
while secretion of IL-12p40, IL-23, TNF, IL-6, and IL-10 were
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induced by commensal bacteria (246). More specifically, Mfs
were the major producers of IFN-γ, TNF, IL-6, TL1A, and
IL-23 among LP cells activated or not by commensal bacteria
(246, 247). Furthermore, Mf-derived IL-23 induced IFN-γ and
TNF release from LP cells (246) as well as IL-22 secretion by
innate lymphoid cells (248).

Human intestinal Mfs also express a receptor called TREM-
1 (triggering receptor expressed on myeloid cells 1), which
amplifies inflammatory responses upon engagement by thus far
poorly understood ligands (249–251). TREM-1 activation leads
to the secretion of pro-inflammatory cytokines and chemokines
such as TNF, IL-6, IL-1β, IL-8 and CCL2, and synergizes with
TLR activation (251–254). Our group and another showed that
intestinal mature Mfs expressed less TREM-1 than immature Mfs
and blood monocytes (253, 255), which has been corroborated by
a recent study using scRNA-Seq (228) (Figure 6). The decrease of
TREM-1 expression duringMf maturation seems to be due to the
intestinal anti-inflammatory microenvironment, as monocytes
cultured in the presence of IL-10 and TGF-β have reduced
TREM-1 expression (253).

Takeda’s group described three human intestinal Mf subsets
as CD163lo, CD163hiCD160lo, and CD163hiCD160hi (226,
256). They showed that CD163lo Mfs, which seem related to
Mf1, highly secreted pro-inflammatory cytokines, while the
CD163hiCD160hi Mf subset, which seem related to mature Mfs,
secreted IL-10 (226, 256). These data corroborate those from
Bernardo et al. (225). On the contrary, Bujko et al. showed
that, in addition to their high pro-inflammatory cytokine release,
immatureMfs, mainlyMf1, secretedmore IL-10 thanmatureMfs
(75). Thus, which subset of intestinal Mfs is the main producer
of IL-10 is still an open question (Figure 6). Nevertheless,
regarding T cell induction, the CD163lo Mfs (immatureMf1-like)
induced naïve CD4+ T cell polarization into Th17 cells while
CD163hiCD160hi Mfs (mature Mf3-like) suppressed effector T
cell proliferation (226, 256) (Figures 2, 6). However, none of
theseMf subsets induced naïve CD4+ T cell polarization into Th1
or Tregs (226, 256). This is consistent with data from Matsuno
et al. who showed thatMfs could polarize naïve CD4+ T cells into
Th17, but not into Th1 or Tregs (227). To note, intestinal Mfs do
not express CCR7 (135, 222, 246), suggesting that they cannot
migrate to mLNs to interact with naïve T cells in situ. Therefore,
given that human intestinal T cells are almost entirely memory
T cells (257–259), the biological significance of the ability of
intestinal Mfs to regulate naïve CD4+ T cells as shown ex vivo
is not clear.

Finally, Bujko et al. have also analyzed the replenishment of
the four Mf subsets from pancreatico-duodenal transplantation
patients (75). Three weeks after surgery almost all donor Mf1 and
Mf2 were replaced by recipient Mfs, while only 20% of Mf3 and
Mf4 were replaced 6 weeks after transplantation. However, after 1
year, all donor Mfs were replaced by recipient monocytes. These
data elegantly showed that human intestinal Mf compartment is
fully replenish through bloodmonocytes in a maximum of 1 year,
and consists of transient immature Mfs (Mf1 and Mf2 subsets)
that die or differentiate into long-lived mature Mfs (Mf3 andMf4
subsets) (75) (Figure 6). This is in contradiction withmouse data,
where it has been recently shown that there is a self-maintaining

Mf population that persists throughout adulthood and is essential
for intestinal homeostasis (232, 260).

To summarize, during homeostasis, circulating classical
monocytes constantly replenish the intestinal Mf population,
first constituting functionally plastic immature Mfs, which is
a very appropriate way to respond rapidly and aggressively
to pathogens through phagocytosis and cytokine secretion.
Then, under the influence of the intestinal microenvironment,
maturation steps generate long-lived anergic resident mature
Mfs, which maintain oral tolerance and tissue homeostasis to
prevent chronic inflammatory responses (Figure 2). The exact
mechanisms involved in the Mf maturation waterfall remain to
be fully elucidated in order to understand alterations during
intestinal diseases such as IBD.

Conventional Dendritic Cells in Intestinal
Mucosa During Homeostasis
Before venturing deeper into the specifics of human intestinal
cDC subsets, it is worth taking a moment to say that definition
of these subsets is difficult. Indeed, based on data from mouse
models where the integrins CD103 and CD11b are widely
used to identify four intestinal cDC subsets (45, 261), many
human studies use CD103 along with SIRPα (also called
CD172a), as the human equivalent of CD11b in mice, to
likewise identify four intestinal cDC subsets (45, 261). It has
been shown that CD103+SIRPα− were usually related to cDC1,
CD103+SIRPα+ and CD103− SIRPα+ were related to cDC2
while CD103−SIRPα− cDCs are poorly studied (45, 75, 134, 220,
224). However, these markers do not robustly define cDC subsets
in humans (132) and recent analyzes use other markers such
as CLECL9A/CAMD1/CD26 and CD1c to characterize them
(118, 135) (Figure 3C). Thus, the discussion below is divided to
reflect these different ways to define human cDC subsets.

Frequency of Intestinal Mucosa cDC Subsets Defined

Using CD103 and SIRPα

The frequency of CD103+SIRPα+ cells among cDCs
predominated in small intestine but decreased in colon, while the
contrary was true for CD103−SIRPα+ and CD103−SIRPα− cells
(75, 134, 220) (Figure 5C). Furthermore, the frequency of total
CD103+ cDCs, as well as the frequency of CD103+ cells among
each cDC subset, decreased in colon relative to ileum (132, 227).
Thus, CD103-expressing cDCs decreased in colon relative to
small intestine regardless of the subset analyzed. Importantly, the
mechanisms regulating CD103 expression on cDCs are poorly
known, suggesting that other markers could be more robust to
defined human intestinal cDC subsets.

