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Bivalves are widespread in coastal environments subjected to a wide range of

environmental fluctuations: however, the rapidly occurring changes due to several

anthropogenic factors can represent a significant threat to bivalve immunity. The

mussel Mytilus spp. has extremely powerful immune defenses toward different potential

pathogens and contaminant stressors. In particular, the mussel immune system

represents a significant target for different types of nanoparticles (NPs), including

amino-modified nanopolystyrene (PS-NH2) as a model of nanoplastics. In this work, the

effects of repeated exposure to PS-NH2 on immune responses ofMytilus galloprovincialis

were investigated after a first exposure (10 µg/L; 24 h), followed by a resting period

(72-h depuration) and a second exposure (10 µg/L; 24 h). Functional parameters

were measured in hemocytes, serum, and whole hemolymph samples. In hemocytes,

transcription of selected genes involved in proliferation/apoptosis and immune response

was evaluated by qPCR. First exposure to PS-NH2 significantly affected hemocyte

mitochondrial and lysosomal parameters, serum lysozyme activity, and transcription of

proliferation/apoptosis markers; significant upregulation of extrapallial protein precursor

(EPp) and downregulation of lysozyme and mytilin B were observed. The results of

functional hemocyte parameters indicate the occurrence of stress conditions that did not

however result in changes in the overall bactericidal activity. After the second exposure,

a shift in hemocyte subpopulations, together with reestablishment of basal functional

parameters and of proliferation/apoptotic markers, was observed. Moreover, hemolymph

bactericidal activity, as well as transcription of five out of six immune-related genes, all

codifying for secreted proteins, was significantly increased. The results indicate an overall

shift in immune parameters that may act as compensatory mechanisms to maintain

immune homeostasis after a second encounter with PS-NH2.

Keywords: mussel, innate immunity, amino modified polystyrene, nanoplastics, immune training

INTRODUCTION

Invertebrates represent more than 95% of animal diversity and are found in virtually any ecosystem,
and the different species rely on its innate immune system to adapt and survive in its ecological
niche. The mechanisms involved in “immune specificity” (sophisticated recognition systems for
a wide variety of nonself material), as well as in “immune training/priming” (the capacity to
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mount a faster and more effective response upon reexposure to a
stimulus), are therefore central to the capacity of invertebrates
to survive in diverse environments (1–5). However, the rapid
environmental changes induced by several anthropogenic factors
can represent a significant threat to invertebrate immune
defenses. This in particular applies to marine species, which
encounter challenges associated with climate changes such as
increased water temperature that may favor the growth of
some pathogens (6), as well as pollution caused by a number
of emerging contaminants, including nanoparticles (NPs) and
plastic debris (microplastics and nanoplastics) (7, 8).

Bivalve mollusks (mussels, oysters, and clams) are widespread
in coastal environments characterized by a wide range of
environmental fluctuations. In bivalves, both cellular and
humoral components of the immune system cooperate in the
process of recognition and elimination of microbial and other
nonself particles [reviewed in (8–10)]. Among bivalves, the
mussel Mytilus spp. is particularly resistant to infection; they are
able to cope with a large variety of potential pathogens, as well as
contaminants. Taking advantage of the robust immune defenses
of mussels, they have been employed as a model organism for
studying the effects of different types of NPs (11–14).

Nanoplastics can be derived from fragmentation of
microplastics and larger plastic debris (15–17). Amino-modified
nanopolystyrene (PS-NH2) has been recently used as a model to
study the effects of nanoplastics on marine invertebrates (18–23).
The effects of PS-NH2 (50 nm) have been investigated onMytilus
galloprovincialis hemocytes in vitro (24 and references quoted
therein). The results showed lysosomal stress and activation of
immune parameters [lysozyme release, extracellular reactive
oxygen species (ROS), and NO production]. Moreover, the
formation of a stable biomolecular corona around PS-NH2 was
identified in hemolymph serum (HS), whose unique component
was represented by the extrapallial protein precursor (EPp),
an immune-related, cation binding protein (24). The results
underlined that the in vitro immunomodulatory properties
of PS-NH2 were mediated by specific interactions with both
humoral and cellular components of the mussel immune system.

In this work, the in vivo effects of PS-NH2 on the immune
function of M. galloprovincialis were investigated. In particular,
we evaluated the impact of nanoplastics on immune parameters
after an acute exposure event to PS-NH2 (10 µg/L, 24 h; Expo1),
the possible recovery after 72-h depuration (Resting), and the
response to a second acute exposure (10 µg/L, 24 h; Expo2).
Controls (unexposed mussels) were run in parallel. At each
time point, several functional parameters were measured in
hemocytes, serum, and whole hemolymph from exposed and
control mussels. In hemocytes, transcription of genes related to
proliferation and apoptosis, as well as a set of immune-related
genes, was evaluated by qPCR.

