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The CD83 molecule has been identified to be expressed on numerous activated
immune cells, including B and T lymphocytes, monocytes, dendritic cells, microglia,
and neutrophils. Both isoforms of CD83, the membrane-bound as well as its soluble
form are topic of intensive research investigations. Several studies revealed that CD83
is not a typical co-stimulatory molecule, but rather plays a critical role in controlling
and resolving immune responses. Moreover, CD83 is an essential factor during the
differentiation of T and B lymphocytes, and the development and maintenance of
tolerance. The identification of its interaction partners as well as signaling pathways
have been an enigma for the last decades. Here, we report the latest data on the
expression, structure, and the signaling partners of CD83. In addition, we review the
regulatory functions of CD83, including its striking modulatory potential to maintain the
balance between tolerance versus inflammation during homeostasis or pathologies.
These immunomodulatory properties of CD83 emphasize its exceptional therapeutic
potential, which has been documented in specific preclinical disease models.

Keywords: CD83, immune tolerance, autoimmunity, viral escape mechanism, Treg cells

CD83 – GENE STRUCTURE AND PROMOTOR
CHARACTERIZATION

Since its discovery in 1992 (1, 2), CD83 has been extensively studied and been now treated
as a promising potential therapeutic target. A recent review provided a short overview of the
CD83 biology with a major focus on therapeutic applications using anti-CD83 antibodies and
recombinant soluble CD83 (3). Here, we summarize in a deeper view the structure and control
of the CD83 promotor, the newest analysis of the protein structure, and the regulatory functions of
CD83 in immune response and tolerance.

Both, murine (muCD83) and human CD83 (hCD83) are composed of an extracellular V-type
Ig-like domain, a transmembrane domain, and a cytoplasmic tail. The murine Cd83 gene is located

Abbreviations: APC, antigen presenting cell; CD83L, CD83 ligand; DC, dendritic cell; hCD83, human CD83; Ig,
immunoglobulin; IRF, interferon regulatory factor; mb, membrane-bound; mbCD83, membrane-bound form of CD83;
MHC, major histocompatibility complex; Mr, relative molecular mass; muCD83, murine CD83; sCD83, soluble CD83;
TFBSs, transcription factor binding sites; Tregs, regulatory T cells; URE, upstream regulatory element; UT, untranslated;
wt, wild type.
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on mouse chromosome 13 band A5, spans ∼19 kb and is
composed of five exons and four introns (4). In particular,
exon 1 encodes the 5′UT sequence, the translation initiation
codon and the first 12 amino acids of the signal peptide.
Exon 2 codes for the remainder of the signal peptide as well
as 32 amino acids of the Ig-like domain. Exon 3 comprises
the residual 65 amino acids of the Ig-like domain. Exon
4 contains the putative transmembrane region, and exon 5
encodes the 39-amino acid cytoplasmic tail and the large 3′UT
sequence (5).

On the other hand, the human CD83 gene maps to
chromosome 6p23 (5) and both, the muCd83 and hCD83,
share the identically positioned translation initiation sequence
(4). Although the muCd83 gene structure has been well
characterized in the past, the CD83 promoter region has
only been decoded in humans, i.e., human monocyte-derived
dendritic cells (DCs). Here, a 261 bp-spanning minimal promoter
(MP) region upstream of the translation initiation site was
identified to drive hCD83 expression (6). Interestingly, this MP
region lacks any maturation- and cell-type specificity. Additional
studies in human DCs revealed a highly transcriptionally
active module within the hCD83 gene locus. This module was
shown to consist of an upstream regulatory element (URE)
of 164 bp, located 85 bp upstream of the minimal promoter
(261 bp, MP-261), and a downstream enhancer (185 bp)
within intron 2 of the CD83 gene. Here, the URE and the
enhancer were reported to work synergistically in trans (7).
Transcriptional activation is mediated by a complex framework
of three interferon regulatory factors (IRFs) and five NFκB-
transcription factor binding sites (TFBSs) involved in the exact
arrangement of this tripartite structure in DCs, with NFκB-family
members p50, p65, and cRel synergizing with IRFs including
IRF-1, IRF-2, and IRF-5. Noteworthy, although CD83 is not
exclusively expressed by mature DCs, but also by activated
lymphocytes, this tripartite promoter complex is neither active
in T- or B cell lines nor in primary activated T- and B
cells (7).

