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Dengue virus (DENV, family Flaviviridae, genus Flavivirus) exists as four distinct serotypes.

Generally, immunity after infection with one serotype is protective and lifelong, though

exceptions have been described. However, secondary infection with a different serotype

can result in more severe disease for a minority of patients. Host responses to the

first DENV infection involve the development of both cross-reactive antibody and T cell

responses, which, depending upon their precise balance, may mediate protection or

enhance disease upon secondary infection with a different serotype. Abundant evidence

now exists that responses elicited by DENV infection can cross-react with other members

of the genus Flavivirus, particularly Zika virus (ZIKV). Cohort studies have shown that

prior DENV immunity is associated with protection against Zika. Cross-reactive antibody

responses may enhance infection with flaviviruses, which likely accounts for the cases

of severe disease seen during secondary DENV infections. Data for T cell responses

are contradictory, and even though cross-reactive T cell responses exist, their clinical

significance is uncertain. Recent mouse experiments, however, show that cross-reactive

T cells are capable of mediating protection against ZIKV. In this review, we summarize

and discuss the evidence that T cell responses may, at least in part, explain the

cross-protection seen against ZIKV from DENV infection, and that T cell antigens should

therefore be included in putative Zika vaccines.
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INTRODUCTION

During the last two decades, the rate of infections with flaviviruses, particularly dengue virus
(DENV) and Zika virus (ZIKV), has risen significantly (Figure 1). At present, half of the world’s
population is considered at risk for DENV and cases of ZIKV continue to be reported globally,
including the first local cases in southern Europe (1, 2). DENV and ZIKV are spread via the
bite of infected mosquitoes, Aedes spp., whose expanding ecological niches beyond the tropical
and sub-tropical regions pose a major public health threat (3). Infection with DENV can present
with a spectrum of clinical manifestations ranging from an asymptomatic illness to an acute
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FIGURE 1 | Distribution of countries with Dengue and Zika transmission. Data compiled using the CDC yellow book and HealthMap©. Each color reflects a varying

transmission rate from high dengue transmission (in red) to uncertain dengue transmission (in yellow). Countries with cross-hatched lines reflect those with high or

sporadic Zika transmission.

fever/arthralgia/rash (dengue fever, DF) that usually is
self-limiting, to more severe disease (dengue hemorrhagic
fever/dengue shock syndrome, DHF/DSS) that is characterized
by vascular leakage and/or hemorrhage (4). ZIKV causes a
similar febrile illness that is often mild, with the exception of rare
cases of neurological disease, such as Guillain-Barré syndrome
(5). In pregnancy, ZIKV infection is associated with adverse
fetal/neonatal outcomes such as congenital Zika syndrome
(CZS) (6). Given that these viruses share similar geographic
distributions and high sequence homology, immunological
cross-reactivity between DENV and ZIKV is a well-recognized
and unsurprising phenomenon. In this review, we will focus
on the role of T cells during DENV and ZIKV infections in
humans and in animal models, summarizing the major findings,
discussing how cross-reactivity might impact immunity, and
providing evidence why incorporating T cell epitopes into
vaccine design is favorable.

VIROLOGY

There are four dengue viruses, DENV1-4, which are antigenically
distinct (hence called serotypes) and possibly represent four
distinct introductions into humans from the sylvatic cycle in
non-human primates (7). On occasion several serotypes can
circulate concomitantly within endemic areas, or as individual
serotypes in sequence (8). A primary dengue infection generally
results in lifelong immunity against the same serotype, although
homotypic DENV re-infections have also been described (9).

DENV infections can generate cross-reactive, poorly neutralizing
antibodies that bind the other serotypes (10). Upon secondary
infection with a heterologous DENV serotype, there is then a
risk of severe disease, thought to be mediated via a mechanism
called antibody-mediated enhancement (ADE) (11, 12). ADE
arises when antibodies against one serotype can bind to, but not
fully neutralize, another DENV serotype. These virus-antibody
complexes can bind to the Fcγ receptors on the surface of
mononuclear phagocytes enhancing viral entry and facilitating
viral replication (13).