Phenotype and Frequency of Intestinal Mucosa cDC

Subsets Using Markers Other Than CD103 and SIRPα

First, among MNPs, intestinal cDCs are characterized as
CD14−CD11cint−hi cells (Figures 3A, 4) (75, 132, 135, 224).
Within this population, cDC1, cDC2, and DN DCs can be
identified based on two major surface markers, CD1c and
XCR1. Precisely, cDC2 are defined as CD1c+XCR1−, cDC1 as
CD1c−XCR1+, and DN cDCs as CD1c−XCR1− (Figures 3A, 4).
In addition, these three cDC subsets expressed other specific
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markers as shown in Figure 1 (132, 134, 135, 224). DN
cDCs seemed more heterogeneous with at least three other
subsets based on SIRPα and CD26 expression (118, 134, 135)
(Figure 3C). Regarding their abundance in control intestinal
mucosa, cDCs represent 0.3–0.6% of colonic LP cells, which
corresponds to a median of 114 cDCs per mg of tissue (229, 262).
More precisely, our group showed that cDC1, cDC2, and DN
cDCs represent around 0.05, 0.2, and 0.2%, respectively, of LP
cells in both ileum and colon (132) (Figure 5A). However, among
MNPs, the total cDC population seemed to decrease from ileum
to colon (226) (Figure 5B). Finally, among cDCs, cDC1, cDC2,
and DN cDCs represented around 10–15, 40–50, and 35–50%,
respectively, both in ileum and colon (132) (Figure 5D).

To note, as described above in the blood, intestinal pDCs
are present among the CD14−CD11c− population and can be
identified as CD123+CD45RA+ cells (135) (Figure 4). However,
even if pDC frequency seems to increase by 10-fold from
jejunum to colon, i.e., from 0.001 to 0.01% of CD45+ cells
(135), human intestinal pDCs represent a very low amount
of cells (135, 263), and will not be discussed further in
this review.

Function of “Total” Intestinal Mucosa cDCs
In control intestinal mucosa, the frequency of cytokine-
producing cDCs was absent/low for IL-6, IL-12, IL-22, and IL-23
and intermediate for IL-10, TGF-β, TNF, and IL-1β (220, 264). In
addition, intestinal cDCs secreted almost no cytokines without
stimulation and did not respond to TLR ligands ex vivo (75, 226).
Supporting this, cDCs seemed immature as judged by their low
expression of CD80, CD83, CD86, and TLRs (220, 226, 229,
264, 265). Mann et al. showed that functional differences could
exist between colonic and ileal cDCs, such as induction the gut-
homing receptor CCR9 (220), which makes the comparison of
studies even more complex.

With respect to T cell induction, Ogino et al. showed that
colonic cDCs induced naïve CD4+ T cell polarization into Th1
but not Th17 cells (226) (Table 1). In contrast, Mann et al.
showed that colonic cDCs induced high production of several
cytokines such as IL-10, TGF-β, IL-17, IFN-γ, and IL-22 by naïve

TABLE 1 | Th polarization by human intestinal cDCs.

Type of

tissue

Population

of cDC

Th polarization References

Polarization

of

No effect

on

Colon Total Th1 Th17 (226)

Colon Total Th1 Th17

Th22 Treg

(dividing

CFSE low

T cells)

(265)

Colon CD103+ Treg Th1 Th17 (227)

Jejunum CD103+SIRPα− Th17 Th1 Treg (134)

CD103+SIRPα+ Th17 Treg Th1

CD103−SIRPα+ Th1 Th17 Treg

CD4+ T cells (265), at least by dividing CFSElo T cells (Table 1).
To note, Fenton et al. recently showed that intestinal cDCs that
highly express integrin αVβ8, such as cDC2, but not cDC1,
might induce higher Treg polarization through TGF-β secretion
(266). Nevertheless, given that there are few naïve CD4+ T cells
in human intestinal mucosa (257–259), it is more relevant to
study naïve CD4+ T cell polarization with cDCs from mLNs, as
discussed below.

Function of Intestinal Mucosa cDC Subsets Defined

Using CD103 and SIRPα

Watchmaker et al. showed that CD103+SIRPα−,
CD103+SIRPα+, and CD103−SIRPα+ in jejunum expressed a
low level of CD80, an intermediate level of CD83 and CD86,
while a high level of CD40 (134). In addition, they expressed
CCR7, suggesting that these three cDC subsets may migrate to
mLNs (134, 220). Furthermore, these cDC subsets induced the
mucosa-associated integrin α4β7 and the gut-homing receptor
CCR9 on naïve CD4+ T cells (134), suggesting that they support
T cell homing to intestinal tissue. Matsuno et al. showed that
colonic CD103+ cDCs induced Tregs, but neither Th1 nor Th17
(227) (Table 1). In contrast, Watchmaker et al. showed that both
CD103+SIRPα+ cDCs and CD103+SIRPα− cDCs induce Th17,
while CD103+SIRPα+ cDCs induce Tregs and CD103−SIRPα+

cDCs induce Th1, at least with cDCs from jejunum of three
obese subjects (134) (Table 1).

To note, Richter et al. recently described a monocyte-
derived cell population in the cDC compartment, identified as
HLA-DR+CD14−/loCD11c+SIRPα+, which are mainly cDC2
(224). Indeed, some SIRPα+ cDCs expressing calprotectin
and low level of CD14 were enriched in monocyte gene
signatures, were morphologically similar to monocytes and did
not express FLT3 receptor (224). Moreover, they exhibited a
higher capacity for antigen processing, yet an inferior potential
for migration and priming of naïve T cells compared to
SIRPα+FLT3+calprotectin− cDCs (224). These data suggest that
CD14loCD11c+SIRPα+FLT3−calprotectin+ cDCs, although
mimicking a typical cDC phenotype, are more related to the
monocyte lineage than to bona fide cDCs, highlighting once
again the diversity and complexity of human intestinal MNP
subsets. Finally, using pancreatico-duodenal transplantation
patients, Richter et al. showed all intestinal cDCs were replaced
by recipient cells 6 weeks after transplantation, suggesting that
cDCs lack self-renewal capacity and long-life phenotype in the
human intestine (224).