In addition to this, a very recent study described the aryl
hydrocarbon receptor (AhR) to be involved in the transcriptional
regulation of the CD83 molecule (8). Bioinformatics analyses
revealed two potential AhR-binding motifs (XRE) within the
URE and the MP-261 of the human CD83 promoter. Following
activation of AhR by the flavonoid quercetin, AhR was
demonstrated to directly bind to the P-510 in human DCs,
accompanied by a strong downregulation of CD83 mRNA and
protein expression. Regarding the mode of action the authors
hypothesize that the negative control of CD83 transcription
by AhR might be either due to the association of AhR with
NFKB, thereby modulating its activity, or due to a steric
hindrance of adjacent AhR affecting the binding of NFKB to
its site (8).

Thus, transcriptional regulation of the human CD83
molecule is not only controlled by “classical” immune cell-
related transcription factors like NFKB and IRF, but also by
environmental sensors like AhR.

STRUCTURAL FEATURES OF THE CD83
PROTEIN

Orthologs of CD83 have been detected in more than 50
vertebrates including fish, reptiles, birds, and mammals. Between
distant orthologs (e.g., fish and human), the sequence identity
can drop to 25–28%. Exclusively one experimentally determined
structure is available of these orthologs, namely hCD83 (9).
Structural insight was gained by X-ray crystallography from three
different crystal forms, in all of which hCD83 adopts a highly
similar tertiary structure and homotrimeric quaternary assembly
(Figure 1A). CD83 was crystallized using a truncated version
of hCD83 that corresponded to residues 20–131 of the 205
residue-long gene product (UNIPROT ID: Q01151) (10). This
crystallized fragment only encompassed the extracellular domain
of hCD83 as compared to the bioinformatically inferred domain
structure of full-length hCD83 (residues 1–19: signal peptide; 20–
144: extracellular domain; 145–166: transmembrane region and
167–205: cytoplasmic tail).

The resolution of the crystal structure of hCD83 provided
answers to issues discussed controversially in the past. The
structural insights demonstrated that the extracellular domain of
CD83 indeed folds into a V-set Ig domain. Human CD83 contains
five cysteine residues in the extracellular domain that form two
pairs of disulfide bonds. It is hypothesized that the fifth cysteine
is hindered from forming an intermolecular disulfide bond by
the presence of several protein surface-attached oligosaccharides
(11, 12).

The interactions between the monomers are characterized by
extensive homotopic contacts that bury as much as 1080 Å2 of
the surface of each monomer within the trimer interface. Thus,
the crystal structure suggests that hCD83 is assembled into a
homotrimer when presented as a full-length integral membrane
protein on the surface of, e.g., DCs. In contrast, the additionally
observed soluble form of hCD83 is hypothesized to act as a
monomer in solution (Figures 1B,C).

A sequence alignment of several representative CD83
orthologs and paralogs is shown in Figure 2. With respect to
sequence conservation, the alignment reveals the presence of
three distinct segments (Figure 2). The N- and C-terminal
segments, corresponding to residues 20–54 and 89–129
of hCD83, respectively, displayed a significant sequence
conservation. These segments contain the β-strands A, B, C, E, F,
and G of the Ig-fold. Cysteines at position 35 and 107 form the
canonical disulfide bridge, which is present in the vast majority of
Ig-domains. The three remaining cysteines (Cys27, Cys100, and
Cys129), present in hCD83, are moderately conserved among
the CD83 orthologs, but not among the paralogs (Figure 2).
Site-directed mutagenesis has revealed that all these three
cysteines can be replaced by serines without losing the activity of
soluble CD83 (9).

