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Paneth cells were first described in the late 19th century by Gustav Schwalbe and

Josef Paneth as columnar epithelial cells possessing prominent eosinophilic granules

in their cytoplasm. Decades later there is continued interest in Paneth cells as they play

an integral role in maintaining intestinal homeostasis and modulating the physiology of

the small intestine and its associated microbial flora. Paneth cells are highly specialized

secretory epithelial cells located in the small intestinal crypts of Lieberkühn. The dense

granules produced by Paneth cells contain an abundance of antimicrobial peptides

and immunomodulating proteins that function to regulate the composition of the

intestinal flora. This in turn plays a significant role in secondary regulation of the host

microvasculature, the normal injury and repair mechanisms of the intestinal epithelial

layer, and the levels of intestinal inflammation. These critical functions may have even

more importance in the immature intestine of premature infants. While Paneth cells begin

to develop in the middle of human gestation, they do not become immune competent

or reach their adult density until closer to term gestation. This leaves preterm infants

deficient in normal Paneth cell biology during the greatest window of susceptibility to

develop intestinal pathology such as necrotizing enterocolitis (NEC). As 10% of infants

worldwide are currently born prematurely, there is a significant population of infants

contending with an inadequate cohort of Paneth cells. Infants who have developed NEC

have decreased Paneth cell numbers compared to age-matched controls, and ablation

of murine Paneth cells results in a NEC-like phenotype suggesting again that Paneth cell

function is critical to homeostasis to the immature intestine. This review will provide an up

to date and comprehensive look at Paneth cell ontogeny, the impact Paneth cells have

on the host-microbial axis in the immature intestine, and the repercussions of Paneth cell

dysfunction or loss on injury and repair mechanisms in the immature gut.

Keywords: paneth cell, necrotizing enterocolitis, immature intestine, defensins, cathelicidin (LL37), cell death

INTRODUCTION

In the small intestine, intestinal epithelial cells form an important physical and biochemical barrier
that prevents the microbial communities contained within the lumen from accessing the rest of
the body and causing infection (1). One particular type of intestinal epithelial cell, the Paneth
cell, was first discovered by Gustav Schwalbe in the late 19th century based on the eosinophilic
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granules evident in their cytoplasm. A few years later, Paneth cells
were described in depth by their namesake, Joseph Paneth (2, 3).
They are now well-recognized as pyramidal shaped, columnar,
secretory cells situated at the base of the crypts of Lieberkühn,
which are small depressions in the mucosal surface along the
small intestine (4). While Paneth cells have occasionally also
been found patchily dispersed in the stomach and colon, this is
generally associated with mucosal inflammation as opposed to
homeostasis (4).

Although Paneth cells were first discovered and described in
humans, they are not specific to humans. Paneth cells can be
found in many other vertebrates including primates, rodents,
horses, sheep, certain fish, and chickens (5, 6). While Paneth
cells have been found in this wide variety of other organisms
aside from humans, the ontogeny and function are not well-
understood for most of them aside from the well-studied and
characterized rodents as well as humans. Today, Paneth cells still
capture the attention of researchers as they serve an essential
role in modulating the microbiome, playing a key part of the
innate immune response, and aiding in the proliferation and
differentiation of the intestinal epithelium. While Paneth cells
have been shown to play important roles in the healthy gut
of adults, the development and role of Paneth cells in the
immature gut of the preterm infant remains an understudied, but
crucial avenue of research that could aid in the understanding
of the development of intestinal diseases such as necrotizing
enterocolitis (NEC). This review sets out to unveil some of the
mystery surrounding Paneth cells in the context of the preterm
infant gut and how it relates to NEC.

