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In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals

trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated

neutrophil proteolytic activity results in sustained inflammation and scarring of the

airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of

lung disease progression. As neutrophils are required to clear infection and yet a direct

cause of airway damage, modulating adverse neutrophil activity while preserving their

pathogen fighting function remains a key area of CF research. The factors that drive

their pathological behavior are still under investigation, especially in early disease when

aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of

neutrophils in pediatric CF lung disease and proposedmechanisms of their pathogenicity.

Highlighted in this review are current and emerging experimental methods for assessing

CF mucosal immunity and human neutrophil function in the laboratory.

Keywords: cystic fibrosis, neutrophil, inflammation, infection, model systems

INTRODUCTION

Polymorphonuclear neutrophils are the most abundant immune cells in human blood and act as
first responders to sites of infection. Their function is a key component of host defense against
invading pathogens. In the autosomal recessive disorder cystic fibrosis (CF), persistent microbial
colonization in the lungs induces abundant and continuous migration of neutrophils to the
airways via powerful inflammatory signals of IL-6, IL-8, and leukotriene B4 (1). Recruited CF
neutrophils secrete high levels of proteolytic compounds such as neutrophil elastase (NE), which
damage airway tissue and highly correlate with disease severity (2, 3). Despite recognition of
neutrophils in the progression of CF lung disease, mechanisms modulating their pathological role
are not well-characterized. Past investigations have been hampered by a lack of widely available
CF animal models and no suitable in vitro infection models that effectively incorporate multiple
factors driving complex in vivo disease. New data from modern clinical studies are changing
the view that neutrophils are a fixed population and are revealing a spectrum of functional
phenotypes neutrophils employ to address the variety of pathogenic scenarios they encounter
(4). Understanding neutrophil phenotypes and mechanisms in early CF disease, when the airway
environment is less complex and more responsive to intervention, will require researchers to
revisit or adapt many models of CF. With this review, we present new insights, challenges, and
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considerations for researchers studying neutrophils in early CF
lung disease.

PEDIATRIC CF LUNG DISEASE

The clinical picture of early life cystic fibrosis has changed
significantly since CF was first identified in the mid twentieth
century, when patients rarely survived to the age of 10 (5).
Improvements in diagnostics, from sweat tests to genetic
testing, and wider screening of newborns by immunoreactive
trypsinogen, has permitted earlier detection of CF and
management of the disease. Increased antibacterial therapy,
mucolytic and osmotic agents, and the advent of CFTR
modulators have further increased the lifespan of many CF
patients to beyond 40 years of age (6). Despite these advances,
signs of airway inflammation and lung damage are still evident
in CF from an early age. In 2005, a pioneering study assessing
bronchoalveolar lavage fluid (BALF) after CF newborn screening
demonstrated that infection in the first year of life is linked to
early airway inflammation (7). Subsequent surveillance studies
have now established that for most children, inflammation,
altered microbiome, active neutrophil proteolytic function,
and lung damage all become evident within the first 2 years
of life (8–11), before children are old enough to be treated
with CFTR modulators (12, 13). Lung function declines can
be evident in infants and continue into childhood (14–16).
However, early airway disease can occur in the absence of overt
respiratory symptoms (17) or infection (18, 19). Computed
Tomography (CT) screening has revealed that CF associated
structural changes diagnosed in early life persist into childhood
and adolescence. Permanent bronchial wall thickening, or
bronchiectasis, is detectable in about 8.5% of pediatric CF
patients in the first year of life, and this increases to 36% by 4
years (8). In addition to cytokine release, neutrophil influx into
early CF airways may be supported by chemotactic fragments
from the extracellular matrix (20, 21). Overall, CF lung damage
and declines in function are linked to neutrophil counts and
levels of neutrophil proteases, that are often a response to early
incidence of infection. Understanding the pathology of early lung
disease as it appears today will be key to maximizing long-term
benefits from subsequent CFTR modulator therapies.