MATERIALS AND METHODS

Characterization of PS-NH2
Primary characterization of 50-nm nonfluorescent amino
polystyrene NPs PS-NH2, purchased from Bangs Laboratories
Inc. (Fishers, IN, USA), and analysis of their behavior in different

aqueous media were carried out by a combination of analytical
techniques as previously described (18, 24, 25). Average size,
polydispersity index, and zeta potential of PS-NH2 suspensions
(50 µg/L) in Milli-Q water, artificial seawater (ASW), and
Mytilus hemolymph serum (HS) were evaluated by dynamic light
scattering (DLS) (18, 24, 25). Since agglomeration and surface
charge in different media were shown to play a key role in
determining the interactions of this type of PS-NH2 with mussel
hemocytes, these results are summarized in Table S1.

Animals and Treatments
Mussels (M. galloprovincialis Lam.), 4–5 cm long, purchased
from an aquaculture farm (Arborea, OR, Italy) in July 2018, were
transferred to the laboratory and acclimatized for 24 h in static
tanks containing aerated ASW, pH 7.9–8.1, 36 ppt salinity (1 L
per animal), at 16± 1◦C.

Stock suspension of PS-NH2 (25 mg/ml in water) was suitably
diluted in Milli-Q water, quickly vortexed but not sonicated,
and immediately spiked in the tanks in order to reach the
final desired concentration of 10 µg/L per mussel (nominal
concentration level).

Mussels were first exposed to PS-NH2 (Expo1) at 10 µg/L for
24 h, followed by depuration in clean ASW for 72 h (Resting)
and by a second exposure to PS-NH2 (10 µg/L for 24 h) (Expo
2). A parallel group of control (untreated) mussels was kept
in clean ASW throughout the exposure time (see Figure 1 for
details of the experimental setup). Seawater was changed daily.
Animals were not fed during the experiments. At each time point
(Expo1, Resting, and Expo2), hemolymph was extracted from the
posterior adductor muscle of five mussels (from both control and
exposed conditions), filtered through sterile gauze, and pooled
in tubes at 16◦C. Four independent experiments were performed
(n = 4). Aliquots of whole hemolymph (from 50 to 200 µl,
depending on the assay) were utilized for determination of
different parameters. The remaining hemolymphwas centrifuged
at 100 × g for 10 min at 4◦C, and the resulting supernatant
was utilized for determination of serum lysozyme activity. The
hemocyte pellet was resuspended in TRIzol reagent (Sigma,
Milan, Italy) and stored at −80◦C for gene expression analysis.
All measurements were performed in triplicate.

Hemocyte Counts
Flow cytometry (FC) was utilized to determine total hemocyte
counts (THCs) and various cell types in mussel hemolymph from
control and PS-NH2-exposed mussels in different experimental
conditions, as previously described (26). Aliquots (50 µl) from
the fresh hemocyte suspensions were added to 250 µl of PBS-
NaCl (2 mM KH2HPO4, 10 mM Na2HPO4, 3 mM KCl, and
500 mM NaCl in distilled water, pH 7.4). Samples were analyzed
by flow cytometry (FACSCalibur, BD Becton Dickinson, San Jose,
CA, USA). Data acquisition and analysis were performedwith the
BDCellQuest software using the parameters of relative size (FSC)
and granularity (SSC). Counting beads (DakoCytoCountTM)
were added in a volume of 50 µl to each tube. Five gates were
set up to identify cell subpopulations, as well as spermatozoa,
cell debris, and aggregates, which were not considered for further
analysis. A representative 2D plot of control samples showing the
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FIGURE 1 | Schematic representation of the in vivo experiment on Mytilus galloprovincialis upon repeated exposure to PS-NH2 used in the present study. First

exposure (Expo1): PS-NH2, 10 µg/L, 24 h; resting period: clean ASW, 72 h; and second exposure (Expo2): PS-NH2, 10 µg/L, 24 h. A control group of unexposed

mussels was kept in clean ASW for the whole experiment time. For both conditions (control and PS-NH2-exposed mussels), sampling times are indicated (black

arrows). Four independent experiments were performed (n = 4).

three hemocyte subpopulations [R1: hyalinocytes (HY), R2: small
granulocytes (SG), and R3: large granulocytes (LG)] is reported
in Figure S1. Hemocyte viability was checked by propidium
iodide (PI) staining as previously described (26), indicating
>95% cell viability in samples from all experimental conditions
(not shown).

