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Forkhead box (FOX) proteins are transcriptional factors that regulate various cellular

processes. This minireview provides an overview of FOXA2 functions, with a special

emphasis on the regulation airway mucus homeostasis in both healthy and diseased

lungs. FOXA2 plays crucial roles during lung morphogenesis, surfactant protein

production, goblet cell differentiation and mucin expression. In healthy airways, FOXA2

exerts a tight control over goblet cell development and mucin biosynthesis. However,

in diseased airways, microbial infections and proinflammatory responses deplete

FOXA2 expression, resulting in uncontrolled goblet cell hyperplasia and metaplasia,

mucus hypersecretion, and impaired mucociliary clearance of pathogens. Furthermore,

accumulated mucus clogs the airways and creates a niche environment for persistent

microbial colonization and infection, leading to acute exacerbation and deterioration

of pulmonary function in patients with chronic lung diseases. Various studies have

shown that FOXA2 inhibition is mediated through induction of antagonistic EGFR and

IL-13R-STAT6 signaling pathways as well as through posttranslational modifications

induced by microbial infections. An improved understanding of how bacterial pathogens

inactivate FOXA2 may pave the way for developing therapeutics that preserve the

protein’s function, which in turn, will improve the mucus status and mucociliary clearance

of pathogens, reduce microbial-mediated acute exacerbation and restore lung function

in patients with chronic lung diseases.

Keywords: chronic lung diseases, mucus homeostasis, mucociliary clearance, FOXA2, EGFR, STAT6, MUC5AC,

MUC5B

INTRODUCTION

The Forkhead (fox) genes encode evolutionarily-conserved transcriptional regulators characterized
by a winged-helix DNA-binding domain (DBD), called the forkhead box. Members of the
FOX family have divergent roles, including embryonic development, cell survival, proliferation,
differentiation, and energy homeostasis (1). Initially discovered in Drosophila melanogaster, a
mutation in the fox gene generated a homeotic transformation of foregut into head that originates
the nomenclature “forked head” (2). Over 100 FOX members have been identified, with 50 human
fox genes cataloged into 19 subgroups from FOXA to FOXS (3). The FOXA subclass was the first
discovered in mammals (4).
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STRUCTURE AND FUNCTION OF FOXA2

FOXA1, FOXA2, and FOXA3 were originally identified in rat
liver, the so-called hepatocyte nuclear factor 3 (HNF3)-α, -β,
and -γ, respectively (4). The conserved domains of FOXA2 were
originally analyzed (2), and the DBD was found to be the most
evolutionarily conserved among the FOXA members, with an
unique AKT/PKB phosphorylation site at the threonine (Thr)156
(5). The DBD of FOXA is structurally similar to H1/H5 linker
histones capable of unwinding chromatin, which enables the
recruitment of other transcriptional cofactors to the promoter
(6, 7). The C-terminus of FOXA interacts with histones H3/H4
within nucleosome to support the opening of chromatin by
the DBD (8). FOXA members regulate the expression of target
genes by displacing histones from chromatin and serving as
transcription factors at the enhancer region of the promotor
(9, 10).

MODULATION OF FOXA2 ACTIVITY BY
POST-TRANSLATIONAL MODIFICATIONS

FOXA transcription factors are abundantly expressed in liver
and regulate metabolic homeostasis (4). During hypoglycemia,
low plasma insulin activates FOXA2 to elevate the transcription
of genes encoding metabolic enzymes involved in fatty acid
oxidation and ketogenesis, supplying energy for gluconeogenesis
and maintaining brain function, respectively. However, excess
blood glucose elevates plasma insulin, which inactivates
FOXA2 and decreases the expression of enzymes involved in
gluconeogenesis (11, 12). This is supported by studies that
show inactivation of hepatic FOXA2 in hyperinsulinemic ob/ob
and db/db mice and in diet-induced obese mice (13). Insulin
promotes nuclear export of FOXA2 through AKT-mediated
phosphorylation at Thr156 (Figures 1A,B) (5). Cells expressing
the phosphorylation-deficient FOXA2-T156A are unresponsive
to insulin-induced AKT, resulting in constitutive nuclear
localization. Interestingly, DNA-binding ability of FOXA2 is not
altered by insulin and phosphorylation-deficiency, suggesting
that phosphorylation at Thr156 does not regulate transcriptional
activity. Further study indicates that in the presence of insulin,
phosphorylation at Thr156 inactivates transcriptional function
and induces nuclear exclusion of FOXA2. Nuclear export
of FOXA2 is dependent upon nuclear export factor CRM1,
which recognizes the leucin-rich NES consensus sequence
LX2,3(L/I/V/F/M)X2,3LX(L/I) within amino acids 106-111
(LSPSLS) of FOXA2 (14). In contrast, others have reported that
FOXA2 is constitutively localized to the nucleus, independent
of the metabolic conditions (15, 16). The aforementioned
discrepancies might be caused by distinct experimental
conditions, including differences in transgenic obese mouse
strains, feeding conditions, and immortalized hepatic cell lines.
Subsequently, it was revealed that FOXA2 function could be
modulated by IKKα-mediated phosphorylation on Ser107/111
(Figure 1A) (17). Both Thr156 and Ser107/111 residues are
located within the nuclear localization signal domain and the
nuclear export signal domain, respectively (Figure 1A), implying

