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“Location, location, and location”: according to this mantra, the place where living
beings settle has a key impact on the success of their activities; in turn, the living beings
can, in many ways, modify their environment. This idea has now become more and more
true for T cells. The ability of T cells to recirculate throughout blood or lymph, or to stably
reside in certain tissues, turned out to determine immunity to pathogens, and tumors.
If location matters also for human beings, the inspiring environment of Capri Island has
contributed to the success of the EFIS-EJI Ruggero Ceppellini Advanced School of
Immunology focused on “T cell memory,” held in Anacapri from October 12, 2018 to
October 15, 2018. In this minireview, we would like to highlight some novel concepts
about T cell migration and residency and discuss their implications in relation to recent
advances in the field, including the mechanisms regulating compartmentalization and
cell cycle entry of T cells during activation, the role of mitochondrial metabolism in T cell
movement, and the residency of regulatory T cells.

Keywords: T cells, Tregs, cell migration, cell cycle, recirculation

INTRODUCTION

This minireview is inspired by the EFIS-EJI Ruggero Ceppellini Advanced School of Immunology
about “T cell memory” 2018 (1) and will expand in further detail two hot topics discussed during
the course: T cell migration and residency.

T cell differentiation and function are strictly related to their distribution within different
lymphoid and non-lymphoid compartments. In physiological conditions, naive T cells recirculate
through secondary lymphoid organs (SLOs), increasing the opportunity to encounter the
antigen. After infection, vaccination, or tumor growth, the draining lymphoid compartments
undergo dramatic changes, promoting naive T cells’ interaction with antigen-presenting cells and
subsequent T cell activation. Activated T cells undergo a strong proliferation (so-called clonal
expansion) and deep changes in their metabolism (2, 3). The process culminates with T cell
differentiation and the generation of short-lived effectors and long-lived memory cells (4–6).
Effector T cells migrate broadly, reaching the site of infection or tumor growth where they exert
their effector functions before dying. Memory cells persist in the body, circulating between blood
and lymphoid or non-lymphoid tissues as conventional memory T cells, or residing in peripheral
tissues as resident memory T cells (Trm) (7). Trm represent a first-line defense against tissue
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damage and pathogen invasion (8, 9). However, the functional
distinction between Trm and conventional effector/memory
T cells needs to be clarified. Moreover, it is now clear
that some technical caveats may hinder an appropriate and
complete analysis of these cells (10). A better understanding of
the immunological and metabolic signals dictating the switch
between T cell recirculation and residency is needed. Here, we
will focus on some emerging concepts regarding this topic: first,
the relation between the cell cycle phase and migration during
T cell activation; second, the role of mitochondria relocation for
T cell movements and compartmentalization; finally, the features
of residency of a well-known tissue-infiltrating T cell population,
i.e., the regulatory T cells (Tregs).

T CELL RECIRCULATION AND CELL
CYCLE

After development in the thymus, naive T cells reach the blood
circulation, and continuously circulate between blood and SLOs.
This journey is finely regulated by the expression of specific
homing molecules. Indeed, the L-selectin CD62L expressed by
naive T cells mediates their entry into lymph nodes (LNs) by
binding ligands expressed on high endothelial venules (HEVs).
This binding overcomes blood shear forces, leading to T cell
rolling on HEVs (11). At this stage, the interaction between the
CC chemokine ligand 21 (CCL21) expressed on HEVs and the
CC chemokine receptor 7 (CCR7) on T cells activates the integrin
lymphocyte function-associated antigen 1 (LFA1). Activated
LFA1 binds the intracellular adhesion molecule 1 (ICAM-1),
mediating T cell arrest on the endothelium. Consequently, T cells
migrate across the blood vessels and enter the tissue (12). Once in
the LN, naive T cells are guided in the paracortical region, also
known as T cell zone. In this area, naive T cells interact with
dendritic cells (DCs), scanning for the presence of the cognate
antigen. It has been estimated that one DC can be scanned
simultaneously by up to 500 naive T cells (13, 14). Migration
in this area is regulated by a gradient of chemokines and local
factors. The chemokine CCL19, produced within the T cell zone,
increases T cell motility and promotes T cell–DC interactions
by binding CCR7 on the T cell surface (15). Furthermore, after
immunization, naive CD8 T cells upregulate CCR5, which binds
CCL3 and CCL4 produced at the site of the CD4 T cell–DC
interaction in the immunogen-draining LNs (16).