THE ANATOMY OF THE PANETH CELL

The human gastrointestinal surface is the largest surface area
of the body that is in contact with the external environment
(7, 8). This massive surface area is required to allow sufficient
nutrient absorption to support growth and health of the
host. The small intestine, where Paneth cells reside, has an
estimated surface area of 950 cm2 at birth, which grows and
expands to over 30 m2 by adulthood (7, 8). To achieve such a
massive surface area, the intestinal surface is clad by fingerlike
projections that stick out into the intestinal lumen creating
an expansive folding system. This systems’ entire surface is
covered by a single layer of columnar intestinal epithelial cells
(IECs). The intestinal epithelium is the most rapidly-renewing
tissue in the adult mammal (9) and undergoes continuous
turnover that is generated from Intestinal Stem cells (ISC).
The ISC reside at or near the base of the pocket-like intestinal
crypts (10, 11) and continuously generate daughter cells
that differentiate near the top of the crypts before migrating
toward their final destinations. The differentiated cell types
are generally grouped by their function as belonging to either
the absorptive (enterocytes), or secretory (mucus-secreting
goblet, antimicrobial-secreting Paneth, hormone-secreting
enteroendocrine cells, and chemosensing/immunomodulatory
cytokine-secreting tuft cells) lineage, with clear markers (e.g.,
hes1 expression of absorptive and sox9 for secretory) defining

commitment to one or the other arm (12). The typical pattern
for these cells is to migrate upwards toward the villus tip in a
conveyor-belt-type fashion until they are sloughed off the upper
villus into the lumen. However, a unique aspect of Paneth cell
biology compared to the other intestinal epithelial cell types is
that instead of flowing upward out of the crypt, Paneth cells move
downwards further into the crypt as they mature. In addition,
while most epithelial cells are rapidly turned over in a few days,
Paneth cells can persist for just under 1 month (13). Paneth
cell presence is an intestinal priority and their density is rapidly
repopulated following their depletion (14). Following their
descent into the crypts, Paneth cells are interspersed between the
ISCs and can be distinguished by their columnar to pyramidal
shape and by the presence of eosinophilic granules within their
cytoplasm (Figure 1).

PANETH CELL ONTOGENY AND
DIFFERENTIATION

Paneth cells first appear in the small intestine of humans at
13.5 weeks gestational age (15, 16). Paneth cell density in the
developing fetal intestine is relatively low, but gradually increases
throughout gestation, with significant increases in the third
trimester after 29 weeks completed gestation (17, 18). Paneth cell
levels do not reach quantities similar to adult levels until term
gestation or later (17). Because Paneth cells are located primarily
in the distal small intestine, studies using human tissues have
been challenging. Thus, much of our understanding of in vivo
Paneth cell biology has been generated using animal models,
predominantly in mice. It is therefore important to note that
not all mammals develop Paneth cells prenatally, but instead
develop them mid-way through intestinal development after
villus development, but before intestinal maturity according to a
normal developmental pattern. For example, the commonly used
C57Bl/6 mouse strain does not develop Paneth cells until 7–10
days after birth (18, 19).

Paneth cells, like all other intestinal epithelial cell types,
are derived from ISCs. In the last decade, it has become
clear that ISCs are quite complex. Current models suggest
multiple, potentially interconvertible populations of stem cells
exist. The first is the crypt-base columnar (CBC) cells (20),
slender cells wedged at the very base of the crypt between the
Paneth cells. CBC cells carry the specific marker LGR5 and are
actively proliferating (21, 22). The second ISC population express
Bmi1, mTert, and Lrig1 markers, and have been hypothesized
to be quiescent stem cells until injury occurs, at which time
they actively proliferate and produce daughter progeny (23).
Interconversion between the two compartments and overlap
between the populations has been demonstrated (24). Under
normal conditions, the LGR5+ ISCs proliferate to generate
daughter cells that move out of the crypt. These cells become
differentiated as they migrate, and both their differentiation
and the maintenance of the stem cells in their proper place is
driven through gradients and juxtracrine signaling of Bmp, Wnt,
Notch, and growth factor pathways (25, 26). Furthermore, while
the exact sources of ligands for these pathways are not fully
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FIGURE 1 | The intestinal epithelium. (Left) H&E stained ileum from P14 C57Bl6 mouse with vilus, crypt, and lamina propria labeled. (Right) Schematic of the intestinal

epithelium, associated microbial flora, epithelial cell types (goblet cells, Paneth cells, enterocytes, and stem cells) intestinal microvasculature, and mucus layer.