ZIKV has three genotypes, East African, West African and
Asian (14). Recent Zika outbreaks have indicated a role for pre-
existing immunity against DENV to modulate ZIKV infection
(15). Data from a large pediatric cohort in Nicaragua found that
prior DENV infection reduced the risk of symptomatic ZIKV
infection by about one third (16) and in a Brazilian cohort
high pre-existing antibody titers to DENV were associated with
reduced risk of ZIKV infection and symptoms (17). Furthermore,
protection against congenital Zika syndrome was shown to be
associated with prior DENV immunity (18).

VIRAL STRUCTURE

The flavivirus virion is enveloped, and contains a single-stranded,
positive-sense RNA that is∼11 kb size. The viral genome encodes
three structural proteins [capsid, precursor membrane (prM)
and envelope (E)] involved in virion assembly and seven non-
structural (NS) proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b,
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and NS5) that function in the viral life cycle (19). The canonical
role of NS proteins is in viral replication where with host factors
they function in the assembly of the membrane-bound multi-
protein replication complex (RC). NS proteins are also the target
of most of the flavivirus CD8T cell epitopes (20–22). A mature
flavivirus particle has a well-organized outer glycoprotein shell
with an icosahedral T = 3 symmetry, a host derived lipid bilayer
membrane and a poorly defined inner nucelocapsid core (23).
Flavivirus particles can assume various morphologies (immature,
mosaic-like, and mature) that vary between flaviviruses and
have important implications on antibody binding specifically
regarding the availability and accessibility of epitopes (24)
[reviewed in (25)].

ANTIBODY-MEDIATED IMMUNITY

Neutralizing antibody plays a crucial role in immunity to
flaviviruses. Animal models show that robustly neutralizing
monoclonal antibodies are sufficient for protection against
many flaviviruses (24, 26, 27). However, antibody responses
against flaviviruses can also be notoriously cross-reactive and the
neutralization potential of these antibodies can vary considerably.
The neutralizing antibody response is directed against the E
protein, but responses against other proteins such as prM and
NS1 also form a significant fraction of the response after both
DENV and ZIKV infections (25, 28–30).

In recent years, much has been learned about anti-flavivirus
antibody responses by cloning antibodies from infected or
previously infected humans. These studies have demonstrated
that, while many different classes of antibody are made, those
which most potently neutralize frequently recognize quaternary
epitopes on the viral surface and bind across multiple Envelope
proteins (24, 31–33). The probable mechanism of neutralization
by antibodies against quaternary epitopes is through interfering
with viral fusion by locking the particle in a non-fusogenic form
(24). Although some of these antibody classes can neutralize
all four DENV serotypes and ZIKV (34, 35), they may not be
durable in humans and their effectiveness may wane with time
(36). In fact, a period of cross-protection exists even after a
primary DENV infection, as observed by Sabin who found that
subjects re-challenged with heterotypic DENV infection were
protected if the re-challenge occurred 2–3 months after the
original infection (37).

A major epitope recognized by the human antibody response
is the viral fusion-loop of E domain II (25). Fusion loop
antibodies are highly cross-reactive and strongly binding,
but weakly neutralizing, not able to cross-neutralize other
viruses, and can mediate ADE (38). During secondary flavivirus
infections, the resulting antibody response can be predominantly
focused upon the earlier infecting virus, a phenomenon known
as “original antigenic sin (OAS);” and thus may be poorly
neutralizing against the current infection (39). It may be
challenging for new vaccines (such as those against ZIKV),
when introduced in areas of intense flavivirus transmission, to
protect if the balance of enhancing and neutralizing antibody
is not optimal, or the development of new antibody responses
is impaired (38). In addition, the development of congenital
Zika syndrome has been linked to ADE (40) and could be due
to the presence of cross-reactive fusion loop antibodies. Prior
DENV immunity can protect against ZIKV, and, in the cases
where inefficient antibody responses arise, possibly due to OAS, it
might be that a cross-reactive CD8+ T cell response contributes
to protection.