that phosphorylation of these residues dictates subcellular
localization of FOXA2 (14).

Acetylation and deacetylation also compete to modulate
the transcriptional activity of FOXA2. Insulin induces the
SIRT1 deacetylase to deacetylate Lys259 on FOXA2 (Figure 1A),
which attenuates target gene expression and increases export
from the nuclei in hepatocytes. In contrast, glucagon induces
FOXA2 acetylation through P300 acetyltransferase, which leads
to nuclear accumulation and increased expression of target genes
(12). The acetylation-deficient FOXA2-K259R has attenuated
DNA binding ability, and is sequestered to the cytoplasm for
degradation. As discussed above, FOXA2-T156A is sequestered
in the nucleus; however, hepatic cells transfected with FOXA2-
T156A-K259R exhibit similar phenotype to those transfected
with FOXA2-K259R, suggesting that acetylation/deacetylation
diminish phosphorylation event, and therefore, confer a
dominant phenotype (12). Interestingly, it has been reported
that during nutrient-deprivation, deacetylation by SIRT1 only
attenuates FOXA2’s transcriptional activity but not its nuclear
export for degradation by the proteasome (11).

Sumoylation and ubiquitination also compete for
maintenance and degradation of FOXA2 (18) Sumoylation
of the Lys6 by PIAS stabilizes FOXA2’s transcriptional activity.
In contrast, polyubiquitination facilitates FOXA2 degradation
by proteasome. Sumoylation-resistance FOXA2-K6R is more
susceptible to ubiquitination and rapid degradation, suggesting
that additional lysine residues might be ubiquitinated. Notably,
although sumoylation increases both stability and transcriptional
activity of FOXA2, nuclear localization is not affected.

ROLE OF FOXA2 IN LUNG DEVELOPMENT
AND HOMEOSTASIS

FOXA2 is required for lung development. During mouse
embryogenesis, FOXA2 is initially expressed in the primitive
streak and in the node on embryonic day 6.5 (E6.5), inducing
gastrulation. By E7.5, FOXA2 is highly expressed in both
mesoderm and endoderm, and thereafter, persistently expressed
throughout development and in adult endoderm-derived tissues,
including the lung (19). After E10-E11, lung morphogenesis is
facilitated by the spatiotemporal expression of FOXA2 restricted
to respiratory epithelium. By E12.5, mouse embryo develops
conducting airways and alveolar epithelial cells, and forms lung
buds during late embryonic development (20). In contrast,
FOXA2 null mouse embryo shows lethality on E11-E12, with
severe defects in all three germ layers before the initiation of
lung morphogenesis (21). The conditional loss of FOXA2 on
E12.5 disrupts branching formation and airway epithelial cell
differentiation, resulting in the dilation of distal airways. In
addition, postnatal (PN) lungs of foxa1 null allele and lung
epithelium-specific foxa2 depleted mice (foxa1−/−/foxa21/1)
exhibit regressed formation of alveolar and peripheral lung
saccules by PN day 3 (PN3), and extensive airspace enlargement
with mucin glycoprotein overexpression by PN10–PN20 (20).

In postnatal lungs, FOXA2 is constitutively expressed
in subsets of respiratory epithelial cells and transcriptional
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FIGURE 1 | Structural and functional characteristics of FOXA2 in association with posttranslational modification. (A) Schematic diagram of FOXA2 (adapted from J

Biol Chem 2009, 284:24816-24; and Mol Cell Biol 1992, 12:3723-3732). Diagram shows functional domains of FOXA2. Colorized circles indicate post-translationally

modified amino acid residues which alter FOXA2 functions. TA, transactivation domain; NES, nuclear export signal; NLS, Nuclear localization signal; DBD, DNA binding

domain; K, lysine; S, serine; T, threonine. (B) Regulation of transcriptional activity and stability of FOXA2 by posttranslational modifications. Acetylation by P300 allows