Corresponding labels for vilus, crypt, and lamina propria labeled are placed on the schematic to compare to the H&E stained section.

understood, it is important to note that Paneth cells produce EGF,
Notch, and Wnt, which in turn promote stem cell proliferation
and maintenance (27). In fact, Paneth cells can support LGR5+

cell growth and survival in vitro, and have been proposed as a key
nurse cell for the actively dividing stem population (27).

Several biochemical pathways have been implicated in the
development of Paneth cells (Figure 2). Naïve daughter cells
are driven to either an absorptive enterocyte phenotype by
Notch signaling, or to a secretory phenotype through Wnt
signal pathways. The Wnt/β-catenin pathway is an important
stimulator of Paneth cell differentiation (28, 29). However,
the Wnt signal pathway and its relationship to Paneth cell
development is complex and still not completely elucidated.
Genetic knockout of LGR-5, a downstream target of Wnt
signaling has been shown to produce precocious Paneth cell
differentiation in fetal intestine (29, 30). This contradictory data
may be due to alterations in negative feedback mediators in the
Wnt pathway. Following differentiation into a secretory lineage,
activation of the transcription factors Atoh1 (also known as
Math1) induces differentiation into a combined goblet/Paneth
cell precursor cell lineage (31–35), while genetic ablation of
Atoh1 in transgenic mice has been shown to result in loss
of Paneth cell lineages (35, 36). Atoh1 has also been shown
to be affected by ErbB3, a Receptor Tyrosine Kinase also
known as neuregulin (37). Genetic loss of ErbB3 in mice results
in unchecked activity of the transcription factor Atoh1 and
induces precocious appearance of Paneth cells (37). In addition,
activation of ErbB3 can delay normal Paneth cell development.

C57Bl/6 mice normally develop Paneth cells by day 10 of life
(19). It is however important to note that modifications to
Atoh1 signal pathways also affect goblet cell differentiation (36),
so understanding of signal pathways that distinguish goblet
cell from Paneth cell differentiation downstream of Atoh1 is
still incomplete.

PANETH CELL ROLE IN THE SMALL
INTESTINE

After their migration to the crypt base and subsequent
maturation, Paneth cells can be easily distinguished by their
prominent acidophilic granules. The granules hold many of
the proteins and peptides that Paneth cells secrete to both
modulate the microbiome and mediate the inflammatory
response. These include: α-defensins (cryptdins in mice),
lysozyme, secretory phospholipase A2 (sPLa2), TNF, RegIII,
angiogenin-4, MMP-7, CD15, CD95 ligand, xanthine oxidase,
IgA, CRIP, metallothionine, adipokines, serum amyloid A, α-
1-antitrypsin IL-17A, IL-1β and lipokines (3, 38, 39). These
granular components are assembled and packaged by an
extensive endoplasmic reticulum (ER) and Golgi apparatus
network into dense core granules. (13, 39–43) It is important
to note that it is possible that some components of the
granules may be produced elsewhere before being collected
and added to the granules. IgA is one such component which
may be produced by plasma cells in the lamina propria before
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FIGURE 2 | Intestinal epithelial cell differentiation pathways. The intestinal

stem cell (ISC) differentiates into absorptive (enterocyte) or secretory

precursors through Wnt/Notch signaling. While enterocytes further differentiate

through HES-1 signaling, secretory lineages can differentiate into different cell

types depending on conditions. Wnt signal pathways drive ISC differentiation

into secretory precursor cells. Secretory precursors then develop either into

enteroendocrine cells through Neurog3 signaling, or into goblet and Paneth

cells following activation of Atoh1. Differentiation signal pathways to separate

development of goblet cells and Paneth cells are still unknown. It is also

important to note that recent data has shown that activation of ErbB3 acts as

a suppressor of Atoh1, while genetic deletion of ErbB3 induces precocious

development of Paneth cells.