T CELL RESPONSES TO DENV IN HUMANS

Early work on cellular immunity to DENV demonstrated that T
cell responses were readily detectable, and serotype cross-reactive
responses of both CD4+ and CD8+ T cells were described
(20–22, 41–46). The existence of serotype cross-reactivity at the
level of individual T cell epitopes was found in both subjects
given an experimental DENV vaccine (47, 48) and after natural
exposure (49). In fact, a single DENV infection can elicit a
cross-reactive T cell response against several serotypes (50), and
the same T cell receptor (TCR) can recognize epitopes from
multiple serotypes (51–53). Although variant epitopes may be
recognized by the same TCR, the degree of overall serotype
cross-reactivity is also likely to be influenced by the targeting
of immunodominant responses, for example non-structural (NS)
proteins are more highly conserved than structural proteins
(Table 1). Responses biased toward sequences that are conserved
between serotypes (possibly in NS proteins) give rise to higher
potential for serotype cross-reactivity (55). The factors that
determine whether responses are focused on conserved or variant
epitopes are not known. However, interestingly, the pattern of
conserved/serotype specific epitope recognition was remarkably
similar in two different populations studied (Figure 2), implying

TABLE 1 | Percent homology across structural and non-structural proteins between Zika and DENV serotypes 1–4.

ZIKA

Polyprotein% C% prM% E% NS1% NS2A% NS2B% NS3% NS4A% NS4B% NS5%

DENV1 55 50 43 57 54 46 35 66 43 51 67

DENV2 56 41 41 55 54 44 41 67 52 53 67

DENV3 57 50 42 58 55 46 38 67 39 52 67

DENV4 57 49 47 56 54 45 41 67 44 49 68

The results of this table was generated from data available in Grifoni et al. (54).
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that the factors underlying the phenomenon are not constrained
to specific populations (55). The immunodominant targets of
the T-cell response can vary between CD4+ and CD8+ T cells
(Figure 3), and also between DENV serotypes (22, 55), as well
as with exposure to other flaviviruses. Interestingly, the stimulus
for the most cross-reactive T cell responses of all appears to
be the tetravalent live attenuated DENV vaccine TV003, which
includes the NS protein from DENV serotypes 1, 3, and 4, where
the vast majority of the response is directed against NS proteins
(Figure 4) (56). CD8+ T cells from TV003 vaccines can also
cross-recognize ZIKV peptides, suggesting that the tetravalent
DENV vaccination can induce T cell cross-reactivity across
DENV serotypes and the closely related ZIKV (54).

Demonstrating a clear role for DENV specific T cell responses
in protection or disease has been more challenging. Initially,
it was thought that the T cell response against DENV was
pathological to the host. Some variant DENV epitopes may
function as inefficient TCR agonists (58), and during acute

disease CD8+ T cell responses can be more focused on variant
epitopes from a previous infection (original antigenic sin) (51),
possibly leading to less efficient responses. Moreover, many of
these DENV specific T cells were found to be apoptotic (51).
Some studies have demonstrated that ex-vivo T cell cytokine
responses are greater with more severe disease, when tested
shortly after disease onset (59, 60), suggesting a role for T cells in
mediating excessive inflammation. In addition, degranulation of
T cells [a surrogate marker for cytotoxicity (61)] was not greater
in DHF (60, 62), implying that it is in fact the balance between
cytokine production (pathological?) and killing (protective?) that
may influence disease phenotype.

However, not all studies have shown a relationship between
acute responses and disease phenotype, with some authors
pointing out that the appearance of DENV specific T cells
occurs after resolution of clinical outcomes in severe dengue (63).
Furthermore, not all studies show a relationship between higher
cytokine production and disease severity in DHF (64). In fact,

FIGURE 2 | Distribution of CD8+ T cell epitopes across the four DENV serotypes in two clinically characterized cohorts from Sri Lanka and Nicaragua. Adapted from

results in Gordon et al. (16), Weiskopf et al. (55).
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FIGURE 3 | Immunodominant protein pattern of DENV-specific CD4 and CD8T cell response based on IEDB data. HLA class I and class II restricted epitopes for
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FIGURE 4 | Distribution of the T cell response to structural and non-structural components is influenced by prior clinical history. Data for this figure was compiled from

the following studies: Turtle et al. (20), Weiskopf et al. (21, 56), Grifoni et al. (54), and Delgado et al. (57). T cell responses are from subjects with natural infections or

vaccine recipients. Responses were identified by ELISPOT and intracellular cytokine staining (ICS) assays.

when sampled early in the disease course, or as in one prospective
study before disease onset, T cell cytokine production correlated
with lower viremia and less severe disease (65, 66), implying
a protective role for T cells. One study of HLA association
with disease severity of dengue showed certain alleles to be
protective whilst others were detrimental, potentially explaining
why studies of T cells and disease severity give discrepant
results (21, 67, 68).