In contrast to the highly conserved N- and C-terminal
segments, the middle segment is only poorly conserved among
CD83 orthologs with respect to length and sequence (Figure 2).
It is also noteworthy that all CD83 paralogs shown in Figure 2
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FIGURE 1 | Atomic structure of CD83. Model for the presentation of trimeric full-length CD83 on cell surfaces in comparison to the monomeric structure of shedded
soluble CD83. (A) Trimeric assembly as observed in the crystal structure of hCD83. The β-strands C′, C′′, and D are not visible in the crystal structure of hCD83. For
illustration purpose, they are added in gray to one monomer. (B) Presentation of trimeric hCD83 on cell surfaces and (C) glycosylated monomer formed by the
soluble shedded variant of CD83. The structure illustrations have been drawn with program PyMOL (The PyMOL Molecular Graphic System. WL DeLano –
Schrödinger, LLC, New York, 2010).

form heteromeric interactions with other Ig-domains, which play
an important role in signal transduction (9).

CD83 EXPRESSION

As mentioned above, CD83 protein is conserved among highly
distinct species ranging from fish to mammals. While murine
and human CD83 share 63% amino acid identity (4, 13),
chicken and human CD83, and chicken and murine CD83
share 39 and 40% identity, respectively (14). Two protein
isoforms of CD83 have been described in mice and humans:
a membrane-bound form (mbCD83) (15) and a soluble form
(sCD83) (16). Upon transcription, CD83 mRNA is exported from
the nucleus to the cytoplasm by an uncommon mechanism,
involving the cellular RNA-binding protein HuR, the eukaryotic
initiation factor 5A (eIF-5A), and the nuclear export receptor
CRM1 (17). Concerning this, recent data reported the shuttle
phosphoprotein APRIL (ANP32B) to be involved in the HuR-
mediated nucleocytoplasmic translocation of CD83 mRNA by
acting as an adaptor protein that links HuR and CRM1 (18, 19).
Further studies identified an additional RNA binding protein,
namely AUF1 (hnRNP D), to regulate translation of CD83
mRNA (20). However, the precise mechanisms regulating CD83
post-transcriptional processing and transport toward cellular
organelles require future investigations.

Although CD83 is still one of the most prominent surface
markers for fully mature human and murine DCs, including
Langerhans cells (1, 15, 21), its expression is widely distributed
among different cell types. These include B cells (22), activated
CD4+ T cells and Tregs (18, 23), granulocyte-precursor cells
(24), myelocytes (25), neutrophils (26), murine thymus epithelial
cells (27) various tumor cell types (e.g., Hodgkin’s lymphoma)
(28) and Epstein-Barr Virus transformed lymphoblastoid cell
lines (29). Moreover, one study showed CD83 to be expressed

by various immune cell types in vitro and in vivo, using a
CD83-EGFP reporter mouse (30). The group further described
a high and a low CD83 promoter activity in mature and
immature DCs, respectively. However, while immature DCs lack
detectable CD83 cell surface expression levels, CD83 is restored
in the Golgi complex and endocytic vesicles (31, 32). Thus, the
internal storage of CD83 can be transported to the cell surface
immediately upon maturation. Interestingly, in monocytes and
macrophages CD83 activity was undetectable, while resident B
cell populations of spleen and lymph nodes showed a strong
CD83 promoter activity. In-depth analyses revealed that pro-B
and early pre-B cells lack any EGFP expression, whereas late pre-
B cells showed a significant upregulation of EGFP expression,
with the majority of naïve immature B cells still being EGFP
positive. In contrast, CD8+ T cells as well as CD4+ T cells,
including Tregs, effector memory cells, and central memory cells,
were demonstrated to express CD83 exclusively upon activation
(23, 30), with stronger promoter activity in CD4+ compared to
CD8+ T cells.

Collectively, the CD83 molecule is expressed by a great variety
of cell types, but mainly by activated immune cells like DC, B-
and T cells as well as by thymus epithelial – and tumor cells. In
the following section of this review, we will now highlight the
proposed functions of CD83 among the different cell types.