To summarize, the different gating strategies used and the
low number of cDCs complicates getting a clear picture of
subset-specific function. However, it has been shown that human
intestinal cDCs are replenished by blood-derived cells in a few
weeks, are poor cytokine-producing cells and play a role of
sampling antigens to activate T cell proliferation in mLNs, which
is consistent with the well-characterized overall function of cDCs
(Figure 2). Nevertheless, additional studies of human intestinal
cDCs are warranted to understand which and how cDC subsets
maintain tissue homeostasis and initiating effective immunity
without driving disease pathogenesis.
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Macrophages in Intestinal Mucosa During
IBD
Phenotype and Frequency of Intestinal Mucosa

Macrophages
It is now clear that the frequency and number of Mfs among
intestinal LP cells is increased in IBD patients compared to
controls, especially in active lesion areas (132, 221, 223, 225,
226, 228, 246, 263, 267–272) (Figure 5E). More specifically,
the augmentation of intestinal Mfs is due to an increase in
the frequency of immature Mfs among LP cells, despite that
somewhat different surface markers and combinations thereof
have been used to characterized them (i.e., HLA-DR or CD11c
levels; scRNA-seq) (132, 221, 223, 225, 226, 228, 256, 263,
270, 272–275) (Figure 5F). This accumulation seems to be
due to the inflammatory intestinal microenvironment of IBD
patients, which boosts the recruitment of classical monocytes
through mechanisms involving CCL2, IL-8, and TGF-β signaling
(223, 276). These newly recruited monocytes are maintained in
the immature pro-inflammatory state, which in turn amplify
intestinal chronic inflammation (11, 277). Chapuy et al. showed
that the frequency of immature Mfs, but not mature Mfs, is
positively correlated with endoscopic score of disease severity in
Crohn’s patients (228). To note, age, gender, age at diagnosis,
disease location and disease behavior, as well treatment history,
did not influence the increased frequency of immature Mfs in
Crohn’s patients (228).

Some studies have addressed the interesting question of the
effect of immunotherapy in IBD patients on the intestinal Mf
compartment. For example, the frequency of immature Mfs
decreased slightly in IBD patients after 5 weeks of anti-TNF
adalimumab treatment (278). Specifically, this effect appears
to be limited to patients in remission, at least after 14 weeks
of infliximab therapy (279). Moreover, Vos et al. showed
that the frequency of mature Mfs increased in IBD patients
after 4 weeks of anti-TNF infliximab treatment (280). On the
contrary, the two aforementioned studies did not find a change
in the frequency of mature Mfs (278, 279). In addition, the
frequency of immature Mfs decreased and the frequency of
mature Mfs increased in IBD patients after 14 weeks of anti-
α4β7 vedolizumab treatment, specifically in patients in remission
(279). Even if these three studies have not used the same
markers to define Mf subsets, their data go in the same direction.
That is, reduced immature Mf and/or increased mature Mf
frequencies accompany disease quiescence after immunotherapy.
This suggests that the restoration of homeostatic Mf composition
is resulting from and/or is necessary during the remission of IBD
patients after immunotherapy.

A fundamental question that remains is which components
of the intestinal microenvironment drive Mf maturation during
homeostasis, and how this process is affected during IBD.
One candidate could be GM-CSF. Indeed, it has been shown
that blood monocytes differentiate to immature Mf-like cells
through GM-CSF ex vivo (281, 282), a factor that increases in
Crohn’s disease and UC, particularly in active lesion areas (283).
Moreover, GM-CSF can act in concert with IFN-γ and TNF
to reprogram blood monocytes into Mfs with an inflammatory

profile (284). However, GM-CSF has also been shown to induce
blood monocytes with a tissue repair and anti-inflammatory
profile, which can dampen intestinal inflammation in mouse
models (285). This mechanism could contribute to the benefit
of GM-CSF therapy observed in some Crohn’s patients (286).
Therefore, either the absence or chronic production of GM-
CSF can result in high susceptibility to intestinal pathology,
demonstrating the importance of its balanced production to
maintain homeostasis. However, the regulation of Mf function
goes far beyond a single factor. Indeed, it is difficult to imagine
the scenario when numerous immunomodulating factors such as
IFN-γ, TNF, IL-1β, IL-6, IL-36, TGF-β, and IL-10 are present in
various combinations and amounts, as is the case in vivo (11).
Clearly, this area of research warrants further investigation.

Function of Intestinal Mucosa Macrophages
In addition to their accumulation, intestinal Mfs produced more
pro-inflammatory cytokines, such as TNF, IL-23, IL-1β and IL-
6, in basal conditions as well as after TLR stimulation, in UC
patients and even more in Crohn’s patients compared to controls
(226, 228, 246, 256, 271, 287). These pro-inflammatory cytokines
can promote and/or perpetuate a pathologic environment (11).
For example, Takayama et al. showed that Mfs from Crohn’s
patients induced IFN-γ secretion by NK cells via IL-23 release
and cell-cell contact (288). Moreover, factors in LP-conditioned
medium from Crohn’s patients, including IFN-γ, induced
inflammatory monocyte differentiation and IL-23 secretion by
these cells, leading to a vicious circle perpetuating inflammation
(246). Importantly, Mfs from Crohn’s patients also expressed
higher levels of both IL-10 and latent TGF-β, which have anti-
inflammatory effects (226, 256). Nevertheless, Kelly et al. recently
showed that integrin αvβ8 expression, which regulates immune
tolerance via TGF-β activation as discussed above, was highly
reduced onMfs from IBD patients (244). This suggests that, even
if Mfs from Crohn’s patients expressed more latent TGF-β, less
TGF-β was in the active form (244).

