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Crustacean cardioactive peptide (CCAP), a cyclic amidated non-apeptide, is widely

found in arthropods. The functions of CCAP have been revealed to include regulation

of heart rate, intestinal peristalsis, molting, and osmotic pressure. However, to

date, there has not been any report on the possible involvement of CCAP in

immunoregulation in crustaceans. In this study, a CCAP precursor (designated as

Sp-CCAP) was identified in the commercially important mud crab Scylla paramamosain,

which could be processed into four CCAP-associated peptides and one mature

peptide (PFCNAFTGC-NH2). Bioinformatics analysis indicated that Sp-CCAP was highly

conserved in crustaceans. RT-PCR results revealed that Sp-CCAP was expressed

in nerve tissues and gonads, whereas the Sp-CCAP receptor gene (Sp-CCAPR)

was expressed in 12 tissues of S. paramamosain, including hepatopancreas. In situ

hybridization further showed that an Sp-CCAPR-positive signal is mainly localized in

the F-cells of hepatopancreas. Moreover, the mRNA expression level of Sp-CCAPR

in the hepatopancreas was significantly up-regulated after lipopolysaccharide (LPS)

or polyriboinosinic polyribocytidylic acid [Poly (I:C)] challenge. Meanwhile, the mRNA

expression level of Sp-CCAPR, nuclear transcription factor NF-κB homologs (Sp-Dorsal

and Sp-Relish), member of mitogen-activated protein kinase (MAPK) signaling pathway

(Sp-P38), pro-inflammatory cytokines factor (Sp-TNFSF and Sp-IL16), and antimicrobial

peptide (Sp-Lysozyme, Sp-ALF, Sp-ALF4, and Sp-ALF5) in the hepatopancreas were

all up-regulated after the administration of synthetic Sp-CCAP mature peptide both in

vivo and in vitro. The addition of synthetic Sp-CCAP mature peptide in vitro also led

to an increase in nitric oxide (NO) concentration and an improved bacterial clearance

ability in the hepatopancreas culture medium. The present study suggested that

Sp-CCAP signaling system might be involved in the immune responses of

S. paramamosain by activating immune molecules on the hepatopancreas. Collectively,

our findings shed new light on neuroendocrine-immune regulatory system in arthropods

and could potentially provide a new strategy for disease prevention and control for mud

crab aquaculture.
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INTRODUCTION

The neuroendocrine-immune (NEI) regulatory system refers to
a complex network formed by the interaction of the nervous
system, endocrine system, and immune system (1). The nervous
and endocrine systems regulate various physiological processes
by releasing neuropeptides, neurotransmitters, and hormones
(2). The neuropeptides are usually synthesized and secreted
by neurons or neuroendocrine cells and composed of 3–100
amino acid residues (3). As an extracellular chemical messenger,
neuropeptides regulate a range of physiological functions,
including immunity, growth, reproduction, metabolism, food
intake, and circadian rhythm, by activating specific receptors
(3). Neuropeptide receptors are mostly G protein-coupled
receptors (GPCRs), which constitute the largest family of
cell surface receptors. They play a vital role in physiological
processes by promoting cellular communication via recognizing
various ligands, including bioactive peptides, nucleosides, and
amines (4).

A large number of studies have shown that neuropeptides
also interact with the immune system by binding to receptors of
immune cells (5–14). For example, it has been reported that in
humans, through binding to their respective receptors, vasoactive
intestinal peptide (VIP), pituitary adenylate cyclase-activating
polypeptide (PACAP), urocortin 1 (UCN), and adrenomedullin
(AM) reduced the production of pro-inflammatory factors (5–7).
In rainbow troutOncorhynchus mykiss, prolactin has been shown
to increasemRNA expression ofMyD88 and IL-1β during in vitro
infection with the pathogen, Piscirickettsia salmonis (8), whereas
in Japanese pufferfish Takifugu rubripes, neuromedin U elevated
the mRNA expression of IL-6, IL-18, and TNF-α in peripheral
blood leukocytes (9). Similarly, in invertebrates, FMRFamide
reportedly regulated the expression of immune effectors and
apoptosis-related genes via P38 mitogen-activated protein kinase
(MAPK) signaling pathway in oyster Crassostrea gigas (10). In
fruit fly Drosophila, allatostatin-C receptor 2 (ASTC-R2) played
a crucial role in host survival when infected by the pathogenic
bacterium Photorhabdus luminescens (11). In crustaceans, it has
also been reported that crustacean hyperglycemic hormones
(CHHs) promoted the elimination of the pathogenVibrio harveyi
in the hemolymph and significantly up-regulated the mRNA
levels of antimicrobial peptides (AMPs) (PEN4 and crustin) in
Pacific white shrimp Litopenaeus vannamei (12, 13). For the same
species, the silencing of molt-inhibiting hormone (MIH) also
led to significant increases in mortality of the shrimp infected
by bacterium Vibrio parahaemolyticus and white spot syndrome
virus (WSSV) (14).

In recent years, more and more evidence suggested that
in addition to hemocytes, the hepatopancreas also plays an
important role in the immunity of crustaceans (15–21). In
addition to function as a digestive gland, the hepatopancreas
is also a crucial organ for immunity in crustaceans (16).
Indeed, crustacean hepatopancreas is a major source of immune
response molecules, including lectins, nitric oxide (NO), stress
proteins, antibacterial and antiviral proteins, enzymes, and
apoptotic genes (15). Furthermore, many immune-related
signal transduction pathways are also found in crustacean

hepatopancreas, including MAPK, PPAR, Rap1, PI3K-Akts,
cyclic adenosine monophosphate (cAMP), and NF-κB signaling
pathway (15, 16, 22). However, more studies are needed to
further clarify the immune mechanisms of the hepatopancreas
in crustaceans.