Evaluation of Hemocyte Functional
Parameters
Lysosomal membrane stability (LMS) was evaluated by the
neutral red retention time (NRRT) assay as previously described
(27–29). Hemocyte monolayers on glass slides were incubated
with 20 µl of neutral red (NR) solution (final concentration
40 µg/ml from a stock solution of NR 40 mg/ml in DMSO);
after 15 min, excess dye was washed out and 20 µl of ASW
was added. Every 15 min, slides were examined under an optical
microscope, and the percentage of cells showing loss of the dye
from lysosomes in each field was evaluated. For each time point,
10 fields were randomly observed, each containing 8–10 cells.
The end point of the assay was defined as the time at which
50% of the cells showed signs of lysosomal leaking (the cytosol
becoming red and the cells being rounded). In control mussels,
no significant changes in LMS were observed throughout the
experiment, with average high NRRT values of >120 min. Data
(n= 4) are expressed as percentage of control values.

For confocal laser scanning microscopy (CLSM) analyses,
hemocytes were fixed with paraformaldehyde at 4% for 10 min,
washed two times for 2 min with TBS (0.05 M Tris-HCl buffer,
pH 7.8), and permeabilized with 0.05% NP-40 (Nonidet-40)
for 10 min as previously described (25, 30, 31). Mitochondrial
membrane potential (MMP, 1ψm) was evaluated by the
fluorescent dye tetramethylrhodamine ethyl ester perchlorate
(TMRE). TMRE is a quantitative marker for the maintenance of
the MMP, and it is accumulated within the mitochondrial matrix
in accordance to the Nernst equation. TMRE exclusively stains
the mitochondria and is not retained in cells upon collapse of the
1ψm. Hemocytes were incubated with 40 nM TMRE for 10 min
and observed by confocal microscopy.

Dynamic changes and functions of the lysosomes were
evaluated in hemocytes loaded with 125 nM of LysoSensorTM

Green DND-189 for 45 min. The LysoSensorTM dye accumulates
inside acidic vesicles and exhibits an increase in fluorescence
intensity which is proportional to acidification (32).

Fluorescence of TMRE (excitation 568 nm, emission 590–
630 nm) and LysoSensorTM Green DND-189 (excitation 443 nm,
emission 505 nm) was detected using a Leica TCS SP5 confocal
setup mounted on a Leica DMI6000 CS inverted microscope
(Leica Microsystems, Heidelberg, Germany) using a 63 × 1.4
oil objective (HCX PL APO 63.0-1.40 OIL UV). Images were
analyzed by the Leica Application Suite Advanced Fluorescence
(LASAF) and ImageJ Software (Wayne Rasband, Bethesda, MA).
TMRE and LysoSensor fluorescence intensities were measured as
integrated fluorescence density (arbitrary units) per cell area in at
least 12 different fields of each sample. Data (n = 4) are reported
as percentage of control values.

Serum Lysozyme Activity
Lysozyme activity in aliquots of hemolymph serum was
determined spectrophotometrically at 450 nm utilizing
Micrococcus lysodeikticus as previously described (29). Hen
egg white (HEW) Lyso was used as a concentration reference,
and lysozyme activity was expressed as HEW Lyso equivalents
(U/ml/mg protein). Protein content was determined according
to the bicinchoninic acid (BCA) method, using bovine serum
albumin (BSA) as a standard. In control mussels, no significant
changes in serum lysozyme activity were observed throughout
the experiment, with overall average values of 50 ± 6 U/ml/mg
of protein. Data (n = 4) are expressed as percentage of
control values.

Bacterial Cultures and Evaluation of
Bactericidal Activity of Whole Hemolymph
Samples
The sensitivity of Vibrio aestuarianus 01/032 to the bactericidal
activity of mussel hemolymph was evaluated in vitro as
previously described (33, 34). V. aestuarianus 01/032 was
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cultured in Zobell medium at 20◦C under static conditions;
after overnight growth, cells were harvested by centrifugation
(4,500× g, 10 min), washed three times with phosphate-buffered
saline (PBS-NaCl: 0.1 M KH2PO4, 0.1 M K2HPO4, and 0.15 M
NaCl, pH 7.2–7.4), and resuspended to obtain a concentration
about 109 CFU/ml (determined spectrophotometrically
as Abs600 = 1).