NEUTROPHILS IN CF AIRWAYS

Neutrophil Elastase and Serine Proteases
Early in vertebrate immunity, neutrophils evolved a granule
system to separately store enzymes and antimicrobial factors
safely until fused with a phagosome (22). Neutrophil elastase
(NE) and other serine proteases are a central component of
the neutrophil antimicrobial arsenal, stored in the primary
granules that are the last granule to mobilize and are highly
resistant to fusion with the outer membrane (23). Yet uninhibited
NE activity can be detected in over 30% of BALF samples
from young children with CF (11, 24). Activity of NE is
considered one of the most significant biomarkers in CF lung
disease, as activity significantly correlates with lung damage
and functional declines at all stages of life with CF (25–28).

Unregulated activity is destructive to airway epithelial cells
and the lamina propria, and can impede microbial clearance
through destruction of host immune factors (29). In vitro
and in vivo studies have demonstrated how elevated NE
activity induces epithelial senescence in CF airway cells (30,
31), prevents epithelial repair mechanisms (24), and is a key
driver of airway inflammation and mucus production (25–
28). Neutrophil Elastase and other serine proteases digest a
variety of host proteins, suggesting multiple mechanisms that
implicate these compounds in CF airway pathology. Along
with neutrophil serine proteases cathepsin G and proteinase 3,
NE directly interacts with cytokines, including IL-8 and IL-1α,
increasing their potency (32–34). Counter-intuitively, serine
proteases also degrade antimicrobial peptides (AMPs), including
lactoferrin, midkine, and surfactant protein-A (SP-A) (35–37).
In particular, NE has been shown to degrade pattern recognition
receptors including toll-like receptor 4 (TLR4), reducing bacterial
lipopolysaccharide (LPS) sensitivity and increasing inflammation
(38). In addition to modulating mucosal immunity, serine
proteases may promote airway epithelial dysfunction in CF. For
example, NE cleaves E-cadherin, an important component of
adherens junctions, compromising epithelial integrity (39). It
also induces CFTR protein degradation by calpain activity in both
in vitro epithelial cells and in vivo mouse models, resulting in
impaired channel function as well as increasing sodium transport
into cells through proteolytic activation of sodium ion channels
(ENaC) (40–42).

Cysteine Proteases, Matrix
Metalloproteinases, and Reactive Oxygen
Species
In addition to NE and other enzymes found in primary granules,
additional neutrophil derived compounds may contribute to
CF airway pathology. Crucial for intracellular degradation of
pathogens, secreted cysteine proteases have similar deleterious
effects as their serine counterparts. Cathepsins B and S positively
correlate with clinical markers of inflammation in pediatric
CF airways, including NE, IL-8, and TNFα (43, 44). They
selectively maintain neutrophil influx through activation of
chemokines containing glutamic acid-leucine-arginine (ELR)
motifs and inactivation of lymphocyte attracting non-ELR
chemokines (45). Similar to serine proteases, cathepsins can
compromise immunity through degradation of AMPs such as
lactoferrin, LL-37, SP-A, and β-defensins (46–49). Cathepsins B
and S are also implicated in airway mucus dehydration through
induction of ENaC activity (50, 51). Matrix metalloproteinases
(MMPs) are additional proteases implicated in CF associated
with airway remodeling following lung injury. They can originate
from any tissue, but neutrophil derived MMP-9 is particularly
linked to airway damage, inflammation, and lung function
decline in early CF (52, 53). Furthermore, MMP-9 sustains
airway neutrophilia through potentiation of IL-8 and generation
of proline-glycine-proline (PGP) matrikine fragments from
breakdown of collagen (21, 54). Upon phagocytosis of pathogens,
neutrophils produce large amounts of superoxide radicals for
microbial killing. Broadly termed reactive oxygen species (ROS),
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neutrophils are among the most potent producers of these
compounds (55). Oxidative stress as shown by elevated airway
ROS is observed in chronic obstructive pulmonary disease
(COPD) as well as CF (56–58). Increased ROS production
results in destruction of antiproteases, which are crucial
for protecting tissue from unregulated proteolysis (59, 60).
In the context of CF, ROS may impede the function of
antiproteases such as alpha-1-antitrypsin, an important NE
inhibitor, prolonging airway neutrophil proteolytic activity
(24, 61).