THE ROLE OF CD83 AS MASTER
REGULATOR IN THE DEVELOPMENT OF
ADAPTIVE IMMUNITY

CD4+ T Cell Development in the Thymus
The generation and characterization of a complete CD83
knockout (CD83−/−) mouse by Fujimoto et al. in 2002
highlights the essential role of CD83 expression by the thymic
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FIGURE 2 | Multiple sequence alignment of CD83 orthologs and paralogs. The alignment includes eight CD83 orthologs from different species as well as four
paralogous Ig-domains of high structural similarity. The sequence numbering of hCD83 is given on top of the alignment. Characteristic β-strands of Ig-domains are
indicated by red boxes and labeled. A cyan box marks the sequence stretch that is not visible in the hCD83 crystal structure. Sequences were retrieved from UniProt
and NCBI and the alignment was performed using ClustalOmega. The alignment of the paralogs was further adjusted using the structural information from PDB
entries 5mixA, 2ptvA, 1qa9A, 1ncnA, 1i8lA. Visualization of the alignment was done with Jalview using the “Clustal” coloring scheme for residue conservation.

microenvironment and antigen presenting cells (APCs) for the
selective development and peripheral egress of CD4+ T cells
in vitro and in vivo (33). When comparing the phenotype of
these animals with wildtype (wt) littermates, a striking reduction
in thymic (68% less) and peripheral (75-90% less) CD4+ T
cells was found, without affecting the phenotype, distribution,
and development of other thymocytes. Crossing of CD83−/−

mice with AND+/+ mice, which carry major histocompatibility
complex class II (MHCII)-specific TCR transgenes and thereby
induce a positive thymocyte selection into the CD4 lineage,
further affirmed the above. In experiments using bone marrow
cells of either CD83−/−AND+/+ mice or AND+/+ mice that
were transferred into irradiated CD83−/− and wt littermates,
both groups equally developed in wt mice but not in CD83−/−

recipient mice. Since CD83-deficient bone marrow cells gave

rise to normal numbers of peripheral CD4+ T cells only when
transplanted into wt recipients, the lack of CD4+ T cells was
caused by extrinsic effects by the thymic microenvironment
rather than an intrinsic defect in the CD4+ T cell itself. In mice,
CD83 is equally expressed on thymic epithelial cells (TECs) and
dendritic cells. The group additionally proved that exclusively the
transfer of wt TECs but not wt DCs into CD83−/− mice could
restore the thymic CD4+ T cell development (33). Supporting
this, a recent report demonstrated that the transmembrane
domain of CD83 antagonizes the ubiquitin ligase MARCH 8,
which in turn stabilized MHCII on cortical TECs. This novel
functional pathway was essential for a normal thymic positive
CD4+ T cell selection (27). Consistent with this, the critical
role of CD83 during CD4+ thymocyte development was also
confirmed by using a mouse mutagenesis screen. In particular,
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CD83 mutant animals with a homozygous missense mutation in
the last exon of CD83 displayed a comparable aberrant phenotype
as CD83−/− mice did. Notably, this phenotype could be rescued
by transgenic expression of CD83 in the mutant background (34).

Treg Differentiation and Stability
Although endogenous CD83 expression on CD4+ T cells is not
essential for normal thymic CD4+ T cell development (35),
several T cell subpopulations express CD83 after activation
(30, 36). While several studies revealed a modulatory function
of CD83 on APCs (see below), the function of CD83 on T
cell populations remained a long-time enigma. Recent studies
clearly showed that a rapid and strong expression of CD83 upon
activation is unique feature for murine Treg cells (23, 35). It
has been demonstrated that only murine CD4+CD25+Treg have
the ability to highly induce CD83 expression on transcriptional
level, when compared to CD4+CD25−T cells (35). Further
immunofluorescence staining and flow cytometric analyses
confirmed that murine CD83+CD4+ T cells showed a concurrent
upregulation of Treg specific markers upon activation, such as
CD25, CTLA-4, GITR, Helios or NRP-1 (23, 35).