Aliquots (1 ml) of whole hemolymph were incubated with
a bacterial suspension of V. aestuarianus 01/032 containing
1 × 109 CFU/ml, diluted in order to obtain a nominal
concentration of 4 × 107 CFU/ml, at 16◦C for different periods
of time. Triplicate preparations were made for each sampling
time. Immediately after the inoculum (T = 0) and after 60
and 90 min of incubation, aliquots (0.1 ml) of hemolymph
samples were placed in a tube containing 9.9 ml of ASW
supplemented with 0.05% Triton X-100 and vortexed for 10 s
to lyse the hemocytes. Tenfold serial dilutions in ASW of
the lysate were plated onto Luria-Bertani (LB) agar 3% NaCl.
After overnight incubation at 24◦C, the number of colony-
forming units (CFUs) was determined. Percentages of killing
were compared with values obtained at zero time (n = 4). The
number of CFUs in control samples never exceeded 0.1% of those
of exposed samples.

RNA Extraction and qPCR
Total RNA was extracted from hemocytes obtained from each
condition (n = 4) using TRIzol reagent (Sigma, Milan, Italy)
following the manufacturer’s protocol. RNA concentration and
quality were verified using the Qubit RNA assay (Thermo
Fisher, Milan, Italy) and by electrophoresis using a 1.5% agarose
gel under denaturing conditions. A first-strand cDNA for
each sample was synthesized from 1 µg of total RNA (29).
Gene transcription was evaluated in four independent RNA
samples. Primer pairs employed for qPCR analysis were used as
reported in previous studies (Table S2). qPCRs were performed
in triplicate in a final volume of 15 µl containing 7.5 µl
iTaq universal master mix with ROX (Bio-Rad Laboratories,
Milan, Italy), 5 µl diluted cDNA, and 0.3 µM specific primers
(Table S2). A control lacking a cDNA template (no-template)
was included in the qPCR analysis to determine the specificity
of target cDNA amplification. Amplifications were performed
in a CFX96TM Real-Time PCR System (Bio-Rad Italy, Segrate,
Milan) using a standard “fast mode” thermal protocol. For
each target mRNA, melting curves were utilized to verify the
specificity of the amplified products and the absence of artifacts.
Relative quantification of each mRNA transcript was calculated
by the comparative CT method (35). Expression of the genes of
interest was normalized using the expression levels of EF-α1 as a
reference gene, and the normalized expression was then reported
as relative quantity of mRNA (relative expression) with respect to
control samples.

Statistical Analysis
Data are the mean ± SD of four independent experiments
(n = 4), with each assay performed in triplicate. Data of
functional parameters and hemocyte counts were analyzed by
two-way ANOVA followed by Tukey’s test at 95% confidence

FIGURE 2 | Effect of PS-NH2 on hemocyte subpopulations in Mytilus

galloprovincialis hemolymph after first (Expo1) and second exposure (Expo2).

HY = hyalinocytes, SG = small granulocytes, LG = large granulocytes. Data,

expressed as percent values with respect to each control group, are the

mean ± SD of four experiments. *all Expo. versus controls; #Expo1. vs.

Expo2. P ≤ 0.05 (ANOVA followed by Tukey’s test).

intervals (P ≤ 0.05). For bactericidal activity and gene
transcription, statistical differences were evaluated by the Mann–
Whitney U test (P < 0.05). All statistical calculations were
performed using the PRISM 7 GraphPad software.

RESULTS

Flow Cytometry
In control hemolymph, THCs were about 1.2± 0.3× 106/ml. No
significant changes were observed in control samples throughout
the experiments; moreover, THCs were unaffected by either
Expo1 or Expo2 to PS-NH2 (not shown). Based on particle size
and granularity, three hemocyte subpopulations were identified,
namely, HY, SG, and LG (Figure S1) as previously described
(26, 36), with the sum of SG+ LG accounting for more than 80%
of total hemocytes in all experimental conditions. After Expo1
to PS-NH2, no significant changes in hemocyte subpopulations
were observed (Figure 2). However, after Expo2, a large increase
was observed in the percentage of SG (about+100% with respect
to controls and Expo1; P ≤ 0.05); in contrast, the proportion
of LG was significantly decreased (about −40% with respect
to controls and Expo1). The percentage of HY was similar to
controls but significantly higher (+30%; P ≤ 0.05) than that
observed after Expo1 to PS-NH2.

Measurement of Hemocyte Mitochondrial
and Lysosomal Parameters by CLSM
The effects of PS-NH2 on hemocyte mitochondria were evaluated
by cell staining with TMRE, an indicator of MMP 1ψm, and
representative CLSM images are reported in Figure 3, together
with the quantification of the TMRE fluorescence signal. After
Expo1, a net decrease in 1ψm was observed (Figures 3A,B), as
shown by the significant reduction in TMRE fluorescence (−50%
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FIGURE 3 | Confocal fluorescence microscopy: effects of exposure of Mytilus

galloprovincialis to PS-NH2 on hemocyte mitochondrial membrane potential

(19m) evaluated by TMRE fluorescence. Hemocytes from control and exposed

mussels were loaded with TMRE, and representative images are reported (568

excitation/590–630 emission). Expo1: (A) Control and (B) PS-NH2 exposed.