Crustacean cardioactive peptide (CCAP) is a cyclic amidated
non-apeptide first isolated from the pericardial organs in shore
crab Carcinus maenas with a function of regulating heartbeat
(23). It has since been derived mainly from the nervous system
of various arthropods, with confirmed roles of neurohormone
and neurotransmitter (24, 25). In recent studies, CCAP mRNA
was found in the midgut of cockroach Periplaneta americana
and Pacific white shrimp L. vannamei, as well as in the gills of
oriental river prawn Macrobrachium nipponense (26–29). CCAP
has been shown to be involved in various physiological processes
in insects and crustaceans, such as modulation of heartbeat
in fruit fly Drosophila melanogaster (30) and marine crabs C.
maenas and Callinectes sapidus (23, 31), stimulation of American
cockroach P. americana midgut contraction and stick insect
Baculum extradentatum hindgut contraction (26, 32), regulation
of ecdysis in prawn M. nipponense (29), modulation of oviduct
and spermatheca contraction in grasshopper Locusta migratoria
(33, 34), and increasing survival of shrimp L. vannamei subjected
to freshwater stress (27).

Like other neuropeptide receptors, CCAP receptor is a GPCR.
So far, CCAP receptor has been identified in various insects and
crustaceans and has been shown to be involved with its ligand
to regulate physiological processes. For instance, knockdown of
CCAP receptor reportedly resulted in the loss of CCAP heartbeat
regulation function in blood-suck bug Rhodnius prolixus (35),
and interfering CCAP and its receptor reduced the success rate of
ecdysis in red flour beetle Tribolium castaneum (36). In mud crab
Scylla paramamosain, recently, CCAP partial transcript has been
found from the cerebral transcriptome database, and its receptor
is identified via ligand-receptor binding assay by our laboratory
(37, 38).

Mud crab S. paramamosain is widely distributed in the Indo-
Pacific region, and the species is an important mariculture species
along the southeast coastal provinces of China (39). Mud crab in
aquaculture is vulnerable to diverse bacterial, fungal, and viral
pathogens, which could lead to severe economic losses to the
industry. In order to prevent and control disease outbreaks in
aquaculture, an increasing number of research has focused on the
functions and enhancement of the immune system of cultured
species (40–42). In this study, we first obtained and characterized
the full-length cDNA of Sp-CCAP from the cerebral ganglia of
S. paramamosain. The tissue distribution of Sp-CCAP and its
receptor (Sp-CCAPR) were detected by semi-quantitative RT-
PCR, and the locations of Sp-CCAPR in the hepatopancreas were
further determined by in situ hybridization. Subsequently, we
investigated Sp-CCAPR expression profiles following immune
stimulation, and finally the immunomodulatory mechanisms of
Sp-CCAP and its receptor were evaluated by in vivo and in vitro
experiments. This is the first report on CCAP involvement in
immunomodulation in an arthropod, and it potentially provides
a new strategy for disease control based on neuroendocrine
immunity for mud crab aquaculture.
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MATERIALS AND METHODS

Experimental Animals
The animal study protocol has been approved by the Animal
Ethics Committee of Xiamen University.

Healthymud crabs (36.36± 2.31 g) at the intermolt stage were
purchased from a fish market in Haicang District, Xiamen City,
Fujian Province, China. Prior to the experiments, the crabs were
acclimated in small tanks (40 × 40 × 60 cm) filled with seawater
with salinity 30 ppt and temperature 26 ± 0.5◦C for 7 days.
During the acclimation period, the crabs were fed fresh field snail
Cipangopaludina chinensisGray once daily, and half of tank water
was renewed every day.

Total RNA Extraction and First-Strand
cDNA Synthesis
Total RNA from hemocytes and various tissues, that is, eyestalk
ganglion, cerebral ganglion, thoracic ganglion, hepatopancreas,
gill, stomach, midgut, heart, epidermis, gonad, and muscle, were
extracted using TRIzol Reagent (Invitrogen, USA) according
to the manufacturer’s instructions. The concentrations and
quality of RNAs were checked by a Q6000 spectrophotometer
(Quawell), and the integrity was assessed by 1.5% (w/v) agarose
gel electrophoresis. The first-strand cDNA was synthesized using
PrimeScript RT Reagent Kit with gDNA Eraser (TaKaRa) for
semi-quantitative RT-PCR and quantitative real-time PCR (qRT-
PCR) analyses.

Cloning the Full-Length cDNA of Sp-CCAP
and Bioinformatics Analysis
Partial cDNA sequence of Sp-CCAP was obtained from the
transcriptome database of Scylla paramamosain (37). The full-
length Sp-CCAP cDNA with 1 µg of total RNA extracted from
cerebral ganglion was amplified with the SMARTTM RACE
cDNA Amplification Kit (BD Biosciences). The 3′-race and 5′-
race PCR amplification was performed with universal primers
[Universal Primer Mix (UPM)] and gene-specific primers for
touchdown PCR and nested PCR amplification. PCR products
were purified and cloned into the pMD19-T plasmids (TaKaRa).
The positive colonies were screened and further confirmed by
DNA sequencing. The primer sequences are listed in Table 1.

The ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/orfig.cgi)
was used to predict open reading frames (ORFs) and amino acid
sequence of Sp-CCAP. The amino acid sequence was submitted
to predict protein signal peptide with SignalP 5.0 Server (http://
www.cbs.dtu.dk/services/SignalP/). The isoelectric point of Sp-
CCAP was predicted by ExPASy software. The homology amino
acid sequences of Sp-CCAP from other species in the National
Center for Biotechnology Information (NCBI) database were
obtained through the BlastX homology search (http://blast.ncbi.
nlm.nih.gov/Blast.cgi). These sequences were used to create the
multiple sequence alignment by MEGA 7.0 software. Phylogenic
trees were constructed via the neighbor-joining (NJ) method
using MEGA 7.0 software. Bootstrap sampling was reiterated for
1,000 times.