CFTR in Neutrophils
A central conundrum of CF is why proteolytic activity develops
in such early, mild stages of CF lung inflammation. One
obvious area of investigation has been whether neutrophil
dysfunction in CF airways is exclusively influenced by factors
in the lung environment or is also a consequence of inherent
CFTR defects. Since the discovery of the CFTR gene, there
have been studies suggesting CFTR protein is routinely
expressed in cells of myeloid origin and has a role in
microbial clearance within phagosomes (62–64). Hypochlorous
acid (HOCl) is an important antimicrobial component of
neutrophil phagosomes whose formation is proposed to be
dependent on CFTR-mediated chloride ion transport (65).
CFTR is reported to traffic to phagosomal membranes in
peripheral blood neutrophils, with CFTR mutation resulting
in defective phagosomal chlorination, affecting clearance of
microbes such as P. aeruginosa (66–68). Contrasting findings
have shown normal respiratory burst activity and production
of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase components in CF blood neutrophils and no detectable
CFTR protein in these cells (69). Additional evidence for the
role of CFTR in neutrophils comes from a small number of
studies showing restoration of CF neutrophil functions including
CFTR phagosomal trafficking (67), leukocyte activation (70),
and intracellular ion regulation (71) in response to CFTR
modulator treatment. Still, further research is needed to clarify
the presence and function of CFTR in neutrophils, and how
defects in the gene influence the pathological activity of CF
airway neutrophils. One consistent observation is a CFTR
mutation dependent effect on in vivo neutrophil lifespan,
with CF neutrophils displaying delayed apoptosis compared
to non-CF neutrophils, possibly preventing resolution of
neutrophilic inflammation (72–74). The most recent of these
studies demonstrated a link between delayed apoptosis by CF
neutrophils and propensity to form neutrophil extracellular
traps (74).

Neutrophil Extracellular Traps
The identification of neutrophil extracellular traps (NETs),
extracellular networks of DNA containing azurophilic granules,
neutrophil elastase and other antimicrobial components, was a
significant event in neutrophil biology (75). NET formation was
initially viewed as a form of active cell death upon which nuclear
and granular membranes were disintegrated, contents ejected
and mixed in the cytoplasm, then released upon deterioration of
the cell membrane (76). The process was later termed NETosis

and proposed to be an alternative strategy used by neutrophils
upon failing to clear infection via traditional phagocytosis. While
NETs can trap and neutralize invading pathogens, the extent of
their microbe killing abilities is debated (77, 78). A significant
amount of research into NETosis has been undertaken, as
recently reviewed by this journal (79). Multiple studies have
described forms of NETosis that result in mitochondrial DNA
release rather than nuclear DNA, or allow neutrophils to remain
viable and motile after NET formation (80–83). The ability
of NETs to harbor NE, the presence of NET derived DNA
in CF sputum, and increased pathogen resistance in response
to NETs, suggest NETosis is likely to play a role in CF lung
disease (84, 85). Yet the question remains on how frequently
NETosis occurs during early CF airway inflammation, prior to
significant biofilm formation that reduces availability of bacteria
to neutrophils.

Neutrophil Exocytosis
Perhaps the most intriguing hypothesis explaining early airway
neutrophil proteolytic activity is that upon recruitment to CF
airways, neutrophils reprogram toward an aberrant granular-
releasing, immunoregulatory, and metabolically distinct (GRIM)
phenotype that includes exocytosis of primary granules—
as evidenced by high CD63 expression (86–88). The GRIM
phenotype is specific to recruited neutrophils as peripheral blood
neutrophils from CF patients exhibit a normal phenotype (89).
However, when naïve neutrophils from either CF or non-CF
donors are stimulated in an in vitro transmigration model of
neutrophil recruitment by adult CF BALF or sputum, cells from
both groups of donors undergo GRIM reprogramming (89).
While factors such as tumor necrosis factor-alpha (TNF-α) can
prime exocytosis of neutrophil azurophilic granules (90), Forrest
and colleagues observed GRIM reprogramming only upon
stimulation with ex vivo CF samples but not with exogenously
added chemokines, suggesting a yet unidentified factor in CF
airways is responsible for changes in neutrophil activity (89).