Expo2: (C) Control and (D) PS-NH2 exposed. (E) Quantification of the TMRE

fluorescence signal in hemocytes from control and PS-NH2-exposed mussels

at each exposure. Data, expressed as percentage of integrated fluorescence

density/cell area with respect to each control group, are the mean ± SD of four

experiments. *P ≤ 0.05 (ANOVA followed by Tukey’s test). Scale bars: 25 µm.

with respect to control; P ≤ 0.05; Figure 3E). However, upon
Expo2, no differences in fluorescence were recorded with respect
to controls (Figures 3C,D).

Similarly, the effect on hemocyte lysosomal compartments
was evaluated using the fluorescent dye LysoSensorTM,
which becomes more fluorescent in acidic environments,
and representative images are reported in Figure 4. Expo1
induced a clear increase in the LysoSensor signal (Figures 4A,B)
(+186% with respect to controls; P ≤ 0.05; Figure 4E), whereas
no effects were observed after Expo2 (Figures 4C,D).

Functional Immune Parameters
The effects of PS-NH2 exposure on hemocyte and hemolymph
immune functional parameters were evaluated, and the results
are reported in Figure 5. LMS was first evaluated as a functional
marker of the lysosomal function related to cellular stress
and immune response. Expo1 resulted in a significant drop

FIGURE 4 | Confocal fluorescence microscopy: effects of exposure of Mytilus

galloprovincialis to PS-NH2 on hemocyte lysosomal compartment evaluated

by LysoSensorTM fluorescence and representative images (443 nm

excitation/505 nm emission) are reported. Upper panel: hemocytes after

Expo1, control (A) and PS-NH2 exposed (B); lower panel: hemocytes after

Expo2, control (C) and PS-NH2 exposed (D). (E) Quantification of the

LysoSensor fluorescence signal in hemocytes from control and

PS-NH2-exposed mussels after each exposure. Data, expressed as

percentage of integrated fluorescence density/cell area with respect to each

control group, are the mean ± SD of four experiments. *P ≤ 0.05 (ANOVA

followed by Tukey’s test). Scale bars: 25 µm.

in LMS (about −50% with respect to control, P ≤ 0.05).
However, after Expo2, a smaller effect was observed (−30%
with respect to control, P ≤ 0.05) (Figure 5A). Expo1
also induced a large increase in serum lysozyme activity
(+150% with respect to controls, P ≤ 0.05) (Figure 5B),
whereas no effects were observed after Expo2. In contrast,
other immune parameters (phagocytic activity and extracellular
ROS production) were not affected in any experimental
condition (Figure S2). In order to assess possible recovery
of functional parameters, hemocyte LMS, and 1ψm and
hemolymph lysozyme activity were evaluated after a 72-h
resting period, as representative parameters of hemocytes and
hemolymph serum, respectively. All parameters showed full
recovery after depuration (Figure S3).

The overall immune function was evaluated in whole
hemolymph samples challenged in vitro with V. aestuarianus
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FIGURE 5 | Effects of PS-NH2 exposure (10 µg/L) on Mytilus galloprovincialis hemocytes. (A) Lysosomal membrane stability (LMS); (B) serum lysozyme activity. Data,

expressed as percent values with each respective control group, are the mean ± SD of four experiments. *all Expo. vs. controls; #Expo1. vs. Expo.; P ≤ 0.05

(ANOVA followed by Tukey’s test).

FIGURE 6 | Effects of PS-NH2 exposure on Mytilus galloprovincialis hemolymph bactericidal activity. In vitro bactericidal activity toward Vibrio aestuarianus 01/032 of

whole hemolymph samples from control (dotted line) and PS-NH2-exposed mussels (black line), (A) after Expo1 and (B) after Expo2. Hemolymph was incubated with

V. aestuarianus for 60 and 90 min as described in section Materials and Methods. Percentages of killing were determined in comparison to values obtained at zero

time. Data, expressed as percent values with each respective control group, are the mean ± SD of four experiments (*P < 0.05) (Mann–Whitney’s U test).