TABLE 1 | Primers for PCRs.

Name Sequence (5′-3′)

cDNA cloning

3′Out-Sp-CCAP GGCAAGGTTATGGGAGCAACT

3′ In-Sp-CCAP GCTCTGTGTATCCAAACATGTGTTG

5′Out-Sp-CCAP TTGCTCCCATAACCTTGCCTC

3′ In-Sp-CCAP AACGCAAGGAGGAGGATGGTT

UPM (long) CTAATACGACTCACTATAGGGCAAGCAGT

GGTATCAACGCAGAGT

UPM (short) CTAATACGACTCACTATAGGGC

RT-PCR/qRT-PCR

Sp-CCAP-qF CGAGGCAAGGTTATGGGAG

Sp-CCAP-qR GATACACAGAGCCACTCAAGAAAT

Sp-CCAPR-qF TCCAAGACTCGCAAATCCA

Sp-CCAPR-qR ATGTCCGTGAGAACACTGAT

Sp-β-actin-qF GAGCGAGAAATCGTTCGTGAC

Sp-β-actin-qR GGAAGGAAGGCTGGAAGAGAG

qRT-PCR

Sp-IL16-qF (42) TGGCAGAGGTTACAGGTCACGGTTAT

Sp-IL16-qR (42) GGAGTCTGGTGTTCGTCACTGTTTCT

Sp-TNFSF-qF (43) CTGTTGTACGTCAGGTCGACTCT

Sp-TNFSF-qR (43)

Sp-LYZ-qF (44)

GGCTCTTCGTATGGGACCTCTG

TGCCATCAACCACCACAACT

Sp-LYZ-qR (44) CCCCTTTCCCTTCCACTTCT

Sp-ALF1-qF (41) AACTCATCACGGAGAATAACGC

Sp-ALF1-qR (41) CTTCCTCGTTGTTTTCACCCTC

Sp-ALF4-qF (42) CACTACTGTGTCCTGAGCCGC

Sp-ALF4-qR (42) GTCCTCGCCTTACAATCTTCTG

Sp-ALF5-qF (42) CTTGAAGGGACGAGGTGATGAG

Sp-ALF5-qR (42) TGACCAGCCCATTCGCTACAG

Sp-Relish-qF (42) AGTGGAACAGTGGTCCAGCTG

Sp-Relish-qR (42) CACCACCACTTCACAAATC

Sp-Dorsal-qF (42) TCATCCCCACAATCTGGTGG

Sp-Dorsal-qR (42) TAAGTGCATCTTCCACGTC

Sp-P38-qF (45) TTCACTCCGTCCACCACCTT

Sp-P38-qR (45) GCCCTCGTAACACCTGGTAGAT

In situ hybridization

T7 TAATACGACTCACTATAGGG

SP6 ATTTAGGTGACACTATAG

Sp-CCAP-IF CGACTCCTACTACTTCTAC

Sp-CCAP-IR GATACGGTACTCTTCCAG

PMD19T

RV-M GAGCGGATAACAATTTCACACA

M13-47 CGCCAGGGTTTTCCCAGTCACG

Tissue Distribution of Sp-CCAP and
Sp-CCAPR mRNA
Semi-quantitative RT-PCR was used to detect the distribution
of Sp-CCAP and Sp-CCAPR mRNA in hemocytes and tissues
from eyestalk ganglion, cerebral ganglion, thoracic ganglion,
hepatopancreas, gill, stomach, midgut, heart, epidermis, gonad,
andmuscle using Sp-CCAP-qF, Sp-CCAP-qR, Sp-CCAPR-qF, and
Sp-CCAPR-qR as primers (Table 1). The PCR was performed
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with the Ex-Taq R© DNA polymerase (TaKaRa) under the
following conditions: pre-denaturation at 94◦C for 5min and 40
cycles consisting of 94◦C for 30 s, 58◦C for 30 s, and 72◦C for 30 s;
and the final extension was carried out at 72◦C for 10min. PCR
products were resolved on 1.5% agarose gel, and the results were
observed and photographed by UV gel imager with water used as
a template for negative control and β-actin as an internal control.
The experiment was repeated three times.

mRNA in situ Hybridization
The 217-bp fragment of Sp-CCAPR was amplified by PCR
and cloned into PGEM-T EASY Vector (Promega) for the
subsequent in situ hybridization experiment. The riboprobes
were synthesized using the DIG RNA Labeling Kit (Roche
Diagnostics, Germany) and transcribed by SP6 and T7
polymerases. The hepatopancreas was quickly removed from the
crabs and immediately fixed in 4% paraformaldehyde solution
for 12 h at 4◦C. After being treated with serially diluted
ethanol (75, 85, 95, and 100%) and xylene, the sample was
embedded in paraffin and sectioned into 0.7-µm continuous
sections. Hybridization was subsequently carried out according
to the methods reported previously (46) and visualized by the
BCIP/NBT Chromogen Kit (Solarbio).