Additional mechanisms that amply inflammation may also
contribute to IBD pathogenesis. For example, the frequency and
the number of TREM-1+ Mfs, which are mainly immature Mfs,
are increased in IBD patients, especially in active lesion areas
(254, 255). As described above, TREM-1 is an inflammation-
amplifying receptor expressed on myeloid cells; it is involved in
immune responses triggered by bacteria (249, 250), yet its role
in IBD is poorly understood. Our group showed that an anti-
TREM-1 antagonist antibody dampened secretion of several pro-
inflammatory cytokines and chemokines by LP cells from highly
inflamed intestinal mucosa of IBD patients (255), supporting a
potential role of TREM-1 in perpetuating intestinal inflammation
in IBD patients.

Other disease-associated changes inMf functionmay promote
IBD. For example, it has been suggested that intestinal Mfs have
bacterial clearance impairment in IBD patients (289), and in
patients manifesting a Crohn’s disease phenotype, i.e., Niemann–
Pick disease type C1, mainly through dysfunctional autophagy
(290). Moreover, they appear to contribute to intestinal barrier
dysfunction. Indeed, Mfs from inflamed Crohn’s disease tissue
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induced less IL-22 secretion by innate lymphoid cells than
those from quiescent area (248), and blood monocytes reduced
epithelial barrier efficiency in vitro by altering the structure and
function of tight junctions (271). Finally, intestinal Mfs from IBD
patients had increased ROS production (291), which can also
contribute to epithelial injury (292).

Another role of intestinal Mfs is their involvement in
tissue repair and fibrosis (99, 293). To note, at least 10% of
Crohn’s patients have an intestinal fibrostenosis phenotype at
the time of diagnosis (294). In addition, fibrotic complications,
such as strictures, occur in ∼20–30% of Crohn’s patients 10
years after diagnosis (294). In UC patients, the degree of
fibrosis is proportional to the degree of inflammation, even
if the fibrosis-associated strictures are less prevalent than in
Crohn’s patients (294). Despite the problem of fibrosis in
IBD (295, 296), the mechanism by which Mfs contribute
to fibrosis-associated pathology is poorly understood. Several
Crohn’s-associated susceptibility loci, including some related
to MNP-associated inflammation such as NOD2, ATG16L1,
IL-12B, IL-23R, and CX3CR1, are predictors of fibrostenosis
(294). In addition, Scheibe et al. showed an increase number
of intestinal IL-36α+ Mfs in IBD patients, which correlated
with the degree of inflammation (297) and the accumulation
of αSMA+ myofibroblasts (298). More precisely, the number
of intestinal IL-36α+ Mfs increase in the colon of Crohn’s
patients with stenosis (298). Functionally, IL-36 acted directly on
human mesenchymal cells to elicit a profibrotic transcriptional
program (298), suggesting that the increase of IL-36α+ Mfs could
induce intestinal fibrosis during chronic inflammation in IBD
patients (298–300). Corroborating this, Martin et al. recently
showed in situ that immature Mfs were always in the close
vicinity of activated fibroblasts in intestinal mucosa of Crohn’s
patients (263). In particular, immature Mfs, as well as cDC2,
induced intestinal inflammation through fibroblast activation
via oncostatin M/OSMR signaling, which increased in IBD
patients and predicted anti-TNF therapy response (275, 301).
However, even if OSM induced IL-11 expression by activated
fibroblast (275), which is known to be amajor fibrotic component
(302), whether OSM promotes intestinal fibrosis in IBD patients
remains to be determined.

Regarding T cell activation, intestinal Mfs from Crohn’s
patients induced naïve CD4+ T cell proliferation as well as
integrin β7 and CCR9 expression in the same range as those
from controls (287). However, Barman et al. showed that mature
Mfs from UC patients were unable to suppress effector T cell
proliferation compared to those from controls (256) (Figure 2).
In addition, intestinal Mfs from Crohn’s patients induced more
Th1 and Th17 polarization from naïve CD4+ T cells (226, 287)
(Figure 2). This seems to be due to immature Mf accumulation
within the total Mf population in Crohn’s patients. Indeed,
Chapuy et al. have recently shown that immature Mfs from IBD
patients, but seemingly not mature Mfs, induce Th17 cells, as
well pathologic IFN-y+IL-17+ T cells (303), from autologous
colonic CD4+ T cells mainly through their production of IL-1β
(228, 272). Corroborating this, Martin et al. have shown that,
while initial steps of lymphocyte aggregate formation depend

on DCs, immature Mfs likely participate in T cell activation in
situ (263).

In summary, data support that there is a large influx of
inflammatory immature Mfs that drive inflammation and tissue
damage in IBD (Figure 2). Moreover, although mature Mfs seem
to maintain their anti-inflammatory and tissue repair functions
in IBD, their relative abundance is reduced during inflammation
as immature Mfs dominate. However, it is still unclear if
the disruption of blood monocyte differentiation into mature
Mfs reflects a loss of intrinsic maturation cues that normally
program recruited monocytes toward cells with tolerogenic
properties or if the chronic inflammatory microenvironment
generates new factors that actively overhaul this homeostatic
process. Thus, development of new therapies to restore the Mf
maturation process and/or neutralize factors that drive monocyte
recruitment may be beneficial for treating IBD.

Conventional Dendritic Cells in Intestinal
Mucosa During IBD
Phenotype and Frequency of Intestinal Mucosa cDC

Subsets
Several studies found no difference in the number, frequency or
maturation state (with respect to CD80, CD83, and CD86 levels)
of total intestinal cDCs, as well cDC1 and cDC2 subsets, in active
lesion areas of IBD patients compared to quiescent lesion areas as
well compared to controls (132, 229, 263, 269, 278) (Figure 5G).
These data contrast a single study showing increased cDC2
among LP cells of IBD patients (262). To note, using scRNA-
seq, Martin et al. have recently defined four cDC subsets in
ileum from Crohn’s patients, namely cDC1, cDC2, monocyte-
derived DC-like cells and activated cDCs (263). Activated cDCs
expressed CCR7 and PD-L1, as well as the lymphocyte-attracting
chemokines CCL17, CCL22, and CCL19, and was the only cDC
subset increased in inflamed lesions compared to uninflamed
lesions (263).