accumulating and associating in Paneth cell granules (44). Since
Paneth cells are not currently able to be cultured without
other epithelial and stem cells, most of the data we have on
granular contents is from immunohistochemistry techniques.
The granules are then released at the apical surface of the cell into
the lumen of the intestine where they serve a variety of biological
functions, primarily as microbiocidal agents against bacteria,
fungi, spirochetes, protozoa, and enveloped viruses (45). Paneth
cell granules are secreted both constitutively and in response to
pathogenic exposure, with common stimuli including cholinergic
stimulation and exposure to bacterial antigens (45–47). This
secretion of Paneth cell granular components is under tight
regulatory control, as these mediators are vital for maintenance
of intestinal homeostasis (38, 48, 49).

Paneth cell health remains a critical priority to the homeostasis
of the small intestine. We and others have shown that
following dithizone-induced loss, the small intestine replenishes
Paneth cell populations within 72 h (14, 50, 51). Since the
mammalian intestinal tract represents the largest surface area that

communicates with the external environment (7, 52), protection
of the host from injury or bacterial invasion from the intestinal
flora (53) requires a complex system of defense mechanisms. In
the small intestine, a key component of host defense is epithelial
derived antimicrobial peptides (AMPs). AMPs are small peptides
generally >5 kDa in length, cationic at a neutral pH, and have
broad spectrum microbicidal activities at low concentrations
(45). These peptides are the main product contained in Paneth
cell granules.

In humans, there are two major classes of AMPs: cathelicidins
and defensins. Cathelicidins are antimicrobial peptides with
broad antibacterial (54), anti-fungal (55), and anti-viral activity
(56), and are characterized by a highly conserved N-terminal
domain. Only after cleavage of the AMP does the protein exert
its myriad activities (57). Humans express only one cathelicidin,
LL-37 (originally hCAP-18) (58) and it is expressed in various
cells of the body including those of the intestinal epithelium
(59–62). However, in the small intestine, cathelicidin expression
is restricted to the neonatal period (63, 64) before markedly
decreasing and disappearing. The timing of this decrease is
important as it coincides with the appearance of Paneth cells
(19, 65) and the onset of expression of Paneth cell AMPs such
as α-Defensins (18). This “switch” from one AMP to another
occurs at roughly the mid-point of development of the small
intestine (66). It is important to note that mid-development of
the small intestine is also around the time whenNEC often occurs
in infants born extremely prematurely (67) (Figure 3).

The second class of AMP found in the small intestine are
defensins. Defensins are abundant in human cells and tissues
that are involved in host defense and have two main subtypes:
α-defensins, which are found in granule containing cells such as
neutrophils and Paneth cells (also known as cryptdins in mice),
and β-defensins which are produced by epithelial cells (68–71).
Human Paneth cells produce two main α-defensins known as
HD-5 and HD-6 (72). In mice, loss of matrilysin (the proteolytic
enzyme needed to activate cryptdins) have altered microbiomes
and are more susceptible to Salmonella infections (73–75). In
addition, mice that have been genetically modified to express
HD-5 have enhanced resistance to bacterial invasion (74).

AMPs work by inserting themselves into the bacterial
membrane and forming pores, which result in the leakage of
bacterial cytoplasmic content (76–78). They can also degenerate
bacterial cytoplasmic structures and form extracellular net-like
structures, which result in bacterial trapping (79). In animal
models, AMPs have been shown to preferentially target non-
commensal bacteria while sparing commensal normal flora (47,
80). In addition to killing pathogens, AMPs can also influence
the immune system through white blood cell chemotaxis
(81), activation of dendritic cells (82), and downregulation of
immunomodulators such as cortisol (68, 71).

PANETH CELLS AND MECHANISMS OF
CELLULAR DEATH

Cells of the body undergo death for a multitude of reasons
and through various mechanisms. The mechanisms of cell
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FIGURE 3 | Small intestinal AMP switch during intestinal development. During development, the immature intestine is protected by the AMP CRAMP (LL-37 in

humans). However, CRAMP expression decreases around mid-development, at roughly the time that Paneth cells begin to develop. This “switch” occurs during

mid-intestinal development which is around post-natal (P) day 10–21 in C57Bl6 mice and in the second trimester (between 20 and 28 weeks of gestation) in humans.