Immune Challenges With
Lipopolysaccharide and Polyriboinosinic
Polyribocytidylic Acid Injection
Polyriboinosinic polyribocytidylic acid [Poly (I:C)] (Sigma, USA)
was dissolved in crustacean physiological saline (1.13 × 10−2

mol/L of KCl, 1.33 × 10−2 mol/L of CaCl2, 0.44 mol/L of
NaCl, 1.0 × 10−2 mol/L of Hepes, 2.3 × 10−2 mol/L of
Na2SO4, and 2.6 × 10−2 mol/L of MgCl2, pH 7.4) at 1 mg/ml;
and lipopolysaccharide (LPS) (Sigma, USA) was dissolved in
crustacean physiological saline at 0.5 mg/ml. Seventy-five crabs
were randomly divided into three groups and injected with
100 µl of Poly (I:C), LPS, or crustacean physiological saline
(control). In addition, five untreated crabs were used for the
initial measurements. Hepatopancreas tissues of five individuals
from each treatment group were subsequently randomly sampled
at 3, 6, 12, 24, and 48 h for RNA extraction and qRT-PCR analysis.
The qPCR used a QuantStudioTM 6 Flex Real-Time PCR (Applied
Biosystems) with SYBR R© Select Master Mix (TaKaRa). The total
reaction volume was 20 µl containing 10 µl of SYBR R© Select
Master Mix, 2 µl of the five-fold diluted cDNA, 0.5 µl (1.0 ×

10−5 mol/L) each of the forward and reverse primers, and 7 µl
of ultrapure water; and the procedure included 50◦C for 2min;
95◦C for 2min; followed by 40 cycles of 95◦C for 15 s, 58◦C for
30 s, and 72◦C for 30 s; and followed by a melting curve analysis
at 60–95◦C. A relative transcript level was determined using the
2−11Ct algorithm with β-actin from S. paramamosain as the
internal control. The sequences of the primers used are listed
in Table 1.

Injection of Sp-CCAP Mature Peptide
The predicted Sp-CCAP mature peptide (PFCNAFTGC-NH2)
was synthesized by GL Biochem (Shanghai, China) with a
purity of 98% for the subsequent experiments. Forty crabs

were randomly divided into two groups: the CCAP treatment
group was injected with 100 µl of CCAP mature peptide
dissolved in crustacean physiological saline (final concentration
in hemolymph about 5 × 10−6 mol/L), whereas the control
group was injected with crustacean physiological saline of the
same volume. Meanwhile, five untreated crabs were randomly
selected for the initial measurement. The hepatopancreas tissues
of five crabs from each group were sampled at 3, 6, 12, and 24 h
after injection for RNA extraction and gene expression analysis
(see Total RNA Extraction and First-Strand cDNA Synthesis and
Immune ChallengesWith Lipopolysaccharide and Polyriboinosinic
Polyribocytidylic Acid Injection).

Hepatopancreas Treated in vitro by
Sp-CCAP Mature Peptide
S. paramamosain at the intermolt stage was anesthetized on
ice for 10min, followed by sterilization in 75% ethanol for
5min. Hepatopancreas tissues were subsequently dissected and
washed with crustacean physiological saline before being cut
by a pair of scissors into fragments of ∼20mg. The fragments
were then precultured at 26◦C in a 24-well-plate with 200 µl
of L15 medium, which contained penicillin (100 U/ml) and
streptomycin (100µg/ml, Sigma). After an hour, the culture was
substituted with L15 medium containing Sp-CCAP peptide at
one of three concentrations of 10−6, 10−7, and 10−8 mol/L or
without adding any peptide (control), which were based on a
previous study from our lab (47). Quadruple treatments were
used. After 6 h of culture, tissue fragments were collected from
each treatment for total RNA extraction and subsequent qRT-
PCR analysis, whereas tissue culture medium was also collected
for NO concentration measurement. The NO production was
determined using the Total Nitric Oxide Assay Kit (Beyotime,
China). Briefly, the absorbance of the nitrite was measured with
the Griess reaction at OD540nm, and the nitrite concentration of
each tissue culture medium was then calculated according to the
standard curve constructed using NaNO2 for the calculation of
total NO concentration.

In vitro Antibacterial Assay
The bacterial clearance assay was carried out based on
the method described in a previous study (48), with some
modifications. That is, after hepatopancreas tissue with Sp-
CCAP mature peptide was added at three concentrations (10−8,
10−7, and 10−6 mol/L) plus a control without adding Sp-CCAP
being cultured for 6 h, either Staphylococcus aureus or Vibrio
parahaemolyticus suspension (were stored in our laboratory),
both pathogenic to themud crab, was added to culture wells at the
final bacterial concentration of ∼3 × 104 cfu/ml per well. After
another 3 h of culture, each tissue culture mediumwas inoculated
and cultured on either Luria–Bertani (LB) solid medium (for
S. aureus) or 2216E solid medium (for V. parahaemolyticus) for
12 h at 37◦C, and the number of colonies was then observed
and recorded. The assay was performed in triplicates for each
culture medium.

Frontiers in Immunology | www.frontiersin.org 4 April 2020 | Volume 11 | Article 711

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wei et al. CCAP in Hepatopancreas Immunity

Statistical Analysis
All data were presented as mean ± SEM. Statistical differences
among treatments were analyzed using one-way ANOVA
(followed by Duncan’s test) or Student’s t-test (SPSS 18.0).
Differences were considered statistically significant at p < 0.05
and highly significant at p < 0.01.

RESULTS

Molecular Cloning of a cDNA Encoding
Sp-CCAP Precursor
The complete cDNA sequence of the Sp-CCAP precursor was
obtained by using 3′/5′ RACE coupled to nested PCR. The
full length of Sp-CCAP mRNA is 638 bp with a 64-bp 5′

untranslated region (UTR), a 142-bp 3′UTR, and a 432-bp
ORF encoding a protein of 143 amino acids with a calculated
molecular weight of 15.84 kDa and a theoretical isoelectric
point of 9.43 (GenBank Accession MN923209). The deduced
precursor peptide contained a signal peptide of 32 amino
acids, four putative dibasic (37KR38 and 49KR50), tribasic
(61KKR63), and tetrabasic (115RRKR118) cleavage sites, which
could give rise to five peptides, including four precursor-
related peptides (CCAP AP1: 33-36; CCAP AP2: 39-48; CCAP
AP3: 64-114; and CCAP AP4: 115-143) and one mature
peptide containing nine amino acids (PFCNAFTGC-NH2)
(Figure 1).