Given the caveat that CD103 expression does not robustly
define functionally distinct subsets of human intestinal cDCs,
as discussed above, it has been shown that cDCs expressing
CD103 are decreased among LP cells, as well as among MNPs,
in both Crohn’s and UC patients (132, 227, 278). In addition, the
frequency of CD103+ cells among cDC1, cDC2 and DN cDCs
subsets was lower in active IBD intestinal tissue compared to
quiescent tissue, and even more so compared to controls (132).
However, mechanisms underlying reduced human intestinal
CD103+ cDC frequency in IBD patients are not known. It could
be due to inflammation-induced cell death, downregulation of
CD103 expression and/or emigration of CD103+ cDCs from
intestinal LP. Thus, further investigation to understand CD103
regulation in human intestinal cDCs, its role on cDC function
and its possible impairment during IBD are needed.

Function of Intestinal Mucosa cDC Subsets
Several studies showed that intestinal cDCs have a higher
inflammatory state in UC patients, and even more so in
Crohn’s patients, compared to controls. This is supported by the
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increased frequency of CD40+, TLR2+, TLR4+, IL-12+ and IL-
6+ cDCs, but not IL-10+ cDCs in patients’ tissues (262, 264, 265,
304). Consistent with this, LPS-stimulated intestinal cDCs from
Crohn’s and UC patients secreted more TNF and IL-8 compared
to those from controls (262). In addition, the frequency of IL-6+

cDCs and TLR4+ cDCs were associated with the Crohn’s Disease
Activity Index (304). To note, even if the frequency of CD103+

cDCs decreased in UC compared to controls, they were more
inflammatory and induced less Tregs but more Th1, Th2, and
Th17 polarization of naïve CD4+ T cells (227).

As for intestinal Mfs, the factors that trigger the inflammatory
state of cDCs in the intestine of IBD patients are not fully
understood. Wu et al. showed that TNF and IFN-γ reduced
miR-10a expression in DCs from IBD patients, resulting in
enhanced IL-12/23p40 and NOD2 expression as well as Th1 and
Th17 polarization (305). The microbiome composition may also
influence DC function, as suggested by Ng et al. (304). Indeed, in
this study, the frequency of IL-12p40+ DCs positively correlated
with Bacteroides and the frequency of IL-6+ DCs negatively
correlated with F. prausnitzii, which are considered detrimental
and beneficial, respectively, during IBD (304). Thus, although
a cause/effect relationship between dysbiosis and altered DC
function is not established, these data raise the possibility that,
during IBD, intestinal dysbiosis drives higher production of
pro-inflammatory cytokines by intestinal cDCs which, in turn,
overcomes their regulatory properties and tips the balance
toward inflammation (304).

Regarding T cell induction, intestinal cDCs from UC patients
induced less T cell proliferation and the same amount of
integrin β7 but more CCR9 on naïve CD4+ T cells compared
to those from controls (265). Moreover, the dividing CFSElo

CD4+ T cells produced less IFN-y and IL-22, similar IL-
10, TGF-β and IL-17, but more IL-4 when co-cultured with
cDCs from UC patients compared to cDCs from controls
(265). To note, some of these alterations have been restored
to control levels in the presence of Lactobacillus casei Shirota,
a bacterium found in the commensal microbiota and used as
a probiotic (265). This again suggests a role of microbiota in
intestinal cDC regulation. Interestingly, Martin et al. showed
that activated cDCs, which expressed lymphocyte-attracting
chemokines, formed dense aggregates with lymphocytes (263).
Moreover, both activated cDCs and Ki-67+ cycling lymphocytes
were enriched in Crohn’s patients with a “high inflammatory
signature,” suggesting a role for activated DCs in the recruitment,
local activation, expansion, and spatial organization of adaptive
immune responses in inflamed lesions of Crohn’s patients
(263). Finally, Fenton et al. showed that the frequency of
αVβ8+ cDC2, which are thought to induce Tregs, doubled
in Crohn’s patients compared to controls (266). However,
intestinal Treg frequency among CD4+ T cells decreased in
Crohn’s patients (306). Nevertheless, given recent evidence that
enhancing the ability of intestinal T cells to sense active TGF-
β is effective in inducing remission in some Crohn’s patients
(307), boosting the αVβ8–TGF-β pathway may be an attractive
complementary therapeutic approach to weaken inflammatory T
cell responses (266).

Retinoic Acid Influence on Human Intestinal Mucosa

MNP Subsets
A specific factor derived from dietary vitamin A1, retinoic acid
(RA), has been shown to be a regulator of intestinal MNP
functions (308). More precisely, RA release by cDCs has been
related to Treg polarization, especially in mouse models (309),
but it can be pro- or anti-inflammatory depending on the
local microenvironment (310). In humans, intestinal Mfs and
cDC subsets had RALDH activity and expressed ALDH1A1,
ALDH1A2, and/or RDH10 suggesting that they possess the
complete enzymatic machinery to generate RA from vitamin A1
(132, 134, 222, 287). Moreover, they induced the gut-homing
α4β7 and CCR9 on naïve CD4+ T cells in a RA-dependent
manner (222, 287). To note, there was no difference between ileal
or colonic cDCs, or between cDC subsets, concerning RALDH
activity and induction of α4β7 and CCR9 on naïve CD4+ T cells
(132, 134, 222). This contrasts data from mice (309, 311).