Hence, migration in the SLOs seems to be not only a stochastic
process but rather a finely regulated mechanism which increases
the probability of antigen recognition. In the case that this
rare event occurs, T cells undergo a series of dramatic changes.
Resting naive T cells are activated by the integration of three
signals: antigen recognition (signal 1), co-stimulation (signal
2), and cytokines, released at the site of T cell–DC interaction
(signal 3) (17). This process culminates with the extensive
proliferation of antigen-specific T cells, named clonal expansion.
T cell expansion is driven by T cell–DC interaction within
specialized niches in SLOs and is controlled by several factors
which promote the rapid entry of T cell in the cell cycle (18–
20). The final goal of this process is to increase the number of

T cells capable of eliminating the antigen. It has been estimated
that, in the first week of a typical primary T cell response,
CD8 T cells can increase their number to about 100 times or
more (21). At this point, deregulation of the cell cycle could
deeply affect the ability to develop a proper T cell response. For
example, a reduced clonal expansion could lead to a decreased
number of effector and memory T cells, with consequent loss
of protection. Furthermore, it has been hypothesized that the
inability to mount an effective primary T cell response in old
age and the vaccination failure occurring in elderly persons
could be correlated with defects of T cell clonal expansion
(22, 23).

Expanding T cells modulate the expression of homing
molecules, preparing themselves to reach the peripheral tissue,
the site of antigen entry. Retention in SLOs is controlled by the
sphingosine-1-phosphate (S1P) receptor expression on T cells.
S1P is a lipid molecule that is more concentrated in the blood
and in the lymph than in tissues (24). S1P receptor expression
is increased in naive T cells, leading to egress from SLOs.
Activated T cells upregulate CD69, which prevents S1P receptor
expression, holding T cells in the SLOs until the completion of
differentiation into effector cells, which can take a few days (25).
Once completely differentiated, effector T cells downregulate
CD69, and migrate along the S1P gradient. Effector T cells
also downregulate CD62L and express chemokine receptors that
guide them to the site of infection (26).

The kinetic of expansion and migration is poorly defined.
Indeed, although it is known that clonal expansion starts in SLOs,
the location where activated T cells progress and/or complete
their cell cycle is still unclear. To date, the few tools available
for the analysis of dividing antigen-specific CD8 T cells, such as
cell-labeling dyes and anti-Ki67 antibody, show some important
limitations. Indeed, cell-labeling dyes do not allow evaluating
whether cells found in one organ proliferated locally or rather
migrated in this organ after division (19, 27). Ki67 is a nuclear
protein expressed by cells in all the phases of the cell cycle (G1,
S, G2, and M), except for those in G0 (or quiescent). Hence, Ki67
analysis alone does not distinguish proliferating cells (in S-G2-
M) from those in G1, which may remain for a long time in G1,
or even revert to G0 (or quiescent) without dividing (28, 29). We
recently set up a new flow cytometric method for the cell cycle
analysis of CD8 T cells, which was based on the combination of
Ki67 expression and DNA content analyses and allowed us to
discriminate between cells in the G0, G1, and S-G2/M phases.
By using this method together with a novel gating strategy for
the analysis of actively responding T cells, we demonstrated that,
at early times after vaccination in mice, cycling antigen-specific
CD8 T cells (cells in the S-G2-M phases) were present in the
blood, which is usually not considered a site of proliferation
(Figure 1) (30). This finding questions the general view by
which activated T cells proliferate locally in SLOs and only after
completing their cell cycle and differentiation enter the blood
circulation, reaching the infection site. In addition, studies on
cancer patients have shown that antitumor CD8 T cells increase
Ki67 expression after checkpoint inhibitor treatment, suggesting
that unleashed T cells can actively cycle in the blood after therapy
(31, 32).
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FIGURE 1 | Cell cycle analysis of antigen-specific CD8 T cells in the blood after vaccination. Female Balb/c mice were primed and boosted with viral vectors
expressing the model antigen gag of HIV-1. At days (d) 3, 7, and 44, post-boost blood was collected and blood cells were analyzed with our new method. The figure
shows a typical ki67/DNA staining profile of gag-specific CD8 T cells in the blood. Fluorescence Minus One (FMO) controls (left) and Ki67 staining (right) are shown,
as indicated; the numbers represent the percentages of cells in the corresponding quadrant. Figure adapted from (30).