Multiple Alignment and Phylogenetic Tree
Analysis
Multiple alignment of the amino acid sequences of CCAP
precursors from different crustaceans indicated that
the CCAP mature peptides were fully identical among
the crustacean species used for comparison (Figure 2).
Phylogenetic analysis of the amino acid sequences of CCAP
precursors among different arthropod species showed that
Sp-CCAP and other crustacean CCAP clustered into one
branch, whereas insect CCAP clustered into another branch
(Figure 3).

Tissue Distribution of Sp-CCAP/Sp-CCAPR
The expression pattern of Sp-CCAP among various tissues
was determined by semi-quantitative RT-PCR. The results
showed that Sp-CCAP was expressed in nerve and gonad
tissues (Figure 4). To identify the potential target sites
of Sp-CCAP, the expression pattern of the Sp-CCAPR
transcript was also determined, and Sp-CCAPR was
found expressed in 12 tissues, including hemocytes and
hepatopancreas (Figure 4).

In situ Hybridization of Sp-CCAPR in
Hepatopancreas
To precisely localize the Sp-CCAPR transcript in hepatopancreas,
in situ hybridization was performed. Histological results
showed that hepatopancreatic tubule epithelial cells of Scylla
paramamosain include E-cells (embryonic), F-cells (fibrillar), B-
cells (blisterlike), and R-cells (resorptive) (Figure 5C). In situ
hybridization localized Sp-CCAPR-positive signal mainly in the

F-cells of hepatopancreas (Figure 5A), whereas in the control
group, no such positive signal was found (Figure 5B).

The Induced mRNA Expression of
Sp-CCAPR in Response to
Lipopolysaccharide and Polyriboinosinic
Polyribocytidylic Acid Stimulation
Because involvement of neuropeptides in NEI regulation is
mainly by binding to their receptors on immune cells, the
temporal patterns of Sp-CCAPR mRNA expression in the
hepatopancreas after LPS and Poly (I: C) injection were
investigated. The results showed that following LPS challenge,
a significantly up-regulated mRNA expression level of Sp-
CCAPR was only observed at 12 h, which was 2.09-fold of
that in the control (p < 0.05) (Figure 6A). However, after
Poly (I:C) stimulation, the mRNA expression level of Sp-
CCAPR was significantly up-regulated at both 3 and 24 h,
with 4.16-fold and 2.28-fold increase, respectively, compared
with that of the control at the same time point (p < 0.05)
(Figure 6B).

The mRNA Expressions of
Immune-Related Genes After Sp-CCAP
Mature Peptide Injection
To evaluate the potential involvement of Sp-CCAP in immune
regulation, after being injected with synthetic Sp-CCAP mature
peptide, the changes in mRNA expression levels of immune-
related genes, including Sp-CCAPR, nuclear transcription factor
NF-κB homologs (Sp-Dorsal and Sp-Relish), member of MAPK
signaling pathway (Sp-P38), pro-inflammatory cytokines factor
(Sp-TNFSF and Sp-IL16), and AMP (Sp-Lysozyme, Sp-ALF, Sp-
ALF4, and Sp-ALF5), in the hepatopancreas were quantified up
to 24 h (Figure 7). The mRNA expression of Sp-CCAPR was
shown to increase significantly at 6 and 12 h post-Sp-CCAP
stimulation, which was 2.69-fold and 2.41-fold of that of the
control, respectively (p< 0.05) (Figure 7A). Similarly, themRNA
expression of Sp-P38 was significantly up-regulated to 1.45-fold
and 1.65-fold of that in the control at 6 and 12 h, respectively
(p < 0.05) (Figure 7B). Likewise, the nuclear transcription factor
Sp-Dorsal mRNA expression level was significantly up-regulated
at 6, 12, and 24 h (Figure 7C), whereas the Sp-Relish mRNA
expression level was significantly up-regulated at 6 and 24 h
(p < 0.05) (Figure 7D). Moreover, pro-inflammatory factor Sp-
TNFSF and Sp-IL16 mRNA expression levels were both up-
regulated significantly at 6 and 12 h (p < 0.05) (Figures 7E,F).
Additionally, the mRNA expression level of Sp-lysozyme and Sp-
ALF4 increased significantly at 12 h (p < 0.05) but returned to
normal at 24 h (p > 0.05) (Figures 7G,I). The mRNA expression
level of Sp-ALF1 also increased significantly at 6, 12, and 24 h (p<

0.05) (Figure 7H). Finally, the Sp-ALF5 mRNA expression level
was sharply up-regulated at 6 h (p < 0.05) but dropped back to
similar levels to that of the control from 12 h onward (p > 0.05)
(Figure 7J).
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FIGURE 1 | Nucleotide and deduced-amino acid sequences of Sp-CCAP cDNA. The initiation codon, termination codon, signal peptide, crustacean cardioactive

peptide (CCAP) mature peptide, CCAP-associated peptides, amidation site, cleavage sites, and cysteine residues are marked by different symbols.