In infants born prematurely, this switch is temporally similar to when extremely preterm infants are most susceptible to develop NEC (18).

death include apoptosis, necrosis, necroptosis, pyroptosis, and
autophagy. While NEC is defined by necrosis of the intestinal
tissue, many of these different cellular death pathways have
been implicated in the pathogenesis of NEC. Importantly,
several of these pathways are also mechanistically tied to Paneth
cell biology.

Apoptosis is a normal part of intestinal health that results
in disassembly of the cell and, in general, tends to avoid
causing inflammation (83). During apoptosis, cells tend to retract
pseudopods, condense chromatin (pyknosis), undergo nuclear
fragmentation and then experience blebbing of the plasma
membrane (84). This contrasts with cellular necrosis where
cells experience organelle swelling, extensive vacuole formation,
condensation of nuclei, and release of inflammatory cytokines in
a passive or accidental manner (83, 84). One type of apoptosis
seen in the intestinal epithelial layer is when the epithelial
cells move upward from the crypt toward the tip of the villus.
Once they reach the tip, cells are sloughed into the intestinal
lumen in a process called anoikis, which is a form of apoptosis
(84). There is evidence to show that apoptosis is also involved
in the cell death experienced by cells in the stem cell region
within the small intestinal crypts although the regulation of
the process is not well-understood (84). Apoptosis has been
shown by multiple investigators to be important in development
of NEC (85–89). Additionally, apoptosis is directly relevant to
Paneth cell biology and NEC as our lab has shown that NEC-
like injury can be induced in mice by delivering diphtheria
toxin to PC-DTR mice where a human diphtheria toxin receptor

has been attached to the cryptdin-2 promoter of Paneth cells
(14, 65). When these mice are exposed to diphtheria toxin,
all Paneth cells expressing the construct are lysed through
apoptotic pathways (90).

Another form of cell death directly related to Paneth cells is
autophagy, which is a self-degradative process thought to help
remove cells with misfolded or aggregated proteins or other
intracellular damage (91). Autophagy is characterized by creation
of an intracellular vacuole known as the autophagosome (83).
The autophagosome is formed around damaged intracellular
organelles or other selected targets. The autophagosome is
then fused with a lysosome allowing for degradation of the
components within the autophagosome followed by chromatin
condensation (83). The morphologic changes that occur tend to
be relatively well-regulated similar to the degree of regulation of
apoptosis. Also similar to apoptosis, because the degradation of
the dying cell takes place within another cell, this process tends
to prevent inflammation (83). Autophagy is also an important
process for Paneth cells. Because Paneth cells tend to live longer
than most other cells of the gut and have many aggregated
proteins that could be recycled by other neighboring cells, as
damage and stressors to the cells occur, autophagy becomes
activated (92). When mutations occur in the autophagy pathway
such as in Atg16l1, Paneth cells can become dysfunctional
and ultimately trigger intestinal inflammation, which can have
implications for gut health such is suggested to be the case
with Crohn’s disease (92) and NEC (93). Our laboratory has
also shown that autophagy may play a role in development of
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FIGURE 4 | Proposed role of the Paneth cell in development of NEC. As the immature intestine (A) is exposed to inflammation (B), oxygen radicals are produced

creating a selective advantage for Proteobacteria sp. over obligate anaerobes such as the Firmicutes. This creates a feedback loop for sustaining and increasing the

pro-inflammatory state in the immature intestine. Previous work from our lab has shown that intestinal inflammation can reduce intestinal mucus production and cause

loss of Paneth cells (112, 129). (C) Loss of these important chemical and physical aspects of innate immunity allows bacteria to move from the mucus layer of the

intestinal lumen and gain closer proximity to the epithelial surface, (D) followed eventually by attachment and invasion of the epithelium. (E) Once bacteria invade the

intestinal tissue, further inflammation occurs including recruitment of leukocytes including neutrophils, macrophages, and monocytes (133–135) which lead to eventual

death of the tissues.