Most significantly, GRIM neutrophils were also found to
have reduced bacterial killing capacity, which aligns with the
apparent disconnect between NE release and inability to resolve
infection in CF airways (89). More recent studies have reported
how Staphylococcal superantigen-like protein 13 (SSL13) from
Staphylococcus aureus, a common early CF pathogen, can induce
neutrophil exocytosis (91) and whose production is evident in
the CF microbiome (92). In an age related cohort of non-
CF children admitted for acute respiratory distress syndrome
(ARDS), neutrophil exocytosis and reduced bacterial killing was
observed in individuals co-infected with virus and bacteria but
not viral infection alone, suggesting that neutrophil exocytosis
may be linked to responses against polymicrobial infection
(93). This relationship with infection is yet to be established
in early CF disease, however neutrophil exocytosis markers
correlate positively with disease severity more so than free NE
activity (11). Therefore, changes in airway neutrophil functional
markers may be more reliable indicators of disease progression
in children with CF and should be a focus of early CF lung
disease research.
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FIGURE 1 | Comparison of model systems for studying CF lung disease.

MODELING INFECTION AND
INFLAMMATION

Characterizing the early mechanisms that trigger phenotype
shifts in airway neutrophils may be key for preventing progressive
lung disease. Clinical surveillance gives valuable insights into
disease phenotypes in vivo, however, basic science is crucial for
understanding the biology of CF lung disease and the role of the
airway epithelium. Over the years, researchers have developed a
variety of approaches for this purpose (Figure 1). The following is
a summary of some of the more important, biologically relevant
models currently in use to study infection and inflammation in
CF airways.

Animal Models
While CFTR mutant and knockout mice were developed shortly
after discovery of the CFTR gene, their use as animal models
for CF lung disease is controversial as they lack a robust CF
lung phenotype of spontaneous infection and disease (94–97).
Despite extensive similarity, mouse immune cells can behave
differently to human counterparts in their response to pathogens,
for example, murine neutrophils are not activated by SSL13
(91). Mice also express toll-like receptor 11 (TLR11), a TLR
not expressed in humans, that detects profilin and bacterial
flagellin (98). Still, mouse models of induced airway infection
have provided insights into CF airway inflammation and disease.
Studies of acute Pseudomonas aeruginosa infection have observed
poor growth, increasedmortality, and reduced bacterial clearance
in CF vs. wild-type mice (99, 100). Additionally, CF mice
have exaggerated levels of murine inflammatory cytokines

and airway neutrophilia in response to infection, as well as
prolonged inflammation compared to wild-type mice (101,
102). Most of these studies have inoculated animals through
intratracheal delivery of agarose beads embedded with bacteria,
an unrealistic representation of how CF patients normally
acquire these organisms. Of interest has been the observation
that environmental acquisition of P. aeruginosa can be modeled
in mice through inoculated drinking water, with CF mice more
susceptible to chronic colonization via this route (103). Chronic
exposure of CFmice to P. aeruginosa LPS also results in increased
airway inflammation, neutrophilia and airway remodeling (104,
105). A common theme emerging from these studies, is that
neutrophils and their products play a central role in CF lung
pathology. With the development of Cre recombinase mice
targeting the neutrophil-specific locus Ly6G (106), future studies
utilizing this model will continue to play a very useful role in
elucidating CF airway neutrophil biology.

The more physiologically relevant animal model for studying
CF lung disease include CFTR disrupted pigs and ferrets, as they
recapitulate the CF phenotype across all organ systems implicated
in human disease (107). Both models were developed just over
a decade ago using adenoviral vectors, generating CFTR full or
partial knockout animals in both species via exon 10 disruption,
as well as a1F508 pig (108–110). Pigs are suitable human disease
models due to their analogous physiology, and in the case of
respiratory disease, similar bronchial structure and distribution
of submucosal glands (111). CF pigs have CFTR protein similar
to that of humans (112). Neonatal CF pigs have little airway
inflammation and normal levels of IL-8 and neutrophil counts
in BAL compared to non-CF pigs (109). Neonatal CF pigs also