These murine data are further supported by studies in the
human system, which also showed a distinct CD83 expression
profile comparing anti-CD3/CD28-stimulated human effector
versus regulatory T cells (23, 37). Upon TCR-stimulation
in vitro, human CD4+ T cells upregulate CD83 expression
transiently with a maximum expression at day 2 followed by a
strong decline after day 3 (37). By contrast, expanded human
CD25hiCD45RA+ Tregs already reached their CD83 mRNA
expression maximum 3 h after stimulation (23). Strikingly, TCR-
stimulation of human and murine CD4+ T cells together with
transforming growth factor beta (TGFβ) not only resulted in
the expected differentiation into CD4+CD25+Foxp3+ iTregs but
also in a sustained and stable CD83 expression (37, 38). In
addition, immunofluorescence microscopy revealed CD83 to co-
localize with CD25 on those cells (37). Strong expression of the
high affinity IL-2-receptor alpha-chain CD25 is essential for Treg
cell survival, due to their inability to produce IL-2 for survival
and proliferation. Whether CD83 possesses a similar role in the
stabilization of CD25 on Tregs compared to the stabilization of
MHCII on TECs (see chapter 4a), needs to be elucidated.

Remarkably, forced CD83 expression in murine activated
CD4+ T cells already induced their differentiation into
Foxp3 expressing Tregs. Consequently, these cells acquired
immunomodulatory functions and efficiently suppressed effector
T cell-mediated immune responses in vitro as well as in vivo (35).
Moreover, CD4+Foxp3+ T cells derived from BAC-transgenic
mice expressing murine and human CD83 simultaneously,
displayed an enhanced activated phenotype accompanied by
an increased suppressive capacity in comparison to wt cells
(39). The essential function of cell intrinsic CD83 expression in
Tregs has been reported by studies of tissue specific conditional
knockout (cKO) mice, in which CD83 is exclusively ablated
in Foxp3+ Tregs. Compared to wildtype mice, these cKO
mice showed a reduced percentage of Foxp3+ Tregs and an
increased pro-inflammatory phenotype, which became even
more prominent in aged mice. Moreover, elevated levels of

autoantibodies against nuclear antigens were detected in the
sera of young mice compared to the respective wt controls
(38). This indicates an imbalance of the immune tolerance in
Treg-specific CD83-deficient mice. In vitro, the CD83-deficient
Treg cells possessed unaffected suppressive capacities and could
be expanded similarly to wildtype Tregs, but produced higher
levels of proinflammatory cytokines. In addition, adoptive
transfer of either CD83-deficient or wt Treg cells together with
effector cells into RAG1−/− mice equally prevented intestinal
inflammation. However, cKO mice developed an aggravated
pathology with impaired resolution of inflammation in an
experimental autoimmune encephalomyelitis (EAE) model (40).
Regarding the demonstrated induction of iTregs by CD83
expression in murine naïve T cells the study showed that
in vitro-differentiation of naïve CD4+ T cells from Foxp3-specific
cKO mice resulted in strongly reduced numbers of Foxp3+
iTregs. Interestingly, this intrinsic loss of CD83 expression in
Foxp3+ iTregs lead to reduced expression levels of Treg-specific
differentiation markers and induced expression of inflammatory
cytokines (35, 38).