01/032 for 60 and 90 min. Data, expressed as percentage of
killing activity, are presented in Figure 6. In control samples of
Expo1, bactericidal activity at 60 min (Figure 6A) was higher
with respect to that of controls of Expo2 (Figure 6B), whereas
similar values were observed at 90 min; however, all data fell
within the range of killing of this vibrio strain by mussel
hemocytes (34). The first exposure to PS-NH2 did not affect
the bactericidal activity toward V. aestuarianus 01/032 with
respect to controls at both times of incubation (Figure 6A).
However, after Expo2, a significant increase was observed in
samples from PS-NH2-exposed mussels at both 60 and 90 min
(+51% and +56%, respectively, P ≤ 0.05) compared to control
samples (Figure 6B).When the bactericidal activity of hemocytes
alone (in the presence of ASW and absence of hemolymph
serum) was evaluated, no killing of V. aestuarianus 01/032
was observed in any experimental condition as previously
described (34).

Effects on Hemocyte Gene Expression
Transcription of a set of selected genes involved in cell
proliferation and apoptosis [proliferating cell nuclear antigen
(PCNA) and tumor suppression protein 53 (p53), respectively]
and in immune response [Extrapallial protein precursor (EPp),
Lyso, Toll-like receptor i isoform (TLR-i), mytilin B (MytB),
myticin B (MytC), and fibrinogen-related protein (FREP)]
was evaluated by qPCR. Data on relative expression of each
transcript (fold changes with respect to control) are reported in
Figures 7A,B.

The results show that Expo1 induced a significant decrease in
mRNA levels for both PCNA and p53 (about −50% with respect
to controls, P ≤ 0.05). In contrast, after Expo2, transcription of
both genes was similar in hemocytes from control and treated
samples. Expo1 significantly affected transcription of three out
of six immune-related genes (Figure 7A). The expression of
EPp was upregulated (+88%, P ≤ 0.05), whereas that of Lyso
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FIGURE 7 | Effect of PS-NH2 exposure on gene transcription in Mytilus galloprovincialis hemocytes evaluated by qPCR. (A) Relative expression of proliferating cell

nuclear antigen (PCNA), tumor suppression protein 53 (p53), extrapallial protein precursor (EPp), lysozyme (Lyso), Toll-like receptor i isoform (TLR-i), mytilin B (MytB),

myticin B (MytC), and fibrinogen-related proteins (FREPs) after Expo1 (white bars) and Expo2 (gray bars). Data, reported as relative expression with respect to each

control group, are the mean ± SD of four independent RNA samples. *all Expo. vs. controls; #Expo1. vs. Expo2. P < 0.05 (Mann–Whitney’s U test). (B) Heatmap of

eight differentially expressed genes was generated in each sample.

and MytB was downregulated (−45% and −51%, respectively,
P ≤ 0.05). After Expo2, a distinct gene expression pattern was
observed. Five genes were upregulated with respect to controls:
EPp (+107%, P≤ 0.05), Lyso (+54%, P≤ 0.05), the antimicrobial
peptides (AMPs) MytB and MytC (+60 and +46%, respectively;
P ≤ 0.05), and FREP (+78%, P ≤ 0.05). TLR-i expression was
unaffected in either exposure condition. Data are summarized in
the heatmap reported in Figure 7B.

DISCUSSION

Previous data showed that short-term in vitro exposure
to PS-NH2 significantly affected immune parameters of
M. galloprovincialis hemocytes (24, 25). In the present study,
the in vivo effects of PS-NH2 were evaluated. The main aims of
the work were (i) to gather information on the impact of acute
(24 h) exposure to PS-NH2 on functional immune parameters;
(ii) to investigate the responses induced by repeated exposure
to PS-NH2 on the overall immune function; and (iii) to gain a
first insight on the possible molecular mechanisms involved by
evaluating the transcription of a set of selected genes.

The results show that Expo1 to PS-NH2 significantly affected
functional parameters of circulating hemocytes in terms of
MMP, lysosomal acidification, andmembrane destabilization and
also increased lysozyme release in the hemolymph, indicating
degranulation (Figures 3–5). No changes in THCs and hemocyte
subpopulations (Figure 2) or in hemocyte phagocytic activity
and ROS production (Figure S2) were observed. However,
transcription of PCNA and p53 was affected, suggesting
modulation of proliferation/apoptotic processes (Figure 7). The
results confirm previous in vitro data obtained with PS-NH2

(24, 25) and underline the occurrence of stress conditions in the
hemocytes, which did not however result in significant changes

in the overall hemolymph bactericidal activity. Accordingly,
after 72-h depuration, key functional parameters in hemocytes
and serum (lysosomal stability, MMP, and lysozyme activity,
respectively) showed full recovery (Figure S3). This is in line with
the observation that, in bivalve tissues, nanopolystyrene particles
of similar size are rapidly depurated within three days (20).