Frontiers in Immunology | www.frontiersin.org 4 April 2020 | Volume 11 | Article 595

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Laucirica et al. Systems for Studying Neutrophil Plasticity

have increased presence of microbes in the lungs as shown
by culture from ex vivo tissue samples, and are less likely to
have sterile BAL samples compared to non-CF pigs (113). In
the months following birth, CF pigs develop signs of lung
disease such as mucus accumulation, inflammation, infection,
and airway remodeling (113). While lung disease progression
in the CF pig model reflects progression in humans, there are
obvious drawbacks of cost and time of pig husbandry and the
need of adequate facilities and resources. Furthermore, virtually
all CF pigs develop meconium ileus and require early surgical
intervention; in contrast, the condition is present in only 20% of
infants with CF (109, 113, 114).

Ferret CFTR protein length, amino acid sequence, and
function is also similar to that of humans (115). Like CF
humans, CF ferrets are prone to spontaneous airway infection;
however, infection in these animals is far more severe, with CF
ferrets requiring continuous antibiotic treatment immediately
after birth to survive (116). Additionally, CF ferrets demonstrate
abnormally high levels of lung inflammation from birth, and
lung disease progresses rapidly upon cessation of prophylactic
antibiotics (117, 118). As a result, CF ferrets may not be
an ideal system to model the slow progressive lung disease
observed in humans, as their disease phenotype develops
too quickly. However, a recent study developed homozygous
CFTRG551D/G551D ferrets to test effects of in utero treatment
with VX-770 (ivacaftor) (119). Prenatal and early postnatal
administration ameliorated CF multi-organ disease, posing
new research questions around CFTR in early development,
the possibility of prenatal modulator therapy, and disease
attenuation in CF animals to further study effects of modulator
treatment or model mild disease in humans. While neutrophil
counts and elastase activity in CF animals trend similarly
to human disease, neutrophil reprogramming has yet to
be evaluated. Future studies must assess airway neutrophil
exocytosis and lung disease severity in CF animals to determine
if they are suitable models for characterizing this process
in humans.

Primary Airway Epithelial Cells
While animal models allow observation of gross phenotype of
disease, in vitro studies permit experimentation in a highly
controlled environment and are important for understanding
mechanisms of disease at the cellular level. The accepted gold
standard for in vitro CF research are patient derived primary
airway epithelial cells (pAEC). As a barrier that protects the lung
from direct environmental exposure, the airway epithelium has
long been recognized for its role in host defense and respiratory
disease (120–125). Cells are typically isolated from epithelial
brushings of the nose or lower airways, or less frequently from
explanted lungs (126, 127). Yields from brushings are variable
and ex vivo pAEC have limited proliferative capacity; they
become senescent after only a few passages making them difficult
to expand in culture (126, 127). The adaptation of conditionally
reprogrammed airway epithelial cells (CRAEC) through co-
culture with irradiated fibroblast feeder cells has significantly
increased passage number capacity of pAEC, while maintaining
lineage specific characteristics (128). Additionally, CRAEC can be

seeded from co-culture into air-liquid interface culture (ALI) to
form a differentiated pseudostratified epithelial layer (128, 129).
This has enabled many CF research groups to look to CF primary
airway epithelial cell models in order to understand the cellular
drivers of progressive lung disease, and more recently to evaluate
the efficacy of CFTR modulators in restoring CFTR function in
target cells (130, 131). Nasal pAEC are increasingly being used in
epithelial CFTR studies, since their growth, differentiation, CFTR
activity, and response to modulators are similar to lower airway
cells, and have the advantage of being more readily accessible
(129). Nasal cells have also been adapted to three dimensional
spheroid cultures that are representative of native epithelium and
mature more quickly than traditional ALI cultures (132). These
spheroids have then been used to quantify CFTR function via
spheroid swelling in cultures from CF patients across different
mutation classes, to assess individual responses to modulator
treatment (133, 134). As such, they have potential as a preclinical
screening tool to identify responses to modulator therapies in a
personalized medicine approach.