DENV/ZIKV T CELL CROSS-REACTIVITY

Given the potential for T cell responses to DENV to be protective,
at least in some circumstances, it is therefore possible that T
cells primed by DENV could recognize ZIKV and be protective.
Grifoni et al. found that in DENV exposed individuals, the
T cell response to ZIKV is earlier, larger and exhibits greater
cytotoxic capacity (54). In the same study it was shown that in
two large cohorts from Sri Lanka and Nicaragua (54), the imprint
of previous DENV exposure is clearly detectable, and that the
resulting T cell response to Asian ZIKV was biased toward
the non-structural proteins (Figure 4). Similarly, evidence of
pre-existing flavivirus immunity has been shown to result in
enhanced T cell responses directed to NS3 of DENV and
African ZIKV (69). Whether such responses are protective is
unknown, but two studies have demonstrated that short-term
T cell cultures of flavivirus specific T cells are capable of killing
targets pulsed with peptides that are found in ZIKV, indicating
that they likely have anti-viral function (Figure 5) (20, 70).
With DENV infection appearing to confer partial protection
against Zika illness (16, 18), cross-reactive T cell responses may
be one such mechanism by which this protection is mediated.
Additionally, transcriptomic profiles of ZIKV-specific CD8+
T cells in DENV naïve or pre-exposed patients showed no
qualitative differences in ZIKV- specific CD8+ T cell responses

FIGURE 5 | Peptide-pulsed, CFSE-labeled, HLA-matched targets were

incubated with CD8+ T cell line effector cells, and the percent specific killing

was measured by flow cytometry in response to JEV and DENV/ZIKV

peptides. Percent killing (A) and the percent of CD107+ CD8+ T cells (B) are

shown. Diamonds indicate T cell lines expanded with JEV peptide, and

squares indicate lines expanded with DENV/ZIKV peptide. Assays were

performed in duplicate for each T cell line/peptide pair. Error bars represent

standard error of the mean. This figure was adapted from Turtle et al. (20).

supporting the fact that cross-reactive T cell responses share
the same protective phenotype observed after single flavivirus
exposure (71). This phenomenon may also not be confined to
ZIKV. There is some evidence that partial protection against
Japanese Encephalitis (JE) appears to be conferred by prior
DENV infection, with the number of JE cases lower than expected
in areas with DENV outbreaks (72). Also it has been shown that
the severity of JE is reduced by previous flavivirus infection (73).
These effects may be mediated by T cell responses (20). The
degree to which T cell responses are targeted to structural vs.
non-structural flavivirus proteins may vary according to previous
exposure. For example, in the case of ZIKV, being affected
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by prior DENV infection biases the response toward the non-
structural proteins (Figure 4). Responses against non-structural
proteins tend to be more cross-reactive, meaning that previous
dengue infection has the potential to bias the T cell response to
ZIKV toward more cross-reactive epitopes. In an environment
where multiple flavivirus exposure occurs, such epitopes, are
likely to receive a great number of re-stimulations and may rise
to the top of a “hierarchy of immunodominance.” Including
such epitopes in vaccines, therefore, has merit in that such a
vaccine may be made more effective if there is a degree of pre-
existing immunity in the population, lowering the threshold
for vaccine responses to be generated. Although further studies
are required to unequivocally show that DENV-primed T cell
responses can mediate protection against ZIKV in humans,
mouse studies provide convincing evidence that T cells can
mediate cross-protection.