FOXA2 to be functionally active. In contrast, SIRT1 deacetylates FOXA2, leading to nuclear export via AKT and IKKα-mediated phosphorylation, and subsequently,

ubiquitination and degradation. Sumoylation enhances the stability of nuclear FOXA2, which is diminished by ubiquitination, resulting in FOXA2 degradation.

controlled genes encoding club cell specific protein CC10
(22), surfactant proteins (SP) (23), thyroid transcription factor-
1 (TTF-1) (24), and mucins MUC5AC and MUC5B (25,
26). Pulmonary surfactant is composed of 90% phospholipids
and 10% proteins, including SP-A, SP-B, SP-C, and SP-D
secreted by the type II alveolar cells and non-ciliated terminal
bronchiolar Club cells. Together with phospholipids, SP-B and
SP-C provide critical surface tension-lowering properties that
reduce the work of breathing and maintain airspace patency.
FOXA21/1 mice show significantly reduced SP-B expression
with deteriorating respiratory distress syndrome (27). In contrast
to upregulation of CC10, SFTPB, and TTF-1, FOXA2 represses
the transcription of mucin genes. Conditional deletion of
FOXA2 in the mouse respiratory epithelium causes airspace
enlargement, goblet cell hyperplasia, increased mucin expression
and neutrophil infiltration (25). Collectively, the aforementioned
studies indicate crucial roles of FOXA2 in regulating embryonic
lung development and postnatal lung homeostasis.

FOXA2 AND MUCUS HOMEOSTASIS

The apical surface of healthy airways is covered by the
airway surface liquid (ASL) composed of mucin glycoproteins,
antimicrobial peptides and proteins, innate immune cells,
signaling molecules, and enzymes (28). ASL is bilayer, with

the periciliary layer sandwiched between the top mucus gel
layer and the bottom airway epithelium, forming the “gel-
on-brush” structure (29) (Figure 2A). The periciliary layer is
filled with hydrogel that provides space for ciliary beating and
supports mucociliary clearance. Within the mobile mucus layer,
MUC5AC andMUC5B are the predominant mucins that provide
viscosity and gel-forming properties to mucus, trapping inhaled
pathogens and irritants. Mucins also keep moisture in the airway
epithelium (30), which help to maintain the periciliary layer and
mucociliary clearance. MUC5AC is produced by the goblet cells
while MUC5B is expressed in submucosal glands of trachea and
bronchi, and in surface secretory cells throughout the airway
down to the level of preterminal bronchioles (31, 32). MUC5AC-
overexpressing mice are more resistant to PR8/H1N1 influenza
virus (33). Similarly, MUC5B-deficient mice are more susceptible
to lung infection with increased mortality caused by ensuing
bacteremia (34).

FOXA2 deficiency causes pulmonary eosinophilia,
recruitment of inflammatory immune cells and upregulation
of IL-4, IL-13, IL-33, CCL-17, and CCL-20 that promote Th2
cell differentiation, goblet cell hyperplasia and metaplasia, and
mucus hypersecretion (25, 35). These suggest that FOXA2
regulates airway mucus homeostasis by counteracting the effects
of IL-4 and IL-13 (36, 37). Metaplastic effects of IL-4 and IL-13
are mediated through the STAT6 (35) and its downstream
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FIGURE 2 | Induction of mucus hypersecretion by P. aeruginosa pyocyanin. (A) Composition of mucus layers in heathy and diseased airways. (B) P. aeruginosa and

its virulence factors, especially pyocyanin, stimulate excessive ROS, chemokines and cytokines and, ligands that activate IL-4R/IL-13R-STAT6-SPDEF, and

EGFR-AKT/ERK1/2-mediated signaling pathways. Both kinase cascades converged to inhibit FOXA2, resulting in over proliferation and differentiation of airway

epithelial (ciliated and club) cells to mucus-secreting goblet cells. Excessive mucus and failure in the clearance exacerbates airway obstruction and microbial

colonization and infection.

effector SPDEF (25, 38, 39). MUC5Ac and MUC5B expression is

dependent on SPDEF (38, 40). IL-13-stimulated airway epithelial

cells show decreased FOXA2 transcript, a process mediated by
SPDEF (41). Conditional induction of SPDEF within transgenic

mouse airways downregulates the foxa2 gene, resulting in

goblet cell hyperplasia (39). These findings indicate that FOXA2

and SPDEF compete to regulate the expression of MUC5AC
and MUC5B.