Upon Expo2 to PS-NH2, a distinct pattern of responses
was observed. Hemocyte MMP and lysosomal acidification, as
well as serum lysozyme activity, were similar in control and
exposed mussels (Figures 3, 4, 5B). Moreover, a significantly
smaller lysosomal membrane destabilization in hemocytes was
recorded with respect to that induced by Expo1 (Figure 5A),
corresponding to minor cellular stress (37, 38). Although THCs
were unaffected, a shift in hemocyte subpopulations was observed
(Figure 2), with a decrease in LG, which represent the fully
mature phagocytes (39, 40). This may be the result of massive cell
degranulation indicated by the large increase of lysozyme release
after Expo1. A parallel increase in the percentage of SG was
detected (Figure 2): since hemocyte subpopulations represent
the progressive maturation stages of a single cell type (39), this
indicates a maturation process of granular phagocytic cells. Such
a homeostatic process is also suggested by the complete recovery
of mRNA levels of genes involved in proliferation/apoptosis
in the whole hemocyte population. In particular, with regard
to apoptotic processes, a decrease in mitochondrial membrane
depolarization, which represents a pre-apoptotic signal, was
observed only after Expo1, and not after resting or Expo2
(Figure S3); accordingly, FC data on annexin/PI staining did not
show significant changes in different experimental conditions
(not shown).

Although phagocytosis of PS-NH2 was not evaluated,
preliminary FC data were obtained using fluorescently labeled
PS-NH2 of similar size (blue PS-NH2, 45–55 nm, Sigma Aldrich).
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This type of NPs showed the same agglomeration in exposure
media as nonfluorescent PS-NH2, as well as comparable effects
on mussel immune parameters (data not shown). The results
indicate that after Expo1, uptake of nanoplastics occurred
in about 34% of total cells (with over 90% represented by
granulocytes, SG + LG). In contrast, a much smaller uptake was
observed after Expo2 (about 7%). However, these results were
only indicative, due to the low fluorescence signal of the particles
utilized (data not shown).

On the basis of these data, though not conclusive, it is
likely that mussels are able to establish tolerance mechanisms in
immune defenses upon repeated, acute exposure to nanoplastics;
in this light, these results are in line with those recently
obtained in M. galloprovincialis after repeated, long-term
exposure to polyethylene microplastics (18 days’ first exposure;
28 days’ depuration; 18 days’ second exposure) to simulate the
temporal variability of microplastics concentrations (41). Whole-
transcriptome profiling at the tissue level revealed that, despite
the physiological impairment triggered by the first exposure to
microplastics, after the second exposure a decrease of stress-
and immune-related gene expression was observed, indicating
the establishment of compensatory mechanisms (41). It was
suggested that mussels may be able to establish a stress memory
upon microplastics exposure.

However, the results of the present work also show
that after Expo2 to nanoplastics, the bactericidal activity of
whole hemolymph was significantly increased, demonstrating a
stimulation of the overall immune capacity. When expression
of immune-related genes was evaluated, a distinct pattern was
observed after the first or second exposure to PS-NH2 (Figure 7).
Such a shift was evident for three genes that, after Expo1, showed
downregulation (Lyso and MytB) or no changes (FREP) but
that were upregulated after Expo2. Moreover, transcription of
EPp and MytC was generally upregulated in both exposure
conditions. Expression of the TLR-i was not affected in any
experimental condition. Interestingly, the five genes that were
upregulated after Expo2 to PS-NH2 codify for hemocyte-secreted
proteins: activation of the molecular machinery involved in the
synthesis and release of immune effectors may partly explain
the mechanisms underlying the stimulation of hemolymph
bactericidal activity observed upon repeated exposure to
nanoplastics. In fact, bactericidal activity of V. aestuarianus
01/032 could be observed only in the presence of hemolymph
serum, indicating a key role for soluble components as previously
described (34). However, due to the variety of secreted immune
proteins, the exact components responsible for the increase in
bactericidal activity induced by Expo2 cannot be identified. Some
of them may participate in direct bacterial killing, others in
bacterial recognition and binding. In particular, upregulation
of EPp, also known as the MgC1q6 isoform, observed at both
times of exposure, may represent a specific effect of this type
of nanoplastics. EPp, the most abundant serum protein in
M. galloprovincialis, is an acidic, histidine-rich, cation binding
glycoprotein; it has a complex and anomalous N-glycan structure
and contains a conserved C1q complement domain. Due to its
peculiar composition, EPp is involved inmultiple functions, from
shell formation to immune response (42–44). This protein has