T CELL RESPONSES IN MICE AND
NON-HUMAN PRIMATES (NHP)

Mice are not natural hosts for flaviviruses as the murine type I
IFN system provides a very effective defense, which thwarts viral
dissemination and thus prevents them being useful models of
severe disease phenotypes (74). As such, to establish a model of
productive viral infection, which can be used to examine T cell
function and test potential vaccine candidates, multiple strains
of immunocompromised mice have been generated (74). These
strains include mice deficient in either type I or type II or both
IFN receptors, mice with STAT2 knocked-out, mice with mouse
STAT2 replaced by human STAT2, and more nuanced models
where type I IFN receptors are absent in specific cells or tissues
(74). In combination with either mouse-adapted or human viral
strains, this has established an infection model that closely, but
not perfectly, mimics human disease. For DENV and ZIKV,
strains that are commonly used either lack type I IFN receptor
(IFNAR−/− and A129) or both type I and II receptors (AG129
mice) (74). Human Leucocyte Antigen (HLA)-transgenic mice
have also been used to model CD8+ and/or CD4+ T cell
responses in flavivirus infection. Work in HLA-transgenic mice
show a broad epitope repertoire, whilst some HLA variants, such
as HLA-B∗0702, have been specifically studied due to a known
association with high T cell response frequency and magnitude
in humans, as well as decreased susceptibility to severe dengue
disease (75, 76).

Control of primary DENV infection in mice requires CD8+
T cells to a greater extent than CD4+ cells. In IFNAR−/− mice,
depletion of CD8+ cells was directly associated with increased
viral burden in tissues that was not ameliorated by the transfer
of serum or B cells (77). Protection in the study was mediated
by increased cytotoxic activity in DENV-specific CD8+ T cells;
activity which was further enhanced when mice received a
peptide vaccination (77). However, challenge experiments in
other mouse models (HEPG2-grafted SCID) find that DENV-
specific CD8+ T cell responses were associated with reduced
mortality, which suggests that T cells may contribute to disease
severity in some instances, and prevent mortality in others (78).

Crossing IFNAR−/− mice withHLA transgenicmice showed that
protective CD8+ T cell responses tended to be polyfunctional
and principally targeted non-structural proteins such as NS3
and NS5, similar to that in humans (75). Responses targeted
against NS proteins have also shown their protective potential
in homotypic secondary DENV infections where wildtype mice
primed with a non-lethal DENV2 strain ACS46 were challenged
with a lethal encephalitic homotypic strain JHA1 (79). In this
model, protective immunity was reduced when both CD4+
and CD8+ T cells were depleted. In most challenge models
CD4+ T cells play an accessory and non-essential role in
which they contribute to viral clearance when induced by
immunization (80).

Models of heterologous DENV infection also demonstrate
the importance of T cells during the anti-DENV response.
Collectively these studies show that CD8+ responses can
protect against heterologous DENV challenge in non-lethal (81)
and lethal models (82). CD8+ T cell responses contribute to
protection during heterotypic reinfection, whereas homotypic
reinfection can be contained by neutralizing antibodies against
the infecting serotype (81), as is believed to be the case in humans.
Comparison of specific and cross-reactive T cell responses
in IFNAR−/− mice reveal that, despite their relatively low
magnitude and avidity, cross-reactive CD8+ T cells from prior
DENV exposure reduce viral load and exhibit a polyfunctional
response in a manner comparable to that of serotype-specific
cells (46). However, in a model of secondary DENV infection
resulting in severe disease, cross-reactive CD4+ and CD8+ T
cells were found to be pathogenic in wildtype mice infected
with a non-mouse adapted DENV strain (83). In summary,
the contribution of T cells to disease and protection in dengue
mouse models is still not fully understood. The variability in
current data are likely shaped by factors such as differences in
mouse immune function, infection methods, strain difference,
and experimental end-points.