Th2 cytokines also amplify the mucus-inducing EGFR
signaling, which is highly activated in cystic fibrosis (CF),
chronic obstructive pulmonary disease (COPD) and asthma
(42, 43). In response to IL-4, IL-5, and IL-13, bronchial
epithelial and immune cells produce ligands (EGF, TGF-α,
amphiregulin) that induce EGFR in an autocrine manner

(41, 44–46), which subsequently, activates the downstream
cRAF-MEK-ERK and PI3K-AKT signaling cascades that inhibit
FOXA2 and increase MUC5AC and MUC5B production

(47). Interestingly, these pathways have distinct effects, with
PI3K-AKT augments cell proliferation while cRAF-MEK-
ERK directly enhances goblet cell metaplasia and mucin
synthesis (48).

Notch signaling regulates cell-cell communication and
differentiation of airway basal cells into secretory and ciliated
cells (49). Both Notch1 and Notch2 are required for goblet
cell development (50, 51). Interestingly, Notch ligands promotes

goblet cell metaplasia independent of the IL-13R-STAT6 axis. It is
unknown if Notch induction depletes FOXA2 expression during
goblet cell development in diseased airways.

Interestingly, MUC5B gene transcription is differentially-
regulated by FOXA2. Inhibition of FOXA2 by bacterial
pathogens elevates MUC5B expression (26, 52–54). In contrast,
FOXA2 positively regulates MUC5B expression in both
idiopathic pulmonary fibrosis (55) and asthma (56), most
likely caused by polymorphism in the MUC5B promoter (57).
Additionally, inhibition of FOXA2 by IL-13 results in different
inhibitory kinetics on MUC5B expression in the air-liquid
interface (ALI) culture of airway cells vs. in mouse lungs (41),
suggesting that additional mediators may modulate mucin
production in an intact lung. Collectively, these findings suggest
that regulatory activity of FOXA2 on MUC5B may vary,
depending on disease context and additional interacting factors.

FOXA2 INACTIVATION BY RESPIRATORY
BACTERIAL PATHOGENS

As previously discussed, excessive mucus causes airway
obstruction, narrowing and airflow limitation in chronic lung
diseases. Significantly, FOXA2 expression is depleted in airways
of patients with bronchopulmonary dysplasia, bronchiectasis
(25), and asthma (58). Cigarette smoking, the most important
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etiologic agent in COPD, directly suppress FOXA2 expression
(59). Accumulated mucus allows microbes to thrive, resulting
in persistent inflammation, acute exacerbation (60), and lung
function impairment (61), with increased morbidity, and
mortality (62). Among the bacterial pathogens, Staphylococcus
aureus and Pseudomonas aeruginosa (PA) are the most important
in young CF patients, but in adulthood, PA predominates (63).
Chlamydophila pneumoniae and Mycoplasma pneumoniae are
the most important in asthma induction and acute exacerbation
(64). Streptococcus pneumoniae, Haemophilus influenza,
and Moraxella catarrhalis are the most common in COPD.
However, in advanced stages of COPD, PA, M. pneumoniae,
H. parainfluenzae, and Klebsiella pneumoniae predominate.
Acquisition of PA increases episodes of acute exacerbation,
especially in COPD patients who received antibiotics and those
who require mechanical ventilation. Significantly, a subset of
these patients becomes chronically-infected with PA (65).

For the remainder of this review, we will focus on the
FOXA2 inactivation by PA (Figures 2A,B). PA forms biofilms
in the mucus-rich environments and becomes more resistant
to antibiotics and phagocytic clearance. PA virulence factors,
including pyocyanin (26, 52, 66, 67), LPS (68), flagellin (69, 70),
alginate (71) and protease (72) induce mucus overproduction.

Among these aforementioned virulence factors, the tricyclic
phenazine pyocyanin, is the most robust mucus inducer (73).
Pyocyanin is zwittwerionic, which ionizes at physiological pH,
penetrates cell membrane, and increases both intracellular
reactive oxygen species (ROS) and nitrogen species (RNS) (74–
76). Redox cycling of pyocyanin with intracellular electron
donors and acceptors generates ROS/RNS (76, 77). Persistent
oxidative stress causes dysfunction of ion pumps, antioxidant
proteins and cellular reducing agents, resulting in cytotoxicity
(78, 79).