Despite increased airway inflammation in CF patients, there is
still debate as to whether the CF airway epithelium is inherently
pro-inflammatory (135–137). Baseline expression of neutrophil
chemoattractants including IL-8, IL-6, and IL-1β is reported
in some studies to be similar in CF vs. non-CF pAEC (138–
140), but others report increases in CF cells at baseline (141,
142). Increased airway inflammation could also be a result of
dysfunctional CF epithelial innate immunity, a major topic in
CF research, as the airway epithelium has an important role in
responding to infection and neutrophil recruitment (143–147).
Studies have shown IL-8 release and NF-κB activity are increased
in CF vs. non-CF pAEC following P. aeruginosa infection (142,
148, 149). CF pAEC have also been shown to display differential
gene expression at the transcriptional level compared to non-
CF pAEC in response to P. aeruginosa infection, which may be
further evidence of CF aberrant immune responses (150, 151).
In response to infection with respiratory viruses, studies have
also observed increased IL-8 production in CF vs. non-CF pAEC
(152, 153), which is analogous to in vivo findings in pediatric CF
patients with rhinovirus infection (154). However, other studies
have reported no difference in inflammatory cytokine production
as a result of in vitro viral infection (155, 156). The filamentous
fungi Aspergillus fumigatus is emerging as an important early life
CF pathogen increasingly detected in pediatric CF airways (157,
158), with A. fumigatus infection associated with increased air
trapping among 5 year old CF patients (159). Two in vitro studies
to date have used immortalized cell lines and reported altered
cytokine production, though specific data were conflicting (160,
161). Assessing innate immune responses to fungal pathogens
in CF will be key to determining treatment priority, but innate
immune mechanisms have yet to be corroborated in CF pAEC.

Variability amongst findings from pAEC infection studies
could be attributed to the originating cohorts, sampling
differences, age and disease severity of subjects, culture
methods, and use of differentiated vs. undifferentiated cultures.
Additionally, the selection of pathogens can affect outcomes, as
pAEC responses can be heterogeneous to individual strains or
isolates of the same species (162). Primary cells will continue

Frontiers in Immunology | www.frontiersin.org 5 April 2020 | Volume 11 | Article 595

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Laucirica et al. Systems for Studying Neutrophil Plasticity

to be important tools for addressing unanswered questions in
CF lung disease, including how epithelial immunity is linked
to neutrophil inflammation, how the epithelium responds to
fungal and polymicrobial infection, how the airway microbiome
affects epithelial homeostasis, and whether CFTR modulators
have effects on airway innate immune signaling. Researchers
must think carefully about the above factors and how they
influence experimental outcomes in pAEC, especially if findings
are translated to lung disease pathogenesis in CF patients.

Neutrophil Transmigration to the Airways
The epithelium is not only a barrier to external pathogens,
but also presents an obstacle to responding neutrophils. In
vitro replication of this mucosal physiology was established
by early studies assessing neutrophil transmigration across
the intestinal mucosa (163–166). These studies established
polarized epithelial cultures onto inverted permeable inserts,
which were turned over prior to migration for direct loading of
naïve isolated neutrophils and thus model basolateral to apical
neutrophil migration. It has since been adapted to characterize
transmigration across lung epithelium (167), assess the role
of neutrophils in β-catenin mediated airway epithelial repair
(168, 169), as well as describe responses to infection with
respiratory syncytial virus (RSV) and P. aeruginosa (170–172).
The model previously mentioned in this review uses AlvetexTM

3D scaffolds rather than permeable membranes, which better
replicate neutrophil swarming (89, 93), to study neutrophil
responses to CF sputum. To understand factors driving early
neutrophil fate including exocytosis, this same model could be
applied with pediatric BALF. However, pediatric ex vivo samples
are difficult to obtain, often of limited volume compared to
samples from adults. One approach yet to be fully utilized is

to apply material from infected CF pAEC as surrogates for
human samples. This has multiple benefits. Robust models
of pAEC infection responses are well-established and because
pAEC can be bio-banked for downstream culture and infection,
material can be generated as needed. This approach also
facilitates a more focused assessment of factors influencing
neutrophil functions, such as epithelial responses to specific
infection scenarios.