Frontiers in Immunology | www.frontiersin.org 3 May 2020 | Volume 11 | Article 682

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00682 July 8, 2020 Time: 13:42 # 4

Piconese et al. T Cell Recirculation and Residency

MITOCHONDRIAL DYNAMICS IN
MEMORY T CELLS AND T CELL
MIGRATION

In the past, immunologists did not take seriously into account
T cell mitochondria since they are poorly represented within a
T cell, and T cells are mainly considered as relying on glycolysis
for their principal functions. In recent decades, a large body of
evidence emerged on the crucial role that the mitochondria, their
metabolism, and their morphological dynamics have on these
cells. Nowadays, the pivotal role of mitochondrial morphology
changes in almost all processes that are essential for a correct
T cell development and function is clear and evident (33).
Thus, these less attractive organelles suddenly became “main
characters” for several immunologists in recent years.

Mitochondria, the cellular energetic hubs, are highly motile
organelles, continuously fusing and fragmenting (a.k.a. fission)
their network under the control of the so-called mitochondria-
shaping proteins (34) (Figure 2). Drp1 and Dyn2 are the main
players controlling fission in concert (35), while mitofusins
1 and 2 and Opa1 are the principal proteins orchestrating
mitochondria fusion (36, 37). The balance between these
opposing events, at every time or cell demand, determines
organelle morphology, which acts as an intracellular signal that
instructs different metabolic pathways, reflecting the different
physiological functions of the cell. For instance, an elongated
network sustains oxidative phosphorylation (OXPHOS) for
a correct assembly of the electron transport chain (ETC)
complexes, and an optimal ATP production, besides diluting
the matrix content (38). A fragmented network, instead,
promotes aerobic glycolysis and mitophagy or accelerates
cell proliferation in response to nutrient excess and cellular
dysfunction (38). Mitochondrial morphology directly regulates
T cell differentiation in vitro by affecting the engagement of
these alternative metabolic routes upon activation. Mitochondrial
fusion-dependent fatty acid oxidation with a predominance
of OXPHOS is a hallmark of a memory cell signature, while
an effector cell subtype mostly relies on fission-dependent

FIGURE 2 | Elongated and fragmented mitochondria morphology in T cells.
Confocal z-stack acquisition and 2D reconstruction of an elongated (left) or
fragmented (fissed, right) mitochondrial network of Jurkat single cells
transfected with mtYFP (scale bar, 5 µm). Picture modified from (34).

glycolysis (39, 40). Thus, mitochondrial dynamics controls T
cell fate. Evidence in vivo of these findings, together with the
molecular mechanisms explaining how mitochondrial dynamics
can orchestrate these metabolic shifts and T cell fate, came soon
after. Indeed, our lab showed that mitochondrial fragmentation,
favoring glycolysis in effector T cells, is dependent on the
Erk1-mediated activation of Drp1. Further and interestingly,
an additional—but not mutually exclusive—transcriptional
mechanism sustains the metabolic shifts in T cell differentiation.
Upon T cell receptor (TCR) engagement, in T cells with an
elongated mitochondria, the extracellular calcium uptake is
exacerbated [presumably because of an inability of the un-
fragmented mitochondria to reach the immunological synapse
and to buffer calcium (41)], this leading to alterations on
the mTOR–cMyc axis, decrease of cMyc expression, and
related defective transcription of glycolytic enzymes, cMyc
being known as a promoting factor in the transcription of
glycolytic enzymes upon T cell activation (42). The consequence
is a prominent oxidative metabolism and a memory-like
phenotype for these T cells (43). Thus, in sum, memory T
cell differentiation is driven by ERK1- and cMyc-dependent
mitochondria morphological changes.