The mRNA Expressions of
Immune-Related Genes and the NO
Concentration After in vitro Sp-CCAP
Mature Peptide Treatment
To further evaluate the immunoregulation function of Sp-CCAP,

Sp-CCAP mature peptide was added to the hepatopancreatic

explant cultures at three different concentrations (10−8, 10−7,
and 10−6 mol/L), and the expression levels of immune-related

genes were measured (Figure 8). The mRNA expression level of
both Sp-CCAPR and Sp-P38 was both up-regulated following the

addition of Sp-CCAP mature peptide at all three concentrations,
and significant differences were detected at 10−8 and 10−7

mol/L as compared with those of the control (p < 0.05)
(Figures 8A,B). Moreover, the Sp-DorsalmRNA expression level
was significantly up-regulated at all three concentrations (p <

0.05) (Figure 8C), and the Sp-Relish mRNA expression level was
significantly up-regulated at 10−8 and 10−6 mol/L (p < 0.05)
(Figure 8D). Similarly, the Sp-TNFSF mRNA expression level
was significantly up-regulated at 10−8 and 10−7 mol/L (p <

0.05) (Figure 8E), whereas the Sp-IL16 mRNA expression level
was significantly up-regulated at all three concentrations (p <
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FIGURE 2 | Multiple alignments of the deduced amino acid sequence of crustacean cardioactive peptides (CCAPs) among various crustacean species. The CCAP

mature peptide is indicated by the red line; conserved amino acid residues are marked by asterisks. GenBank accession numbers of CCAPs are as follows:

Callinectes sapidus (ABB46290.1); Carcinus maenas (ABB46291.1); Portunus trituberculatus (AVK43051.1); Penaeus vannamei (ALP06206.1); Homarus gammarus

(ABB46292.1); and Procambarus clarkia (BAF34910.1).

0.05) (Figure 8F). Finally, the mRNA expression levels of AMP
genes Sp-lysozyme, Sp-ALF1, and Sp-ALF5 were significantly up-
regulated at 10−8 mol/L (p< 0.05) (Figures 8G,H,J), whereas the
mRNA expression level of Sp-ALF4was not significantly different
from that of the control at all concentrations (Figure 8I).

NO is an important gaseous signaling molecule that plays a
key role in the innate immune system; NO concentration changes
in the hepatopancreas culture media were also determined after
adding Sp-CCAP mature peptide at different concentrations
(Figure 8J). It showed that when treated with Sp-CCAP at 10−8

M, NO concentration in the medium increased significantly
(p < 0.05); however, NO content did not significantly vary

from the control at the concentrations of 10−6 and 10−7 mol/L
(Figure 8J).

Clearance of Bacteria Facilitated by
Sp-CCAP
The bacterial clearance capability of each hepatopancreas culture
medium with Sp-CCAP mature peptide added at 10−8, 10−7,
and 10−6 mol/L was evaluated against the control (no Sp-CCAP
addition) to assess whether up-regulated immune molecules
led to enhanced antibacterial capacity. The results showed that
based on colony counts, in both cases of S. aureus and Vibrio
parahaemolyticus, bacteria numbers in all tissue culture media
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FIGURE 3 | Phylogenetic analysis of crustacean cardioactive peptides (CCAPs) relative to various crustacean and insect species. The sequences used in evolutionary

tree analysis include Callinectes sapidus (ABB46290.1); Carcinus maenas (ABB46291.1); Portunus trituberculatus (AVK43051.1); Homarus gammarus (ABB46292.1);

Procambarus clarkia (BAF34910.1); Nephrops norvegicus (QBX89037.1); Cherax quadricarinatus (AWK57511.1); Penaeus vannamei (ALP06206.1); Macrobrachium

nipponense (ASH96804.1); Periplaneta Americana (Q75UG5.1); Rhodnius prolixus (ACZ52615.1); Nilaparvata lugens (BAO00946.1); Nicrophorus vespilloides

(XP_017778790.1); and Orchesella cincta (ODM98622.1).

FIGURE 4 | Tissue distribution of Sp-CCAP and Sp-CCAPR in S. paramamosain. 1, eyestalk ganglion; 2, cerebral ganglion; 3, thoracic ganglion; 4, gill; 5,

hepatopancreas; 6, hemocytes; 7, stomach; 8, midgut; 9, heart; 10, epidermis; 11, muscle; 12, gonad; and 13, the negative control.

with Sp-CCAP mature peptide addition decreased compared
with those of the control; and the improvement in bacterial
clearance capacity was significant when Sp-CCAPmature peptide
was added at 10−8 and 10−7 mol/L (p < 0.05) (Figures 9A–D).

DISCUSSION

As a multifunctional peptide hormone, CCAP is known to play
an important role in the regulation of various physiological
processes in arthropods (23, 26–34). Its immunomodulatory

function, however, has never been reported previously; the
present study hence appears to be the first to report the
involvement of CCAP in regulating hepatopancreas immunity in
an arthropod.

In this study, a cDNA encoding CCAP precursor was
identified from mud crab Scylla paramamosain. In the
phylogenetic tree constructed, all CCAP precursor peptides
could be divided into two branches of crustacean and insect. The
Sp-CCAP precursor peptide fell into the branch of crustacean,
indicating that Sp-CCAP shared high similarity with other
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FIGURE 5 | Localization of Sp-CCAPR mRNA in the hepatopancreas by in situ hybridization. (A) Positive signals with the antisense probes. (B) Sense probes of

Sp-CCAPR served as the negative control. (C) Histological observation of hepatopancreatic tubule epithelial cells: E, E-cell (E: embryonic); F, F-cell (F: fibrillar); B,

B-cell (B: blisterlike); and R-cell (R: resorptive).

FIGURE 6 | Changes in mRNA expression of Sp-CCAPR in the hepatopancreas after lipopolysaccharide (LPS) and polyriboinosinic polyribocytidylic acid [Poly (I:C)]

injection. (A) After LPS stimulation. (B) After Poly (I:C) stimulation. All data are shown as mean ± SEM (n = 5); statistical analysis was performed using Student’s

t-test. *indicates significant difference (p < 0.05).

crustaceans. By comparing precursor peptides of all sequences
from crustaceans, four restriction sites were identified, suggesting
that their translation processing modules are highly conserved.
CCAP mature peptide sequences (PFCNAFTGC-NH2) are
identical among different species, which indicates essential roles
of CCAP to arthropods.