These data were further supported by data derived from
gene array analyses revealing a striking different gene expression
profile of cKO Tregs compared to wt Tregs. Interestingly, while
the lack of CD83 expression did not diminish the suppressive
capacity of cKO Tregs, important Treg differentiation markers,
e.g., CD25, KLRG1 and CD103, were downregulated (38). In
particular, IL-2 signaling via CD25 plays an important role
during Treg differentiation, expansion, and function (41). Thus,
the diminished CD25 expression on CD83 deficient Tregs
could already influence their stability. Further, KLRG1 is a
late differentiation marker on T cells and the development of
terminally differentiated KLRG1+ Tregs also depends on IL-
2 signaling (40). Likewise, the CD103 molecule, a ligand for
E-cadherin, has also been described as a marker for murine
“effector memory”-like Tregs especially in the intestinal mucosa
(42). Notably, CD83 expression in Tregs is not essential for
Foxp3 expression (38). In summary, Treg intrinsic CD83
deficiency not only affects the generation of iTregs but also
results in a lack of terminally differentiated Treg populations
in the periphery of cKO mice. How CD83 stabilizes Treg
differentiation upon activation remains yet to be elucidated. One
potentially involved pathway could be deduced from studies
with sCD83 on monocytes, which demonstrated that sCD83
modulates TLR4/MD2 signaling by downregulation of IRAK-1,
switching from inflammatory signals to a tolerogenic outcome
(see chapter 6; 43). Apart from this, another study demonstrated
that activated Tregs release increased levels of sCD83 (23).
Whether sCD83 reacts on Tregs or whether mbCD83 employs
similar interaction pathways, has to be shown. Strikingly, Tregs
from cKO mice expressed elevated levels of IRAK1, the shown
CD83 interaction partner MD2, TLR2 and TLR4 compared to wt
Tregs. Additionally, those cells exhibited reduced protein levels
of the transcription factor NFATc2, which has been proposed
to cooperate with Smad3, accompanied by an increased Foxp3
expression, higher Treg numbers and a mitigated inflammatory
response (43). Thus, CD83 is proposed to modulate Treg
differentiation at least partially via modulation of IRAK-1
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FIGURE 3 | Endogenous CD83 expression is essential for Treg cell differentiation and stability. CD83-deficiency in Tregs results in decreased numbers of
differentiated Tregs and less iTregs upon activation. Typical Treg differentiation markers, e.g., CD103, KLRG1 or IL-2Rα (CD25), are downregulated, while
pro-inflammatory signaling pathways, e.g., IRAK1, and cytokines, e.g., TNF-α and IL-1β, are up-regulated. Overall, Treg-specific cKO mice showed an impaired
tolerance.

expression (Figure 3). Noteworthy, other important regulators
of Treg differentiation, as e.g., Prdm1 (BLIMP-1), Smarcd3 and
GATA3, are also decreased in cKO Tregs.

In summary, it is remarkable that CD83 expression is not only
essential on TECs or other APCs for thymic T cell selection and T
cell activation, but in addition endogenous CD83 expression in T
cell populations is indispensable for Treg differentiation and the
stability of Tregs upon activation.

B Cell Longevity, Homeostasis, and
Class Switching
Since its discovery, CD83 has also been defined as a marker
for B cells. Except pro-B and early pre-B cells, almost all
resident peripheral B cell populations exhibit a strong CD83
promoter activity (30). Several studies demonstrate that CD83
expression correlates with B cell activation and is up-regulated
after engagement of the B cell receptor, TLRs, or CD40 (44–
46). The effects of CD83 expression by B cells have already been
discussed in a recent review article (3). In short, one group found
unaltered B cell numbers and tissue distributions in complete
CD83−/− mice, but defects in B cell (and CD4+ T cell) longevity
in adoptive transfer experiments (44). However, this study lacks
further evaluation of the observed reduced B cell longevity, i.e.,
whether it was due to a B cell intrinsic CD83 deficiency or caused
by the loss of CD83 in other cell types. Noteworthy, transferred
splenocytes of complete CD83−/− mice contain strongly reduced
numbers of peripheral CD4+ T cells, which could also influence
B cell longevity (see also chapter 4a).

More mechanistic insights into the role of B cell-expressed
CD83 were published by another group, who found reduced
numbers of splenic marginal zone B cells and B1a cells in
B cell-specific CD83 cKO mice (47). Moreover, cKO B cells
exhibit an impaired MHCII and CD86 upregulation. Thereby,
CD83 affects the CD86 and MHC-II expression on B cells
by negative regulation of MARCH-1, as also demonstrated for
DCs (48). Additionally, CD83 deficient B cells show enhanced
proliferation and secreted more IL-10 upon activation with CpG
but not LPS. Strikingly, germinal centers, which were formed
after immunization of CD83 B cKO mice, contained elevated
proportions of dark zone B cells. Surprisingly, this altered
composition did not affect the affinity maturation of antibodies
but ultimately led to increased IgE responses (47). In conclusion,
these data revealed an essential modulatory function of CD83 in
humoral immunity.