One caveat of past transmigration studies is the dependence
on lung cancer derived cells lines, such as A549, H292, H441,
16HBE, and Calu-3 cells, as a substitute for primary cell
derived epithelium. Advantages include easy access to cell lines
and robust growth in culture, but at the cost of interpreting
epithelial responses during migration through cancer cells. This
is critical, since neutrophils directly change airway epithelium
via microRNA (173) or exosomes (174) and neoplastic cells may
not reproduce CF pAEC responses. As limitations on pAEC
culture expansion are overcome, transmigration studies are
increasingly incorporating pAEC (175). A remaining challenge
is that established methods for differentiating pAEC traditionally
employ 0.4µm pore size inserts, but a 3.0µm pore size or larger
is required to permit neutrophil transmigration, which can result
in significant loss of primary cells during seeding. One study
has managed to address this issue by coating both faces of a
transwell insert with extracellular matrix and providing seeded
cells with laminins to improve attachment (175). Primary cells
differentiated into pseudostratified epithelial layers on a 3.0µm
insert, similar to how they would on a conventional 0.4µm
transwell insert, and permitted neutrophil transmigration upon
apical infection with P. aeruginosa (175). Future integration of
CF pAEC inmodels of neutrophil transmigration will be required
for studying coordinated immune responses of the CF airway

FIGURE 2 | Factors influencing CF airway neutrophil plasticity.
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epithelium and recruited neutrophils in a single translational
system. If designed with high throughput screening in mind,
there is great potential to facilitate much needed pre-clinical
testing of anti-inflammatory drugs in CF.

CFTR MODULATOR THERAPY AND
AIRWAY INFLAMMATION

Depending on their mechanism of action, CFTR modulators
are characterized as correctors that improve defective CFTR
trafficking to the cell surface, or potentiators that enhance
defective CFTR function. Studies of modulators have shown
improvements in patients as measured by sweat chloride levels
and FEV1, however, efficacy against infection and airway
inflammation is poorly investigated. In placebo controlled studies
of lumacaftor-ivacaftor and tezacaftor-ivacaftor in CF patients
≥12 years of age, infective pulmonary exacerbations occurred at
similar rates in both treatment and placebo groups (176–178).
Phase 3 trials of lumacaftor-ivacaftor in CF patients aged 6–
11 also found that incidence of infection associated pulmonary
exacerbations was similar between patients receiving treatment
(18%) and patients receiving a placebo control (19%) (179). The
recently FDA approved elexacaftor-tezacaftor-ivacaftor triple
therapy roughly halves the incidence of infective pulmonary
excacerbations compared to a placebo (180), but the drug is
not yet approved for patients under 12 years of age. Multiple
studies have shown that administration of modulators reduces
bacterial colonization within the first year of treatment and
delays acquisition in uncolonized patients; however, bacterial
isolates present in the airways prior to treatment persist and
may eventually rebound over longer periods (12, 13, 181,
182). Whether CFTR modulators reduce levels of inflammatory
cytokines is still not certain, as there is evidence of both reduction
and no effect on clinically relevant biomarkers including NE (12,
13). Altogether, current findings suggest that modulator therapy
alone may not be sufficient to manage infection and airway
inflammation in this population, especially over the long term.

CONCLUSION

Neutrophils have a major role in CF lung disease but our
ability to treat the underlying mechanisms is still limited.
Modern approaches are revealing new perspectives on
neutrophils as plastic, programmable drivers of airway
disease who both respond to and actively shape the local
airway environment (Figure 2). These novel neutrophil
functions are occurring even in mild and largely asymptomatic
pediatric CF lung disease and precede structural lung changes.
Even with the advent of combination CFTR modulator
therapy, which improves lung function but perhaps not
infection and inflammation, continued investigation of
initial neutrophil pathological activity is necessary to identify
much-needed interventions that can address this problem.
Researchers now have available a diverse number of tools
for understanding the complex interplay between infection,
the airway epithelium, and recruited neutrophils (Figure 1).
Moving forward, basic studies will need to consider the
advantages of various approaches, caveats, and carefully select
appropriate models when exploring the beginnings of CF airway
neutrophilic disease.
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