The distribution of genes in different tissues has a guiding
role for exploring the physiological functions of neuropeptides
(10). RT-PCR results showed that mRNA transcript of Sp-
CCAP was mainly expressed in the nervous system and
gonads of S. paramamosain, whereas the Sp-CCAPR mRNA
was expressed in a wide range of different tissues. However,
in American cockroach Periplaneta americana and Pacific
white shrimp L. vannamei, CCAP mRNA was reportedly
expressed in the midgut and the nervous system (26, 27),
which suggests that likely there are different physiological
regulation pathways of CCAP in arthropod species. In the
present study, the detection of mRNA expression of both Sp-
CCAP and Sp-CCAPR in gonads suggested that they may act as
an autocrine/paracrine factor to regulate ovarian development,

similar to that of short neuropeptide F (sNPF) identified
in the same crab species (49). Neurohormones have been
found to participate in immune regulation through receptors
on hemocytes, the well-known immune-related cells that play
crucial roles in host immune defense in crustaceans (50).
For instance, in insects, 5-HT receptors were found expressed
in the hemocytes, and 5-HT has been shown to modulate
hemocyte phagocytosis through 5HT1B and 5-HT2B receptors
(51). Similarly, Es-GPCR89 mRNA was expressed in the
hemocytes of Chinese mitten crab Eriocheir sinensis and found
to mediate cerebral antimicrobial activity (52). In this study,
Sp-CCAPR was found expressed in the hemocytes, suggesting
that Sp-CCAP may be involved in the immune regulation
of hemocytes as a neurohormone in S. paramamosain. In
crustaceans, the hepatopancreas is not only the major organ
responsible for digestion but also an important immune organ
(16). Indeed, in crayfish Procambarus clarkii, a putative GPCR
gene, HP1R, was found expressed in the hepatopancreas and
was suggested to play a role in protecting the host from
bacterial invasion (53). In this study, in situ hybridization
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FIGURE 7 | Effects of Sp-CCAP injection on the mRNA expressions of immune-related genes in the hepatopancreas. (A) Sp-CCAPR; (B) Sp-P38; (C) Sp-Dorsal; (D)

Sp-Relish; (E) Sp-TNFSF; (F) Sp-IL16; (G) Sp-Lysozyme; (H) Sp-ALF1; (I) Sp-ALF4; (J) Sp-ALF5. All data are shown as mean ± SEM (n = 5); statistical analysis by

Student’s t-test. * and **on the top of bars indicate significant (p < 0.05) and highly significant differences (p < 0.01), respectively.
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FIGURE 8 | Effects of Sp-CCAP addition at different concentrations on mRNA expressions of immune-related genes in in vitro cultured hepatopancreas tissues and

NO concentration in the culture media. (A) Sp-CCAPR; (B) Sp-P38; (C) Sp-Dorsal; (D) Sp-Relish; (E) Sp-TNFSF; (F) Sp-IL16; (G) Sp-Lysozyme; (H) Sp-ALF1; (I)

Sp-ALF4; (J) Sp-ALF5; and (K) the concentration of NO. All data are shown as mean ± SEM (n = 4); statistical analysis performed by one-way ANOVA followed by

Duncan’s test. * and **on top of bars indicate significant (p < 0.05) and highly significant differences (p < 0.01), respectively.
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FIGURE 9 | Bacterial clearance capacity of hepatopancreas culture medium treated with different concentrations of Sp-CCAP as compared with the no Sp-CCAP

addition control. (A) Results with Staphylococcus aureus. (B) S. aureus colonies grown on Luria–Bertani (LB) plates. (C) Results with Vibrio parahaemolyticus.

(D) S. aureus colonies grown on 2216E plates. All data are shown as mean ± SEM (n = 4); statistical analysis performed by one-way ANOVA followed by Duncan’s

test. * and **on top of bars indicate significant (p < 0.05) and highly significant differences (p < 0.01), respectively.

showed that Sp-CCAPR mRNA was mainly expressed in F-
cells of hepatopancreas, indicating that Sp-CCAP may play
an immunomodulatory role via its receptor on F-cells in
S. paramamosain.

Increasingly studies have shown that neuropeptides
play an important role in the NEI network; typically,
they are activated by immune stimuli and bind to their
receptors to participate in the innate immune responses
(2, 54). In this study, Sp-CCAPR was found to distribute
in the hepatopancreas of S. paramamosain, and its mRNA
expression greatly increased after the stimulation of LPS and
Poly (I:C), which suggested that both LPS and Poly (I:C)
challenges might activate Sp-CCAP to bind to its receptor
in the hepatopancreas to participate in immune responses.

Interestingly, previous studies have reported similar results in
other species. For example, HPR1 gene in the hepatopancreas
of P. clarkii was significantly up-regulated by stimulation with
Aeromonas hydrophila (53), the mRNA of LPSenhR-1 was
significantly up-regulated after LPS stimulation in rainbow
trout Oncorhynchus mykiss (55), and Poly (I:C) stimulation
induced significantly higher neurokinin-2 receptor mRNA
expression in human dendritic cell (56). It is well-known that
the neuroendocrine system regulates the immune responses by
releasing neuropeptide hormones, whereas the immune system
activates the neuroendocrine system by secreting cytokines, thus
forming a circular network of neuroendocrine and immune
regulation (57). Sp-CCAPR showed two expression peaks at
3 and 24 h after Poly (I:C) stimulation; it is speculated that
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Sp-CCAP/Sp-CCAPR can respond quickly to Poly (I:C)
stimulation and be indirectly affected by Poly (I:C)-induced
immune factor activation.