NEC. Lueschow et al. (14) showed that dithizone-induced Paneth
cell loss in an experimental murine NEC model resulted in
upregulation of autophagy pathways in Paneth cells (14).

Lastly, a more newly described type of cellular death is
necroptosis which acts as an intermediate between necrosis and
apoptosis. Cells undergoing necroptotic death show features
more morphologically similar to necrosis and the immune
system creates a highly inflammatory response, but in contrast
to necrosis, necroptosis is a well-regulated process, similar to
apoptosis (84, 94). Along with this relationship, necroptosis,
and apoptosis have a great deal of overlap in their regulation.
Apoptosis is promoted by TNFα binding and conversion of the
TNFR complex I to the TNFR complex II/alternative TNFR
complex (84). Also, the TNFR complex II can regulate as well

as induce necroptosis when RIP1 and RIP3 are recruited and
deubiquitinated (84). RIP1 and RIP3 are generally under the
control of caspase-8, but when an inactivation of the caspase-
8 gene occurs, induction of necroptotic cell death ensues
although the mechanism by which this occurs is not completely
understood (84). Necroptosis is an increasingly important
mechanism of cellular death in the intestinal epithelium.
Studies have shown that necroptosis of intestinal epithelial cells
can result in intestinal inflammation and ultimately produce
pathophysiology similar to inflammatory bowel disease (IBD).
This was done by creating conditional knockout mice with
deletion of FADD or caspase-8, the regulator of necroptosis, in
intestinal epithelial cells (54, 95, 96). Interestingly, in addition
to induction of necroptosis, this knockout also resulted in
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spontaneous inflammation and an absence of Paneth cells (84,
95, 96). On further examination, the authors discovered that
Paneth cells were uniquely sensitive to necroptosis. This is now
thought to be due to the high expression of RIP3, a keymodulator
of necroptosis, in Paneth cells of humans and mice (84, 95,
96). Necroptosis has also been recently shown to play a role
in development of NEC (94). In preterm infants who develop
NEC, there is a higher degree of expression in genes related
to necroptosis such as RIPK1, RIPK2, and MLKL compared
to preterm infants who do not develop NEC (94). Moreover,
increased expression of these three necroptosis related genes was
correlated with a greater degree of NEC severity (94). This trend
was also observed in murine experimental NEC conditions (94).
Overall, these studies highlight the importance of necroptosis as
well as Paneth cells in NEC.

PANETH CELLS AND NECROTIZING
ENTEROCOLITIS (NEC)

For preterm infants, one of the leading causes of morbidity
and mortality, and the most devastating intestinal complication,
is development of NEC (97). The incidence of NEC varies
widely among developed countries, ranging from 5 to 22%
in infants with birth weight <1,000 g (98), and in the US is
around 7% (97). Risk factors associated with development of
NEC in the preterm infant include degree of prematurity, low
birth weight, formula feeding, intestinal ischemia, prolonged
antibiotic use, and anemia (99–102). However, the exact etiologic
mechanisms and pathophysiology of NEC is still incomplete.
In addition, the NEC phenotype may actually be the result
of a final common pathway starting from multiple inciting
events that results in an imbalance between mucosal injury and
epithelial defense and repair, with activation of an unchecked
pro-inflammatory cascade (103). As a disease process, NEC is
unique in the Neonatal Intensive Care Unit (NICU) population.
While the incidence of NEC is directly correlated to the degree
of prematurity (the more premature, the more likely to develop
NEC), the onset of NEC doesn’t happen at birth, but rather
weeks after and this delay is longer in the more premature
infants. The result is that the incidence of NEC begins to
increase at 28 weeks corrected gestational age, peaks at 32
weeks corrected gestational age, and steadily decreases at older
corrected gestational ages (67). Theories have been suggested to
explain this delay including feeding practices, development of
microbial dysbiosis, or the accumulation of mesenteric hypoxic
events (99–102). However, there is currently no universally
accepted mechanistic explanation. We propose that another
plausible reason may be a disruption in the function or quantity
of Paneth cells (17, 67, 104).