Pyocyanin is important for lung infections (80) and
recoverable at 0.1mM concentrations from both COPD and
CF sputa (81). Additionally, the levels of pyocyanin within
sputa negatively-correlates with the function of CF lungs (82).
Pyocyanin interferes with ciliary beating and mucus transport
(81), induces bronchoconstriction (83), and decreases mucus
velocity (84, 85). Mouse lungs chronically-exposed to pyocyanin
develop goblet cell hyperplasia and metaplasia, peribronchial
fibrosis, and alveolar airspace destruction, accompanied by
polarization from initially a Th1 response toward a Th2 response
dominated by IL-4 and IL-13 secreted by activated macrophages
and CD4+ T cells, with concomitant influx of neutrophils
(52, 66). Many of these pathological features resemble the
airways of FOXA2-deficient mice (25). Further studies in the
both primary and immortalized human airway cells and in
mice demonstrate that pyocyanin depletes FOXA2 expression
by activating antagonistic EGFR-PI3K-AKT, EGFR-MEK-ERK
and IL-13R-STAT6-SPDEF pathways, resulting in goblet cell
hyperplasia and metaplasia and excessive mucins (52, 66).
Additionally, pyocyanin activates EGFR directly through ROS or
indirectly by inducing the release of proinflammatory cytokines
and EGFR ligands from airway cells (86). ROS/RNS generated
by pyocyanin post-translationally modify FOXA2 and reduce its
binding affinity to the MUC5B promoter. Glutathione restores

the expression of FOXA2, which inhibits the transcription of
MUC5AC and MUC5B (26). Collectively, these results suggest
that pyocyanin inactivates FOXA2 through EGFR-PI3K-AKT,
EGFR-MEK-ERK, and IL-13R-STAT6-SPDEF signaling, and
post-translational modification of FOXA2.

As for the remaining PA virulence factors, LPS activates the
Src-dependent Ras-p38MAPK-pp90rsk pathway, leading to
mucin overproduction (68). Flagellum binds asialoGM1 and
induces a signaling cascade, leading to cleavage of PIP2 by
PLC, formation of IP3, Ca2+ mobilization, phosphorylation
of ERK1/2, and finally, transcription of the MUC2 gene
(70). Flagellum also activates mucin biosynthesis through
the NF-κB induced by TLR5-IL-8 signaling (69). The
mechanisms underlying mucin induction by exoproteases
(72), alginate (71), and their association to FOXA2 inactivation
remain uncharacterized.

FOXA2 appears to be an evolutionally-conserved target of
inactivation. Besides PA, we have shown that M. pneumoniae
inactivates FOXA2 by inducing both STAT3-STAT6 and EGFR
signaling, resulting in overexpression of airway mucins (53).
Additional evidences are found in canine species. Because of
genetic predisposition and exposure to environmental pollutants
and infectious agents, older dogs, especially of smaller breeds,
develop lung diseases similar to those in humans. Our recent
study in dogs with COPD and chronic bronchitis indicate that
infection by PA and Bordetella bronchiseptica, and by viral-
bacterial combination activate the antagonistic STAT6 and EGFR
signaling to inhibit FOXA2, resulting in goblet cell hyperplasia
and metaplasia and mucus hypersecretion (16).

SUMMARY

Although many aspects of mucus biology have been explored as
therapeutic targets, few drugs are available because of inefficacy
and adverse effects (87). Despite its importance, FOXA2 has
not been targeted for the development of novel mucoregulators,
perhaps due to the complexity in gene regulation, post-
translational modifications, and toxicity associated with its
regulation of multiple cellular processes. Recently, the peptide
ADEL (Ala-Asp-Glu-Leu) was found to relieve bacterial-
mediated inflammation and improve lung function while
boosting FOXA2 expression (88). Additionally, GLP-1 analogs
were shown to reduce mortality and improve lung function
in mice with acute obstructive lung disease (89). Our latest
results indicate that the GLP-1 analog Exenatide restores FOXA2-
regulated airway mucus homeostasis through the GLP1R-
PKA-PPARγ-phosphatase signaling, by dephosphorylating key
kinases within both STAT6 and EGFR cascades (90). Some
factors need to be considered before repurposing the GLP-
1 analogs. Systemically-administered GLP-1 analogs could
suppress appetite (91). Because patients with muco-obstructive
diseases (e.g., CF, COPD) commonly experience inappetence,
and in the case of CF patients, nutrient malabsorption (92, 93),
GLP-1 analogs may adversely impact the health status of these
patients. To minimize systemic toxicity, direct aerosolization
should be considered. Also, co-prescribing steroids and appetite
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stimulants with GLP-1 analogs may boost positive outcome.
Finally, detailed mechanistic characterization of how these drugs
restore FOXA2 function may lead to new methods of controlling
excessive mucus, lowering bacterial burden and improving the
quality of life in patients with chronic lung diseases.
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