More interestingly, for this review’s purpose, the capability of
memory T cells to reach the tissues and being resident, rather
than to recirculate in the periphery, crucially relies on the ability
of these cells to (trans)migrate and extravasate into and from
the blood vessels. These basic processes also strictly depend on
mitochondrial dynamics. Polarized T cells need to accumulate
their mitochondria at the uropod during migration, to fuel
the ATP-consuming myosin II cell motor. Drp1-dependent
fragmentation of the mitochondria is essential to allow this
organelle relocation, while unbalancing the morphology toward
an elongated mitochondrial network strongly impairs T cell
chemotaxis (44). In vivo extravasation and invasion of T cells
are regulated likewise. During their trans-migration across an
endothelial layer, lymphocytes squeeze and insert their nuclei into
a subendothelial pseudopodium (45), a process heavily relying
on the activity of the myosin motor (46) and requiring Drp1-
dependent mitochondria fragmentation (43). Consistently, in
vivo Drp1 removal from T cells inhibits their extravasation from
the blood toward SLOs, and toward “danger sites” (43).

Noteworthy is that Drp1 knockout (KO) T cells are deficient in
cell migration, even though their metabolism is shifted toward an
OXPHOS-based metabolism, ideally producing more ATP to fuel
the myosin II, which should drive a higher migration rate. This
apparent paradox underlines the cell’s need to better modulate
the relocation of the mitochondria for a local, subcellular
production of mitochondrial ATP rather than for a general
mitochondria functionality.

Overall, these findings shed light on a new and crucial
role for mitochondrial dynamics in T cell differentiation and
function, paving the way for new, and important therapeutic
opportunities through pharmacological or genetic manipulation
of mitochondria-shaping proteins, also based on memory T cells.

It needs to be considered that forcing mitochondrial fusion
during in vitro T cell expansion promotes the differentiation
of naive T cells toward a memory phenotype, this conferring
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a higher survival to these cells. However, we observed that T
cell migration strictly depends on optimal fragmentation of the
mitochondrial network; thus, an unbalance toward mitochondria
fusion in memory T cells would inhibit their (trans)migratory
capability, therefore impinging on their “choice” to be resident
or to recirculate. This observation suggests that a one-way or
“chronical” modulation of the activity of mitochondria-shaping
proteins could hardly result in successful therapeutic strategies,
with this highlighting the actual complexity of the topic. Finally,
also in a T cell terminal differentiation into senescence, in which
cell migration and proliferation are fatally altered, mitochondria
structure, and function result impaired as well (47).

TISSUE REGULATORY T CELLS:
RESIDENT OR RECIRCULATING?

Most of the available information about resident T cells come
from the study of CD8 Trm, and a growing body of data
demonstrates their key role in response to pathogens, in
antitumor immunity, in mucosal defense, in vaccine efficacy,
and so forth [reviewed in (10)]. Less clear are the identity
and functions of CD4 Trm in different contexts, probably
because in tissues the CD4 T cell population may comprise
variable proportions of Tregs displaying completely different
immune functions. Tregs represent a class of CD4 T cells
defined by the expression of Foxp3 and exerting non-redundant
immunosuppressive and tissue repair functions. In several non-
lymphoid tissues, Treg subtypes have been identified that show
tissue-specific profiles, differentiate locally in response to variable
signals, and perform specialized functions [reviewed in (48)].

Whether tissue Tregs are truly resident cells is still a matter
of investigation. Parabiosis experiments have demonstrated that
Treg chimerism was lower in the adipose tissue and intestine
compared to the spleen, blood, and liver (49–51). When Tregs
were further classified into central or effector cells, the latter
were found more resistant to recirculation (52, 53); however, this
event was transient (52), and upon parabiont disconnection, the
chimerism of both effector and central Tregs decayed in a few
weeks (52). These results suggest that, at least in certain tissues,
effector Tregs may be continuously replenished from circulating
Tregs, which locally differentiate and proliferate (54).

When effector Tregs were further subdivided according to the
expression of the CD49b integrin, it was possible to distinguish
circulating Tregs: indeed, compared to other districts, the blood
and highly vascularized tissues (liver and lung) contained a
high frequency of CD49b+ effector Tregs that displayed a
significantly higher rate of exchange between parabiotic mice
(55). It could be hypothesized that CD49b+ Tregs may be devoted
to continuous tissue patrolling through blood circulation, being
able to promptly reach damaged or inflamed tissues (55), while
the CD49b− cells may show a certain degree of stable residency
and exert on-site repair/regenerative functions in physiological
settings. For instance, Tregs localize to the epithelial stem
cell niche and promote hair growth at the steady state (56).
Resident Tregs may exist in the heart protecting from fortuitous
inflammation and tissue damage (57). Such tiny and highly

specialized Treg populations are settled in locations that are
poorly accessible to the circulation and, thus, probably may have
acquired better capacities to survive and self-renew locally.