Similar to observations for DENV, experiments in mice in
which T cell responses are lacking, or on the other hand
are enhanced (e.g., through peptide immunization or adoptive
cell transfer), demonstrate a protective role for CD8+ T cells
against ZIKV (84, 85). CD8+ T cell responses in primary ZIKV
infection appear to be essential for immunity. In LysMCre+

IFNARfl/fl (type I IFN receptor absent only in myeloid cells) and
IFNAR−/− mice, ZIKV-immune CD8+ T cells protect against
infection through cytotoxic, polyfunctional cellular responses
(46, 86). However, in some instances, the resulting cytotoxicity
may damage the host, in a tissue specific manner. For example,
in IFNAR−/− mice ZIKV infection of astrocytes results in a
breakdown of the blood-brain barrier, allowing an influx of
CD8+ T cells into the central nervous system (CNS) where
they mediate apoptosis of ZIKV-infected neurons, but also
results in severe neuropathology (87). Similarly, CD8+ cellular
infiltration was also found in the CNS following ZIKV infection
in C57/BL6 neonatal mice who developed hind limb collapse,
cerebellar degeneration (88) and in the case of adult wildtype
C57BL/6 mice, encephalitis (89). Whilst the CD8+ T cell
response may be detrimental in the CNS, in IFNAR−/− pregnant
mice cross-reactive DENV-specific CD8+ cells are protective
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against ZIKV infection of the fetus, including the fetal central
nervous system, and are associated with increased fetal growth
and viability (90). The CNS may represent a special case,
where infection in the absence of CD8+ T cells results in
severe viral pathology, and in the presence of CD8+ T cells in
immunopathology, with little difference in survival in either case,
as is seen in Japanese encephalitis (91).

Responses to sequential DENV-ZIKV infection (summarized
in Figure 6) share similarities with secondary heterotypic DENV
infection. Firstly, DENV-immune CD8+ T cell responses—
either from prior exposure, peptide immunization or transfer
of DENV-immune CD8+ T cells—can protect against ZIKV
infection (90, 92, 93). This is an important result, which
corroborates human studies that demonstrate prior DENV
immunity can reduce the risk of Zika infection (16). Likewise,
prior exposure to DENV provided IFNAR−/− mice protection
against maternal and fetal ZIKV infection as compared with
non-immune controls (90). As in heterotypic DENV, in mice as
well as humans—the immunodominance pattern of the CD8+
T cell response to ZIKV infection was altered by prior DENV
immunity and focused on conserved cross-reactive epitopes (93).
ZIKV/DENV cross-reactive T cells performed comparably to
ZIKV-specific T cells in viral load reduction in the serum and
brain of knockout mice, which have key implications for ZIKV
vaccine development.

Contrary to mice, non-human primates (NHP) are natural
hosts for DENV and ZIKV. Several different primate models have
been employed, including rhesus and cynomolgus macaques. In

line with epidemiological observations in humans, experiments
in NHP demonstrate that dengue immunity may curb Zika
replication and potentially symptoms (94). Performing the order
of viral challenge the other way around gave a similar result,
where macaques with prior ZIKV immunity mounted strong
humoral and cellular responses against DENV (95). Furthermore,
this model found that a longer convalescence between ZIKV and
DENV challenge was associated with higher and more durable
antibody and T cell responses suggesting that ZIKV immune
memory can contribute to protection against DENV (95).

DENGUE AND ZIKA VACCINES IN
DEVELOPMENT

There are currently three dengue vaccines that have either been
tested in, or are currently in, phase III trials. At the time of writing
the only licensed dengue vaccine is Sanofi-Pasteur’s Dengvaxia R©

(CYD-TDV), a live-attenuated, chimeric, tetravalent vaccine, in
which the genes encoding prM and E of the four DENV serotypes
have been inserted into YFV-17D (Figure 7) (96). The vaccine
was developed to produce DENV neutralizing antibodies in
human subjects, but protection against disease is incomplete
despite high levels of seroconversion (97, 98), and one trial found
no efficacy at all against DENV2 (99). During longer follow up
of clinical trial participants, it was observed that young children
in the vaccinated group had excess hospital admissions due to
dengue compared with the placebo group (100). Dengvaxia is
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FIGURE 6 | The CD8+ T cell response and impact of prior flavivirus immunity in secondary flavivirus infection in mice. Summary of experiments (infections,

immunizations, adoptive cell transfer, and depletions) demonstrating the protective effect of prior DENV immunity on ZIKV challenge and prior ZIKV immunity on DENV

challenge in pregnant and non-pregnant mouse models.
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FIGURE 7 | Design schematic of three dengue vaccines. (A) represents Sanofi’s licensed vaccine, Dengvaxia®, (B) represents the NIH live attenuated tetravalent

dengue vaccine candidate (TV003), and (C) represents Takeda’s tetravalent dengue vaccine (TDV). Each color represents regions from different flaviviruses: yellow,