CD83 AND DC ACTIVATION

In spite of being described as a surface marker for mature DCs
(mDCs), the precise biologic function of CD83 on these cells
remains subject of controversial debate. In contrast to B cells,
early studies of CD83−/− bone marrow-derived dendritic cells
(BMDCs) did not observe an influence of CD83-deletion on
MHCII and CD86 expression (33). This view was later altered by
a report of splenic DCs from CD83−/−mice, which show reduced
MHCII surface expression (49) and by another report of mice
that carry a mutation within the TM-domain of CD83, which
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results in a lack of MHCII surface expression (48). Interestingly,
the latter study provided evidence that also BMDC-expressed
MHC-II and CD86 are negatively affected by CD83-depletion.
Additionally, the authors demonstrated that the TM-domain of
CD83 is both necessary and sufficient to stabilize MHCII and
CD86 surface expression on BMDCs by antagonizing the actions
of MARCH1 (48).

Given the central role of CD83 for stable surface display
of MHCII and CD86, one would conclude that CD83 on DCs
also critically influences the outcome of T cell stimulation (50–
53). However, murine APCs which lack CD83 possess an equal
stimulatory capacity compared to CD83 expressing cells (54).

Moreover, studies using DC-specific CD83 cKO mice
demonstrated that this deletion rather increases/accelerates
immune responses. Among others, it was shown that these
CD83 cKO mice cleared bacterial infections more rapidly than
their wt counterparts and DCs from those mice produced
more IL-12 (55). In line with these findings, we demonstrated
aggravated autoimmune responses in mice with CD83-deficient
DCs, which per se display an over-activated phenotype and
drive inflammatory T cell responses, presumably by interfering
with Treg function (56). This enhanced stimulatory potential
of CD83-deficient DCs both in vitro and in vivo is intriguing
considering the reduced surface expression of MHCII and CD86
on these cells, which normally is a prerequisite for efficient
T cell activation. Interestingly, excessive surface expression of
MHCII, which is observed in DCs of MARCH1−/− mice,
is reported to perturb DC homeostasis. In this respect,
MARCH1−/− DCs show dramatically reduced IL-12 secretion
and stimulatory potential toward CD4+ T cells (57, 58). Given
its role as a negative regulator of MARCH1, CD83 might affect
DC homeostasis by regulating MHCII expression. Since the
expression of MARCH1 ceases upon DC maturation (59), the
modulatory effect of CD83 might occur already in immature
DCs (iDCs). Notably, CD83 and MHCII show only weak co-
localization in human iDCs, which is in contrast to mDCs
(31). Peptide-MHC-II complexes are ubiquitinated in early
endosomes, which targets them for lysosomal degradation (60).
Thus, the localization of CD83 in recycling endosomes of iDCs
(31) might be a critical regulator of endosomal sorting of MHCII
either back to the membrane or to multivesicular bodies for
degradation. This sorting procedure assures efficient antigen
presentation in mDCs versus iDCs (61). Interestingly, murine
conventional DCs (cDCs) with defective MHCII ubiquitination
are less capable of inducing antigen-specific CD4+ T cell
proliferation (58), whereas CD83−/− DCs exhibited increased
potential to stimulate antigen-dependent T cell responses
(49, 56).

Taken together, these findings suggest that CD83 impacts
on antigen-presentation by modulating the endosomal sorting
process in iDCs. Additionally, CD83-depletion – despite causing
reduced MHCII and CD86 surface display – conveys an
aberrantly activated phenotype to DCs leading to enhanced
protective effect against bacterial pathogens as well as adverse
autoimmune responses. This renders CD83 an important
modulator of DC phenotype and function.