In this study, the immunomodulatory effect of Sp-CCAP
was further studied by in vivo injection and in vitro culture
experiment. In the in vivo experiment, Sp-CCAP was found to
significantly induce the expression of its receptor Sp-CCAPR,
P38 MAPKs (Sp-P38), and nuclear transcription factor NF-
κBs (Sp-Dorsal and Sp-Relish) in the hepatopancreas, which
suggested that by stimulating the expression of Sp-CCAPR,
Sp-CCAP likely induced increased amount of Sp-CCAPR
on the cell membrane in the hepatopancreas, thus greatly
enhancing the activity of signaling pathway mediated by Sp-
CCAP. On the other hand, P38 MAPKs as a member of
MAPK superfamily, can associate extracellular signals with
intracellular mechanisms (58) and play a crucial role in the
inflammatory response and the host defense against pathogen
infections (59). The NF-κB pathway is an essential pathway
for the innate immune response to pathogen invasion in
both vertebrates and invertebrates (60). Therefore, in order
to explore the possibility that immune molecules regulated
by Sp-CCAP and its receptor Sp-CCAPR signaling pathway,
the mRNA expression levels of several immune molecules
with pro-inflammatory and antibacterial properties, that is, Sp-
IL16, Sp-TNFSF, and AMPs, were detected. Of these immune
molecules, AMPs are key effector molecules that induce innate
immunity in various invertebrates (61). As one of the AMP
family, the anti-LPS factor (ALF) is well-known to possess a
wide range of antibacterial, antifungal, and antiviral properties
(62). Another AMP, lysozyme, reportedly protects organisms
by destroying the cell walls of infectious bacterial pathogens
(63). Meanwhile, interleukin-16 (IL-16), a pleiotropic cytokine,
plays essential roles in the regulation of various innate immune
processes (64), and has been reported to play a strong positive
role in antibacterial responses in L. vannamei (65). Relish
and Dorsal are invertebrate NF-κB homologs, they function
as essential transcription factors on mediating the activation
of AMP genes in crustaceans (66), and the expression of IL-
16 is dependent on the NF-κB pathway (67). The P38 MAPK
plays a key role in a variety of immune responses by regulating
the production of pro-inflammatory cytokines, including TNFs
and IFNs (58, 59). In this study, the up-regulation of nuclear
transcription factor NF-κBs, pro-inflammatory factor IL-16,
and AMP genes suggests that Sp-CCAP might influence the
expressions of Sp-IL16 and AMPs by mediating the NF-κB
signaling pathway, whereas the up-regulation of Sp-P38 and
Sp-TNFSF suggests that Sp-CCAP might affect the expression
of Sp-TNFSF by mediating the P38 MAPK signaling pathway.
Together, these results suggest that Sp-CCAP possibly activates
and induces inflammatory and antimicrobial responses in
S. paramamosain. Interestingly, the Sp-CCAPR expression level
was not significantly elevated at 24 h post Sp-CCAP mature
peptide injection, whereas Sp-Dorsal, Sp-Relish, and Sp-ALF1
expression levels were still up-regulated. This phenomenon
may be explained by the possible accumulation of sufficient
receptor proteins on the cell membrane, thus promoting these
gene expressions.

The results of the in vitro experiment were similar to
those of in vivo experiment; that is, adding Sp-CCAP mature
peptide to the hepatopancreas cultures could promote the
expressions of signal pathway-related genes and immune
effector molecules. They provided further evidence that
Sp-CCAP was involved in hepatopancreas immunity of S.
paramamosain. Moreover, NO is an important gaseous signal
molecule that plays anti-bacterial and inflammatory roles in
invertebrates (68). In the present study, it was found that
NO concentration in the hepatopancreas culture medium
increased significantly when Sp-CCAP mature peptide was
added at 10−8 mol/L. It provided additional evidence from
the point of view of gaseous signal molecules that Sp-CCAP
likely plays a significant role in the hepatopancreas immunity of
S. paramamosain.

Finally, the in vitro bacterial clearance experiment showed
that the up-regulation of immune effector molecules in
the hepatopancreas mediated by Sp-CCAP signaling pathway
could effectively resist bacterial infection. Indeed, the results
demonstrated for the first time that neuropeptides play
antibacterial roles in the hepatopancreas of a crustacean, likely
via regulating immune-effector molecules.

In invertebrates, on the one hand, when neuropeptides act
on immune cells, neuropeptide receptors on the membrane
can activate the G-protein Gαs/Gαi subunit and react with
adenylate cyclase to increase or decrease intracellular cAMP
concentration (69). On the other hand, when neuropeptides
bind to Go/Gq protein-coupled receptors on immune cells, they
can activate the activity of phospholipase C, thereby altering
intracellular Ca2+ concentration (69). The changes of these
secondary messengers (cAMP and Ca2+) activate a series of
signaling pathways, such as MAPK (JNK, ERK, and P38) and
NF-κB signaling pathway, through cascade amplification. They
synergistically promote the release of inflammatory factors and
immune factors (70). CCAPR was first identified in Drosophila
but has since been identified in many other insects; it is
known that the involvement of CCAPR in various physiological
processes, such as molt and heartbeat regulation, is mediated
by CCAP (35, 36, 71). A previous study has shown that the
binding of Sp-CCAP to Sp-CCAPR activated the cAMP level
and Ca2+ signal response in the cytoplasm of S. paramamosain
(38). Therefore, in this study, activating P38 MAPKs and NF-
κB signaling pathways by the binding of Sp-CCAP to Sp-
CCAPR were likely via cAMP and Ca2+ concentration changes
in hepatopancreas cells, which promoted the expression of
Sp-IL16, Sp-TNFSF, Sp-LYZ, Sp-ALF1, Sp-ALF4, and Sp-ALF5,
hence enhancing the immune responses of S. paramamosain to
pathogen infection.

In summary, the present study provides the first
evidence that CCAP plays an immunomodulatory role
in the hepatopancreas in a crustacean. It suggests that
CCAP might activate immune effector molecules mediated
by the P38 MAPK pathway and NF-κB pathway in the
hepatopancreas to resist pathogen infection. This study also
potentially provides a new strategy for disease control from
the perspective of neuroendocrine immunity for the mud
crab aquaculture.
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