As discussed above, Paneth cells play a key role in the
homeostasis of the small intestinal epithelial lining, and loss
or disruption of these cells has been shown to have significant
adverse consequences including a reduction in clearance of
bacterial pathogens (105, 106), disruption of normal stem cell
function (3, 107), and the development of inflammatory bowel
disease (108, 109). Paneth cells do not appear in the intestine

until approximately halfway through intestinal development and
maturation (22–24 weeks of human gestation and P7-10 or
mouse age—normal intestinal development in the mouse occurs
following birth while in the human it occurs in utero) (19, 65,
110). It is also important to note that these early Paneth cells
do not possess all the constituents contained in mature granules
(65), and it takes weeks in mice and months in humans before
the Paneth cell cohort reaches its optimal density and before
it becomes fully functional (17). Because of this developmental
pattern, premature infants are thus born before they can develop
a full complement of functional Paneth cells. As Paneth cells
help regulate the intestinal bacterial flora, and NEC requires
bacteria to induce intestinal injury, disruption of normal Paneth
cell function, especially in the immature intestine could very well
be involved in development of the NEC phenotype. Supporting
this theory, decreased numbers of lysozyme positive Paneth cells
were documented in infants with surgical NEC compared to
similar aged surgical controls in two separate studies (111, 112).
These data would suggest that Paneth cells are either lost or
degranulated during or prior to development of NEC. However,
not all studies have shown decreases in Paneth cell function or
biology. A study looking at mRNA levels of Human defensin 5
and 6 found that they were increased in infants who developed
NEC compared to controls (113). This discrepancy may be
explained by timing of surgical resection following the initial
Paneth cell disruption. In mouse models, when Paneth cells are
disrupted using the heavy metal chelator dithizone, there is an
initial decrease in defensin expression followed by a significant
increase starting 72 h after treatment (14). In addition, a recent
article that examined presence of HD-6 showed a significant
decrease following development of NEC (114). Thus, timing of
the surgical collection may play a critical role in determining
Paneth cell-specific gene expression following NEC.

Studying Paneth cell mechanistic biology in the immature
intestine is challenging in humans due to the difficulty of
obtaining tissue specimens for preterm infants (115, 116). To
help understand the potential role of Paneth cell biology in
NEC, several laboratories have instead utilized animal models
(100). Interestingly, when Paneth cells are disrupted in neonatal
rats followed by enteral exposure to E. coli, there is not only
an increase in bacterial translocation, but also a development
of NEC-like injury to the small intestinal tract (105). In
adapting this model to mice, our laboratory and others have
shown that selective ablation of Paneth cells followed by enteric
gavage of Klebsiella pneumoniae in 14-days old mice results in
grossly necrotic intestines (89, 117–119), an increase in serum
inflammatory markers (119), and alterations in the microbiome
(14) that are consistent with human NEC. The use of 2-weeks
old mice in this model is potentially advantageous as well as
they possess a gene expression profile of epithelial cell genes that
matches the expression profile seen in preterm human infants
during the window when they are most susceptible to develop
NEC (18, 67). Interestingly, disruption of Paneth cell biology
via administration of the heavy metal chelator dithizone prior
to normal Paneth cell development (5 days old mice) does
not result in a NEC-like phenotype (117). One critique of this
methodology is that dithizone is not specific to Paneth cells but
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instead is a general chelator of heavy metals. To help resolve
this issue, we developed the PC-DTR mouse (14, 119, 120).
The PC-DTR mouse has a human diphtheria toxin receptor
(DTR) inserted into mouse Paneth cells targeting the cryptdin-
2 promotor (65). Treatment with diphtheria toxin induces
apoptosis of any cells possessing DTR while sparing all other
cells. In this model, treatment with diphtheria toxin followed by
Klebsiella pneumoniae exposure also produces intestinal injury
that is equivalent to human NEC (14, 119). These data provide
further evidence that it is a disruption of, and not an absence of
Paneth cells that contributes to development of NEC-like injury
in the immature small intestine.