YFV; orange, DENV1; green, DENV2; blue, DENV3; and red, DENV4.

most effective in individuals who are DENV-seropositive at the
time of immunization, while in seronegative subjects the vaccine
is not protective and increases the risk of severe disease (101).
One hypothesis for failure to protect DENV-naïve subjects may
be that the T cell response generated was directed against the
yellow fever NS proteins present within the vaccine, rather than
DENV NS proteins (68, 102). These observations suggest the
need to determine the optimal T cell antigens and incorporate
them into new vaccines. The other two dengue vaccines in
development are based on full length DENV. One [Takeda,
tetravalent dengue vaccine (TAK-003)] uses an attenuated strain
of DENV2, with the prM and E genes of the other serotypes
inserted into it (103). Regardless of dengue serostatus, TAK-
003 elicited strong humoral responses against all four DENV
serotypes (104), and generated a polyfunctional CD8+ T cell
response to the non-structural proteins of DENV2, which cross-
reacted against DENV1, DENV3, and DENV4 (105). Preliminary
findings of a phase III trial show TAK-003 to have∼81% efficacy
against symptomatic dengue (106), though protection against
DENV3 was slightly lower. Therefore, a vaccine that induces
better—and potentially more cross-reactive T cell responses also
seems to have higher efficacy. However, these vaccines have not
been compared directly and TAK-003 may still enhance disease
in DENV naïve people, and could protect through a mechanism

not involving CD8+ T cells. The other dengue vaccine in phase
III trials is TV003, which is a tetravalent formulation of DENV1-3
with an additional chimeric DENV4 with the DENV2 prM and E
genes inserted (Figure 7). Administration of TV003 induced a T
cell response which predominantly targeted conserved epitopes
of NS3 and NS5 (55) and was found to be immunogenic in
subjects with prior flavivirus exposure (107). Field efficacy data
are not yet available for TV003, but the vaccine protects against
rash and viremia in a dengue human challenge model (108).

The majority of Zika vaccines are still in phase I/II
trials (Table 2). These vaccines include DNA/mRNA, purified
inactivated ZIKV, and recombinant virus-vectored vaccines; with
most vaccine constructs containing the prM and E antigens
as the main immunogen, as these proteins are targets for
neutralizing antibodies (109). Three DNA-based vaccines (GLS-
5700, VRC5283, and VRC5288) that have entered human testing
show promising results, with one, VRC5283 advancing into phase
II. VRC5283 and VRC5288 are both chimeric vaccines that utilize
a JE virus (JEV) prM signal sequence followed by either the full-
length E protein from wildtype ZIKV (VRC5283) or a modified E
region in which the terminal 98 amino acids are exchanged with
the analogous JEV sequence (VRC5288) (110). Both vaccines
were shown to be immunogenic in mouse and NHP models
(110) and a phase I trial found that vaccination with VRC5283
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TABLE 2 | Current Zika vaccines in clinical trial.

Vaccine platform Name Immunogen Adjuvant Dose* Sponsor Phase I Phase II

DNA VRC5283 prM-E None 4mg IM (Phase I)

and 4mg vs. 8mg

IM (Phase II)

NIAID/VRC NCT02996461 NTC03110770

VRC5288 prM-E None 4mg IM NIAID/VRC NCT02840487 –

GLS5700 prM-E None 1,2mg ID GeneOne Life Science

Inovio Pharmaceuticals

NCT02809443

NCT02887482

–

mRNA mRNA-1325 prM-E None – Moderna Therapeutics NCT03010489 –

Inactivated Virus ZPIV virion Alum 5 µg IM NIAID/WRAIR/BIDMC NCT02963909

NCT02952833

NCT02937233

–

BBV121 virion Alum 2.5 µg vs. 5 µg

vs. 10 µg IM

Bharat Biotech CTRI/2017/05/008539 –

PIZV virion Alum 2 µg vs. 5 µg vs.