been shown to play a key role in specific recognition of both
selected bacterial strains and NP types. EPp promotes mannose-
sensitive interactions between Mytilus hemocytes and different
bacterial strains ofV. aestuarianus andVibrio cholerae expressing
mannose-sensitive hemagglutinin (MSHA) and Escherichia coli
MG1655, carrying type 1 fimbriae, leading to activation of
the immune response (34, 45). Moreover, EPp represents the
unique protein component of the stable biomolecular corona
formed around PS-NH2 in mussel hemolymph serum, which
mediates specific recognition of this NP type by hemocytes and
consequent immune response in vitro (18, 46). The persistent
upregulation of EPp mRNA levels induced by PS-NH2 at both
exposure times may result in increased levels of the protein
in the hemolymph. Due to the multiple roles of this protein,
this would contribute to the formation of the specific EPp-PS-
NH2 corona in the hemolymph, affecting the interactions of
PS-NH2 with hemocytes and consequent responses. Moreover,
since EPp acts as a specific opsonin toward V. aestuarianus
01/032, its upregulation may lead to increased bactericidal
activity of whole hemolymph samples toward this strain.
Overall, the results indicate that mussel hemocytes are able to
mount a distinct and more efficient immune response upon
repeated exposure to PS-NH2. However, more experimental
data, including measurements of immune responses after in
vivo infection with V. aestuarianus 01/032, as well as with
other vibrios, are needed to support this hypothesis. Preliminary
data were obtained in mussels subjected to Expo1 conditions
as in the present work and then challenged in vivo for 24 h
with different vibrios. The results indicate that pre-exposure to
PS-NH2 increased the hemolymph bactericidal activity toward
V. aestuarianus 01/032, but not toward Vibrio tasmaniensis
LGP32 (not shown), suggesting a specific response to this
vibrio strain.

The concept of innate immune memory is now fairly accepted
due to accumulating evidence in literature (47, 48). Innate
immune memory can be defined as the ability of the immune
system to store or simply use the information on a previously
encountered antigen or parasite upon a secondary exposure
(1). Three main mechanisms have been identified: the first
is called recall or trained response, expressed as potentiation
(with parameters showing enhanced response/activity upon the
second exposure); the second is represented by a sustained,
unique response which corresponds to the maintenance of a high
response between exposures; and the last is characterized by an
immune shift, a change in the response observed between several
exposures (2, 3). However, evidence for epigenetic reprograming
of immune cells (i.e., histone acetylation/deacetylation and DNA
methylation) leading to changes in gene expression, which
represent the characteristic hallmark of immune training or
memory, has not been provided yet in most invertebrate groups,
including bivalve mollusks (2–4).

On the other hand, evidence for immune stimulation induced
by repeated challenge with natural pathogens is available in
clams and oysters (49–55). In the mussel M. galloprovincialis,
increased bactericidal activity was observed after in vivo and
subsequent in vitro challenge with Vibrio anguillarum (26).
Recent transcriptomics data obtained in M. galloprovincialis
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hemocytes after repeated challenge with Vibrio splendidus
demonstrated a shift from a pro-inflammatory response to
an anti-inflammatory and probably regenerative phenotype,
indicating the existence of a secondary immune response in
mussels oriented to tolerate infection (56).

Induction of innate memory mechanisms by NPs has been
recently suggested for human monocytes primed with gold
NPs (57). With the knowledge that NPs are able to modulate
and induce immune responses similarly as natural pathogens
do, in bivalves, they might at least contribute to mount
a faster and/or stronger response upon a second display.
Overall, repeated exposure of mussels to PS-NH2 resulted in
a shift in granular hemocyte subpopulations, together with
reestablishment of basal functional parameters and expression
of proliferation/apoptotic markers, stimulation of bactericidal
activity, and upregulation of immune gene transcription. These
data indicate that both tolerance and potentiation may represent
compensatory mechanisms to maintain immune homeostasis
after a second encounter with PS-NH2. Experiments are in
progress to investigate this possibility in more detail.

Bivalves express a wide range of inducible immune-related
genes codifying for extracellular recognition and effector
proteins, including lectins, peptidoglycan recognition proteins,
lipopolysaccharide and β1,3-glucan-binding proteins, FREPs,
and AMPs (58). The sequencing of the Mytilus genome reveals
a very complex organization with high heterozygosity, abundant
repetitive sequences, and extreme intraspecific sequence diversity
among individuals (58–61). This complex machinery would
be responsible for the high capacity of mussels to cope with
microbial infection and environmental stress.

The present study demonstrates that NPs differentially
stimulate the immune responses of Mytilus, and this
species could serve as a model to explore the impact of
nanoplastics on marine invertebrates, that respresents a major
environmental concern.
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