Regarding RALDH activity by intestinal MNPs during IBD,
there are conflicting data (132, 222, 287). For example, Sanders
et al. showed that intestinal Mfs, and both CD103+ and CD103−

cDC subsets, from Crohn’s patients had higher RALDH activity
compared to controls (222). In contrast, Magnusson et al.
showed that RALDH activity in intestinal Mfs, cDC1, and cDC2
subsets decreased in UC patients compared to controls, and
the same trend was observed in Crohn’s patients although not
reaching statistical significant (132). In addition, there are also
discrepancies regarding ALDH1A1, ALDH1A2, and/or RDH10
gene expression between these three studies. For example,
Kamada et al. observed the same level of RALDH2 expression but
a decrease of RDH10 expression by intestinal Mfs from Crohn’s
patients compared to those from controls (287). Furthermore,
they showed that intestinal Mfs from Crohn’s patients induced
more Th17 polarization from naïve CD4+ T cells compared
to those from controls and that RA can act as a suppressor
of this Th17 polarization (287). Therefore, they suggested that
an RA-dependent Th17 polarization suppressive pathway was
impaired in intestinal Mfs from Crohn’s disease patients (287).
However, others found no difference, or even an increase, in
ALDH1A1, ALDH1A2, and/or RDH10 gene expression in MNP
subsets from Crohn’s patients compared to controls (132, 222).
Nevertheless, none of these three studies measured RA itself nor
assessed other factors that regulate RA availability. Additionally,
given that intestinal T cells are almost entirely memory T cells
(257, 258), the biological significance of the ability of RA-
producing intestinal MNPs to regulate naïve CD4+ T cells as
shown ex vivo is not clear. To conclude, it is more relevant to
analyze this property in mLN MNP subsets, especially cDCs, as
described below.

To summarize, in most tissues, exposure to microbial
components is sufficient to induce inflammatory cDCs, while in
the intestine additional signals are required due to the necessity
to maintain homeostasis in this microbe-rich environment.
Thus, inflammation-dampening mechanisms in cDCs must be
overcome to enable them to drive inflammation in the intestine.
Even if the additional signals are not defined, they likely
increase during IBD and lead to pro-inflammatory cytokine
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production by cDCs (Figure 2). However, it is unclear if these
inflammatory/activated cDCs arise from modulation of local
cDC populations, recruitment of blood cDCs, differentiation of
monocyte-derived cDCs, or a combination of these scenarios.
Moreover, the non-redundant roles of the cDC1 and cDC2
subsets during IBD, such as mLN migration capacity and
Th polarization, are poorly understood. Therefore, better
understanding of intestinal cDC dysregulation is required to
target these cells as a means to treat IBD.

HUMAN MESENTERIC LYMPH NODE MNP
POPULATIONS DURING HOMEOSTASIS
AND IBD

Macrophages in Mesenteric Lymph Nodes
Since Mfs are primarily involved in non-lymphoid tissues, there
is little data available on Mfs from mLNs, especially in humans.
Granot et al. showed that the Mf population represents 0.8%
of CD45+ cells in mLNs from control individuals (135). In
IBD patients, the frequency of Mfs in mLNs increases and they
produced more IL-1β and TNF compared to those from controls
(268, 312, 313). Chapuy et al. recently showed that mLN Mfs
had high frequency of cells positive for inflammatory cytokines
compared to mLN SIRPα+ DCs, which contain a mix of cDC2
and pDCs (313). However, these mLNMfs poorly activated naïve
T cells and did not contribute to Th17 plasticity toward Th1 and
Th1/Th17 profiles compared to mLN SIRPα+ DCs (313). Finally,
mLNMfs highly expressed genes involved in phagocytosis and in
leucocyte chemotaxis (313). These data corroborated with those
frommice, where it has been shown thatmLNMfs poorly activate
naïve T cells and were involved in clearing apoptotic cells and
promoting B cell activation (314, 315). To note, using CyTOF,
Chapuy et al. described 7 mLN Mf subsets in IBD patients (313),
but their location, function and disease involvement remain to
be deciphered.

Conventional Dendritic Cells in Mesenteric
Lymph Nodes During Homeostasis
In mLNs, as in the other draining LNs, there are two cDC
subpopulations: resident immature cDCs derived directly from
the blood (called resident cDCs hereafter) and migratory mature
cDCs derived from intestinal mucosa (called migratory
cDCs hereafter) (135, 316, 317). Both populations are
CD45+Lin−(CD3/CD19/CD56)HLA-DR+CD11c+CD14− but
differ in the level of HLA-DR and CD11c expression. That is,
resident cDCs are HLA-DRintCD11chi while migratory cDCs
are HLA-DRhiCD11cint (Figure 3D). In contrast to lymphoid
organs lacking afferent lymphatic vessels, such as the spleen and
tonsils, where resident cDCs represent the vast majority (∼98%)
of the cDC fraction, resident cDCs represent 50 to 90% of total
cDCs in draining LNs (135, 143).

Phenotype and Frequency of mLN cDCs
Both resident and migratory cDCs have been identified in mLNs
of control individuals, but the percentage of each differs between
studies (132, 135, 318) (Table 2). Indeed, Magnusson et al.

TABLE 2 | Characteristics of human mLN cDCs during homeostasis and IBD.

Reference (318) (132) (135)

“Type” of

patients

Colorectal

cancer

CD and

UC

Bladder

reconstruction

CD and

UC

Deceased

organ

donors

Number of

subjects

3 3 and 3 4 10 and 5 30

Intestinal

region

colon Ileum and

colon

Ileum Ileum

and

colon

Unspecified

Migratory:

resident cDC

ratio

1:1 1:1 7:1 1:1 1:5

cDC2/cDC1

ratio among

resident cDCs

n.a 2:1 4:1 3:1

cDC2/cDC1

ratio among

migratory

cDCs

n.a 4:1 6:1 20:1

observed a 7:1 migratory: resident cDC ratio in ileal mLNs
(132), while Sakuraba et al. reported a 1:1 ratio in colonic
mLNs (318) (Table 2). Recently Granot et al. found a 1:5 ratio
in mLNs from unspecified intestinal regions (135) (Table 2).
These discrepancies could be due to several reasons such as
flow cytometry gating strategies or the “type” of control patients
(Table 2). Thus, so far, available data do not allow a clear picture
regarding the migratory:resident cDC ratio in mLNs during
homeostasis. Regarding cDC subsets, Granot et al. found that
cDC1 and cDC2 represent 0.05 and 0.1% of CD45+ cells in
mLNs, respectively (135). More precisely, they observed a 3:1
cDC2/cDC1 ratio among resident cDCs while a 20:1 cDC2/cDC1
ratio among migratory cDCs (135) (Table 2). Magnusson et al.
also showed a higher cDC2/cDC1 ratio among migratory cDCs
compared to resident cDCs (132), even if it was not in the same
range as that of Granot et al. (Table 2). Nevertheless, it seems
that cDC2 represent the major subset of migratory cDCs in
human mLNs (Figure 3D). However, migratory cDC1 may still
go unnoticed by flow cytometry analysis if they downregulated
their markers upon migration or/and die shortly after reaching
mLNs (316). Thus, it remains to be determined if there is an
imbalance between cDC2 and cDC1 migration per se to the
mLNs, or if the proportional differences in mLNs simply reflects
the relative frequencies that already exist in the intestinal mucosa.