Tregs, or certain Treg subsets, share with Trm some
phenotypical markers. For instance, Tregs express CD69 at a
higher level in non-lymphoid than in lymphoid tissues (58–
60). The expression of CD103 by effector Tregs was established
several years ago (61), and CD103+ Tregs have been observed
at the steady state in several tissues including the lung (58)
and the dermis (62). CD39 is a well-recognized marker of
Tregs from lymphoid organs (63) and maintained at high
levels in tissues like VAT (64). Notably, one of the key
transcription factors for the acquisition of a residency program,
Blimp1 (65), plays a well-recognized function in the instruction
of the effector program in Treg (66). Therefore, in tissues,
effector Tregs possess the whole armamentarium that may
be needed to establish residency. In this context, a recent
paper has shown that the majority of lung-resident CD4 T
cells are indeed composed of Tregs that play tissue-protective
functions (58).

More elusive is the extent of Treg residency in human tissues.
Tregs can be found in several healthy human tissues such as
the intestine, skin, adipose tissue, and skeletal muscle (48).
In healthy human skin, arginase 2 expression was found as
a feature of resident Tregs (67). Whether Tregs can establish
long-term residency in these tissues and whether this process
may be modified in pathologic conditions remain unclear.
Recent analyses in human lung transplant recipients have
demonstrated that, contrary to conventional T cells, most Tregs
in the bronchoalveolar lavage were of recipient origin (68):
this result underscores the dominance of Treg colonization
from the blood over persistent Treg residency, at least in this
context. According to the mouse data mentioned above (55),
it could be suggested that the lung, as a highly vascularized
tissue, may be particularly prone to Treg replenishment from
the blood and that Treg residency may be more stringent in less
vascularized tissues.

The balance between Treg residency and recirculation may
have key implications during tissue modifications occurring
in chronic inflammation and cancer. Tumor Tregs display a
gene signature that combines tissue-specific and tumor-specific
genes [reviewed in (69)], and a “core signature” is shared
among Tregs infiltrating diverse human cancers (70). In human
melanoma, Tregs express a higher level of arginase 2 than in
healthy skin (67), suggesting that tumor Tregs may co-opt and
enforce signals that preexisted in Tregs resident in the normal
parenchyma. In human breast cancer and colon cancer, tumor
Tregs were much more similar to the corresponding healthy
tissue Tregs than to circulating Tregs (71, 72). However, the
analysis of the TCR repertoire of tumor and tissue Tregs led
to conflicting results in different tumor types (70–72), and
whether tumor Tregs derive from the amplification of Treg
clones populating normal tissues, rather than from circulating
cells, remains to be ascertained. A deeper understanding of
the tumor Treg complexity will be key to designing Treg-
targeted therapies that would spare physiological functions
of tissue Tregs.
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DISCUSSION

T cell heterogeneity comprises not only a great variety of T cell
subpopulations with different functions but also a considerable
diversity of migratory patterns. These patterns are strongly
related to the function that these cells will exert in a specific
tissue. After activation, changes in T cell migratory capacity
occur simultaneously with cell expansion and differentiation
into effectors and memory cells. Noteworthy is the evidence
that cycling antigen-specific T cells are present in the blood
in the acute phase of the response, suggesting a very dynamic
interplay between cell cycle and migration (30–32). Nevertheless,
how clonal expansion and migration are related is still unclear.
Interestingly, the elderly show an altered T cell clonal expansion
and a worse T cell response to infections and vaccination.
However, only a few studies have focused on the possible impact
of aging on T cell recirculation (73, 74), and a possible relation
is still unclear.

Whether T cells recirculate or reside in one tissue strongly
depends on their metabolism: indeed, mitochondrial dynamics
regulate T cell migration and differentiation (39, 40, 44).
Metabolism could also dictate the survival of certain Trm,
i.e., resident Tregs, which exert important tissue homeostatic

functions (48). However, in some pathological conditions such
as tumors, whether infiltrating Tregs derive from the resident
population or are mobilized from the circulating pool remains
unclear (70, 72). This review highlights novel concepts of T cell
compartmentalization and opens new interesting perspectives
regarding the regulation of this process both in physiological and
in pathological conditions.
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