While these studies show a strong association for Paneth
cell disfunction or loss with human NEC as well as a
mechanistic relationship in mice, questions about how Paneth
cell dysfunction may result in NEC remain (104, 121). It
is well-established that prior to the development of NEC
there is a dysbiotic change to the microbiome that is
marked by a bloom of Proteobacteria, more specifically
Enterobacteriaceae species (122–124). This phenomenon has
also been replicated in our Paneth cell disruption model of
NEC (14). In the normal homeostatic state, the microbiome
acts to suppress inflammation through several mechanisms
including induction of anti-inflammatory mediators such as IL-
10, suppression of pro-inflammatory mediators such as IL-17,
and by breaking down and fermenting complex, non-digestible
complex polysaccharides into short-chain fatty acids, which
possess anti-inflammatory properties (125–127). However, a
result of inflammation is increased production of nitric oxide
(NO) and superoxide radicals (O2− ), which can then react
to form nitrates (NO3− ). These nitrates can be fermented by
facultative anaerobic bacteria such as Enterobacteriaceae sp.
that belong to the Proteobacteria phyla by utilizing anaerobic
respiration with host-derived nitrates as alternative electron
acceptors. Since obligate anaerobes cannot use nitrates as a
growth substrate, Proteobacteria are able to use this selective
pressure to out-compete the obligate anaerobic Firmicutes and
Bacteroidetes that rely on fermentation for growth (128). As
the proportion of commensal bacteria such as Firmicutes and
Bacteroidetes decrease, the production of anti-inflammatory
mediators also decreases which further facilitates increased
inflammation and dysbiosis. Our laboratory has previously
shown that in the immature murine small intestine, exposure to
inflammation can significantly decrease the density and function
of Paneth cells (129–131).

Thus, we think that as the premature infant is exposed to
foreign antigens such as formula feedings (132), there is an
increase in production of inflammatory cytokines (Figure 4).

This creates a more aerobic state leading to a competitive
advantage for Proteobacteria, such as Enterobacteriaceae species.
As the microbiome becomes more dysbiotic, it suppresses
anti-inflammatory mechanisms creating a cycle of increasing
intestinal inflammation (136). This increasing inflammation can
then impact Paneth cell biology leading to a loss in Paneth
cells (14, 129, 137). In an already dysbiotic environment, this
combination is exactly the milieu that is modeled in our
animal model and predisposes to development of injury. This
is further compounded because the Paneth cells present in
the immature intestine are not fully mature or functional at
a baseline (18). This limited Paneth cell cohort also means
that there is a limited capacity for protection via AMPs (40).
As Paneth cells are lost, AMP levels will further fall, likely
reaching a critical threshold under which bacterial invasion
of the epithelial tissue can begin to occur (105). Lastly, it is
important to remember that Paneth cell loss may also impact the
stem cell niche. A healthy stem cell cohort is critical to induce
epithelial restitution following injury as Paneth cells support
the stem cell niche through the production of EGF, Notch, and
Wnt (27, 88, 104, 138).

In summary, the Paneth cell plays a critical role in many
facets of intestinal homeostasis, from regulating the microbiota
that closely associate with the epithelium, to maintaining
the health of the stem cell niche, to helping to regulate
levels of inflammation. Disruption of these secretory cells
can have an important effect on the ability of the intestinal
epithelium to not only protect itself from foreign invaders,
but to promote growth and development of the intestine.
These functions are especially critical in the immature intestine
of premature infants who have a developing intestinal tract
associated with a dysbiotic microbiome. Thus, it is reasonable
that Paneth cell disruption has been linked mechanistically
to development of NEC-like injury. As mortality rates for
NEC remain static, a greater understanding of Paneth cell
biology may provide a critical novel pathway to understand the
development of NEC.
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