10 µg IM

Takeda NCT03343626 –

VLA1601 virion Alum 2.5 µg vs. 5 µg

vs. 10 µg IM

Valneva

Emergent Biosolutions

NCT03425149 –

Viral Vectored MV-ZIKV prM-E None Low dose vs. High

dose IM

Themis Biosciences NCT02996890 –

Ad26.ZIKV.001 M-E None – Janssen Vaccines NCT03356561 –

*IM, intramuscular; ID, intradermal.

elicited neutralizing antibodies and cellular responses in all of
the participants (111). A randomized placebo-controlled phase
II study of VRC5283 is currently underway. A limitation of
VRC5283 is whether the incorporation of a sequence from a
different flavivirus (JEV prM) will provide protection against
congenital Zika infection (111). To address this point, the
vaccine was tested in a non-human primate pregnancy model.
Vaccinated animals displayed fewer fetal losses and had reduced
placental and fetal pathology; vaccine protection correlated with
serum neutralizing antibody and antiviral T cell responses (112).
However, these results may have to be considered cautiously
as the model does not reflect early gestational exposure to
ZIKV (112).

In addition to DNA-based vaccines, a ZIKV purified
inactivated vaccine (ZPIV) based on the Puerto Rican strain
PRVABC59 was found to be immunogenic at phase I with
an acceptable safety profile (113). Vaccination with ZPIV
elicited neutralizing antibody responses in the majority of
tested individuals (113). One vaccine recipient from the trial
produced cross-neutralizing antibodies to both ZIKV and
DENV; responses which were linked to the individual’s prior
flavivirus exposure (114). These antibodies were shown to target
the E domain I/III linker and could protect IFNAR−/− mice
challenged either with ZIKV or DENV-2 (114). The durability
of these protective responses were only evaluated up to 8 weeks
post-vaccination (114) and longer follow up is still needed to fully
demonstrate the longevity of these responses.

Enhanced immunogenicity associated with viral vectors (115)

make these attractive candidates for Zika antigen delivery. Of

the vaccines in clinical testing, two use viral vectors: one an

attenuated measles strain (116) and the other a replication-
incompetent human adenovirus serotype 26 (Ad26) (117). A

single immunization with the Ad26 construct containing the
Zika prM and E (Ad26.ZIKV.M-Env) antigens was able to elicit
protective humoral and cellular responses in mice and NHP
(117). Ad26.ZIKV.M-Env also protected IFNAR−/− dams and
fetuses from ZIKV in a pregnancy model (118).

As discussed previously, all of vaccine constructs in clinical
testing target structural proteins and may therefore not be
optimal in their ability to induce cellular responses or boost
pre-existing responses. Therefore, vaccines that include non-
structural proteins should be considered, given that vaccination
with non-structural proteins can induce cytotoxic T cell and
polyfunctional helper T cell responses (119). Furthermore, given
that non-structural proteins can elicit cross-reactive T cell
responses, vaccines that incorporate these proteins may provide
suitable priming for the development of memory responses
during secondary flavivirus challenge (74, 94, 95, 109, 110, 115,
120–140).

CONCLUSION

There still remains a need to develop Zika vaccines, and also
to better understand the cross-reactivity of flavivirus immune
responses so that this can be harnessed for the emergent
flaviviruses of the future. Dengue infection appears to be
protective against ZIKV throughmechanisms mediated by cross-
reactive T cell responses against NS proteins. Given that in
general, non-structural proteins elicit the most cross-reactive
responses, and that these responses are likely to be protective
against other viruses beyond dengue, there is a strong argument
for including non-structural proteins to act as CD8T cell antigens
in novel flavivirus vaccines. As the majority of the population
in flavivirus endemic areas are repeatedly exposed, vaccines
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incorporating non-structural antigens may be more efficient and
may require fewer doses due to the constant boosting of an
existing T cell response. Finally, the degree of cross-reactivity
seen with human CD8+ T cell responses to flaviviruses raises
the possibility of engineering a single component containing T
cell antigens that could be used in multiple vaccines, or even
in a multivalent vaccine, provided suitable B cell antigens can
be found.
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