Function of mLN cDCs
First, contrary to dogma, Sakuraba et al. showed that resident
and migratory cDCs induce the same release of IFN-γ, IL-4,
and IL-10 by naïve CD4+ T cells (318). Regarding functional
assays on cDC subsets, Jaensson et al. showed that CD103+ cDCs,
which represented around 30% of cDCs in mLNs, were more
mature than CD103− cDCs, as judged by expression of CD40 and
CD83 (311). In addition, CD103+ cDCs seem more inclined to
immunosuppressive effects and induce more naïve CD4+ T cell
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polarization toward Tregs (319, 320). However, concerning RA
activity, which is considered to be involved in Treg polarization
in intestinal mucosa as discussed above, Sato et al. showed that
neither human mLN CD103+ cDCs nor CD103− cDCs have
ex vivo ALDH activity at basal state (321). This contrasts data
from mice (309, 322). In addition, after ex vivo stimulation with
GM-CSF, RA, and Vitamin D3, CD103− cDCs had more ALDH
activity than CD103+ cDCs (321). Thus, as it has been shown
in mouse skin-draining LN cDCs (323), CD103 expression does
not constitute a marker for RA-producing human mLN cDCs.
Thus, even if mLN CD103+ cDCs seem more tolerogenic than
CD103− cDCs, the mechanisms for this are unknown. Moreover,
analyzes need to be performed on cDC subsets delineated with
more robust phenotypic markers.

Conventional Dendritic Cells in Mesenteric
Lymph Nodes During IBD
Phenotype and Frequency of mLN cDCs
Concerning themigratory: resident cDC ratio inmLNs, Sakuraba
et al. reported no difference between controls and IBD patients,
which was 1:1 in both groups (318) (Table 2). In contrast,
Magnusson et al. showed that this ratio decreased from 7:1 to
1:1 (132) (Table 2). Regarding cDC subsets, it has been shown
that the cDC2/cDC1 ratio, among both resident and migratory
cDCs, tends to increase in mLNs of IBD patients (132) (Table 2).
Additional work is needed to clarify the migratory: resident
cDC ratio and the cDC2/cDC1 ratio between controls and IBD
patients, as well as to understand the significance of any revealed
differences and themechanisms driving ratio alterations in health
vs. IBD.

Function of mLN cDCs
Sakuraba et al. showed that total mLN cDCs from IBD patients
release little IL-12, IL-23, and IL-10 with or without LPS
treatment ex vivo (318). However, in response to Enterococcus
faecalis extract, the release of these cytokines increased in
both Crohn’s disease and UC patients (318). MLN cDCs from
Crohn’s patients induced more Th1 but similar Th2, Th17,
and Treg polarization from naïve CD4+ T cells compared to
those from controls or UC patients (318) (Figure 2, dotted
square lower right). Regarding mLN CD103+ and CD103−

cDCs, there was no difference in CCR9 and α4β7 induction
on CD8+ T cells (311) or in ALDH activity (321) between
cells from Crohn’s patients compared to those from controls.
In summary, much work remains to decipher the function of
the cDC network, including the role of bona fide cDC1 and
cDC2 subsets identified using robust markers, in mLNs during
homeostasis and IBD pathogenesis.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

What Is the Current Status of Human
Intestinal MNP Studies?
Despite the recent advances that have furthered our
understanding of human intestinal MNPs, in both homeostasis

and IBD, many important questions remain. In particular,
intestinal MNP subsets seem to have both overlapping and
distinct functional abilities, and unraveling this complexity is
definitely a challenge. This is exemplified by the absence of a
clear picture of T cell skewing capacities of MNP subsets despite
experimental efforts. Part of the difficulty in understanding
MNP function may be the spectrum of MNP subsets, which can
complicate comparison of data from different research groups
and lead to discrepancies (45, 261, 324, 325). Moreover, intestinal
MNP regulation is complex and influenced by other immune
cells, epithelial cells, and stromal cells (263, 274, 275, 326), as
well as microbiota and metabolic components (17, 327, 328).
Nevertheless, it is clear that the increase of immature Mfs
and activated cDCs play a major role in IBD pathogenesis
given their production of inflammatory cytokines/chemokines
and their activation of stromal cells promoting their own
recruitment and perpetuating an inflammatory cycle that leads
to intestinal damage.

Can We Improve Conventional Strategies
to Treat IBD?
Therapeutics for IBD that suppress intestinal inflammation by
cytokine blockade have been used for some time (329), and
ongoing testing of new drugs that target cytokines supports that
this treatment avenue will remain viable (11, 330, 331). However,
important questions remain. For example, do robust biomarkers
exist to predict efficacy prior to initiating a treatment? What are
the prospects of developing predictive biomarkers for existing
therapies where they are lacking, and for new therapies as they
enter the clinic? Will we be able to screen patients and stratify
them for appropriate therapies?

The most significant breakthrough thus far in treating
IBD, and is perhaps the classic example of suppressing a
pro-inflammatory cytokine, is anti-TNF treatment. However,
neutralizing TNF by no means helps all patients, as 30% of
patients do not respond 1 year after treatment (332). Moreover,
most of strategies targeting single effector cytokines in IBD
have been disappointing in clinical trials (333), reinforcing the
complexity and heterogeneity of IBD. Indeed, as many types of
intestinal cells produce a wide range of effector cytokines, it is
not surprising that it may be necessary to simultaneously target
multiple cytokines to effectively suppress intestinal pathology.
This is supported by positive effects of concomitant blockade
of IL-12 and IL-23 using a monoclonal antibody against the
IL-12p40 subunit (11, 330, 331, 333–339).

In addition to strategies that neutralize pro-inflammatory
cytokines, an alternate approach has been to promote anti-
inflammatory responses through application of cytokines such
as IL-2, IL-10, IL-22, or TGF- β1 (11, 331, 336). Although these
have been promising to some extent in animal models, they
have not undergone rigorous clinical trials. For example, directly
targeting TGF-β1 could be difficult given its multiple functions
that distinctly influence the disease; nevertheless, recent clinical
studies showed the efficacy of TGF-β signal restoration in
IBD (307, 340, 341). Moreover, promoting intestinal repair
through IL-22Fc could be another way to reduce burden in IBD
patients (342).
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One more pillar in IBD therapy is blocking immune cell
trafficking molecules, such as α4β7 and MadCAM-1, as a general
way to prevent influx of potentially pathogenic cells into the
intestine. This approach has shown promise in experimental
models but has had limited success in treating IBD patients
(279, 331, 343). Nonetheless, etrolizumab anti-β7, which blocks
both α4β7/MAdCAM-1 and αEβ7/E-cadherin interaction, is
currently under evaluation in a phase III trial (344, 345). Another
interesting way could be to do the opposite. Indeed, activating
the integrin Mac-1 (CD11b/CD18) with small-molecule agonists
inhibited immune cell recruitment by increasing their adhesion
to the inflamed endothelium, at least in mice (346, 347).
Therefore, development of therapies that target immune cell
trafficking in intestine of IBD patients is attractive.

Can Specific MNP Populations Be Targeted
to Treat IBD?
Monocytes and Macrophages
Significant data support that newly recruited monocytes
in inflamed intestinal mucosa are central to driving the
immunopathogenesis of IBD. Thus, developing treatments that
dampen the number and/or pathologic function of these cells
is an exciting avenue to pursue. Therefore, targeting the CCR2-
CCL2/CCL7 axis could be one possibility to block monocyte
recruitment to the intestine (263, 348). However, this could also
inhibit their recruitment to other tissues, thus inducing side
effects. Additionally, an overall lack of intestinal Mfs would likely
increase susceptibility to infections as well as suppress benefits
of their tissue repair activity (349, 350). The potential risks
associated with this type of immunotherapy necessitate careful
monitoring programs.

Other approaches are to decrease inflammatory programs in
intestinal Mfs. One possibility among other examples reviewed
previously (11, 325) could be the inflammation-amplifying
TREM-1 receptor expressed by Mfs (249–251). Indeed, it has
been shown that TREM-1 plays a role in initial signaling toward
an inflammatory state of newly recruited monocytes in a mouse
model of small intestine inflammation (351), and inhibition
of TREM-1/CLEC5A pathways reduced intestinal inflammation
during colitis (254, 352). In humans, TREM-1+ Mfs are increased
in IBD patients and its engagement enhanced pro-inflammatory
cytokine secretion while a TREM-1 antagonist dampened it
(254, 255). Finally, Verstockt et al. have shown that low TREM-1
expression in both whole blood and intestinal mucosa can predict
anti-TNF therapy responders (353, 354). Thus, TREM-1 could
be a potential biomarker for predicting the effect of anti-TNF
therapy and, secondly, blocking TREM-1 could be an attractive
target for IBD treatment.

Other ways to improve intestinal homeostasis could be to
promote anti-inflammatory and pro-resolving functions in Mfs.
This could be achieved, for example, by enhancing negative
regulation of TLR signaling and silent clearance of apoptotic
cells (33, 355–359), as well as by augmenting IL-10 receptor
signaling (360–362). To note, thanks to their high phagocytic
capacity, targeting intestinal Mfs could be facilitated by “delivery
systems” such as nanomaterials and biomaterials (363), as has
been shown in mouse model of organ transplantation (364).

Finally, reprogramming of Mf using metabolites could become
a promising approach to dampen intestinal inflammation. For
instance, the short-chain fatty acid n-butyrate (365, 366) and
itaconate (327, 367) induce anti-inflammatory program in Mfs,
which could represent an opportunity to treat IBD (368).

Conventional Dendritic Cells
In view of the data from preclinical models of IBD supporting
a role of cDCs in intestinal inflammation (11, 45), it is
appealing to speculate that selectively targeting cDCs could
be a treatment strategy. However, the main function of cDCs
is in draining lymph nodes where they influence T cell
skewing and imprint tissue homing properties (317). Therapeutic
approaches targeting cDC function in IBD would optimally
influence cDC function, preferably specifically in mLNs, which
is challenging but potentially possible (369). However, intestinal
cDCs rapidly respond to environmental cues, including dietary
changes and pathogen exposure, suggesting their environmental
responsiveness could be exploited to influence their function.
They also produce and respond to key cytokines implicated
in IBD pathogenesis, and other drug-sensitive pathways that
can potentially be exploited to modulate cDC function for
therapeutic approaches also exist (11). This could include
prevention of cDC activation by blockade of activating
and/or survival signals, interference with intracellular signaling
pathways, neutralization of effector cytokines they produce, or
perturbation of cDC trafficking to target organs, which in the case
of IBD is the intestinal mucosa and mLNs. Important questions
essentially unexplored are the effect of existing treatments on
cDC number and cDC subset ratio, and if these are disease-
relevant, as well as cDC function, which likely has implications
on tipping the balance from health to disease.

CONCLUSION

To conclude, advancing our understanding of the extended
family of MNPs and dissecting their interactions with other cells
comprising the networks that drive IBD is crucial to develop
additional strategies to alleviate the chronic inflammation that
underlies this debilitating disease. Indeed, recent publications
using multi-dimensional analyses revealed cellular networks,
including MNP subsets, involved in IBD pathogenesis, providing
a platform for future therapeutic development. Finally, better
characterization of pathophysiology in subgroups of IBD patients
and developing combined immunotherapies for stratified, or
possibly personalized, strategies is required to limit disease
progression and develop new treatments for patients where
current therapies are ineffective.
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