CD83 BINDING PARTNERS AND
SIGNALING CASCADES

Although the distribution of CD83 expression has been
unequivocally unraveled using reporter animals (30) and
extensive cell phenotyping (62), the receptor or ligand for
CD83 (CD83L) remained elusive for a long time. Most studies
that aimed to elucidate CD83 binding partners focused on
the interaction of sCD83 with its putative receptor. It was
demonstrated that murine B cells (63), human iDCs and mDCs
(64) as well as activated CD8+ T cells (65) can bind sCD83, but
none of these studies provided the definite report of a probable
interaction partner. Interestingly, the formation of dodecameric
sCD83 multimers was reported as a prerequisite for binding
to activated human primary T cells and T cell leukemic cell
lines, which is absent when using a conventional dimerized
sCD83 molecule (65). Since binding studies with a dimeric
sCD83 revealed that human monocytes as well as human DCs
express a CD83L (64, 66), this suggests different avidities of
sCD83 toward distinct ligands. However, there have been several
reports describing CD83-interaction partners: first and as already
stated above, the TM-domain of CD83 interacts with the E3-
ubiquitin-ligases of the MARCH-family, resulting in stabilization
of CD86 and MHC-II (27, 48). Second, in human mDCs CD83 is
bound by GRASP55, an integral component of Golgi architecture
and transport, which is crucial for efficient surface display of
CD83 (67).

Regarding sCD83, a more recent study by Bates and colleagues
incited an interesting new perspective on CD83 binding partners,
suggesting that CD83 acts in a homotypic way (55). This notion
is reinforced by the fact that many cell types, which have been
reported to bind sCD83, indeed express mbCD83. For instance,
binding of sCD83 to human T cells required their prior activation
using agonistic anti-CD3/CD28 antibodies (65), a treatment that
also induces mbCD83 expression (62). Additionally, the model
of homotypic interaction integrates both the immune-regulatory
effects of sCD83 and immunomodulatory function of mbCD83:
if one interaction partner is missing, immune responses are
more likely to derail. Interestingly, the cytoplasmic tail of CD83
lacks any consensus signaling motif and therefore the homotypic
interaction of CD83 may act as a scaffold to facilitate the
recruitment of additional proteins as signal transducers. This
might also account for the different cellular distribution of
CD83L when either using dimeric or multimeric sCD83 (65).

However, this self-interaction is not sufficient to explain the
regulatory effects of sCD83 on monocytes (68), which – in
contrast to DCs – do not express mbCD83 in the steady state
(32). Thus, a recent study elucidated the impact of sCD83 on
monocytes by demonstrating sCD83 binding to MD-2 and the
TLR4 complex (69). The authors suggested that upon binding
to MD-2, sCD83 initiates an anti-inflammatory TLR-signaling
cascade leading to long-term depletion of IRAK-1, which causes
unresponsiveness to further TLR stimulation. Interestingly, Tregs
that are devoid of CD83 display elevated levels of IRAK-1
(see chapter 4b) (38), and a similar phenotype is observed in
CD83-deficient DCs (56). Subsequently, both cell types exhibit
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an aberrant activation profile and are prone to propagate
autoreactive immune responses in the absence of CD83.

A very recent study brought up a new view on the mode of
action of sCD83 in the regulatory network of immune responses:
by binding to CD154 on Th2 cells, sCD83 represses the apoptotic
inhibitor Bcl2L12, thereby promoting cell death of this particular
T cell subset (70). As a corollary, administration of sCD83 to
animals with allergic rhinitis (AR) alleviated disease symptoms by
restricting the Th2 response. Moreover, patients with AR showed
significantly reduced sCD83 serum levels, which were inversely
correlated with IgE-levels (70). Since B cells are presumably the
major source of naturally occurring sCD83 (16, 71), these new
data perfectly fit the Th2-skewed immunity observed in mice
with CD83-deficient B cells (47).

Although mbCD83 may also interact with binding partners
of sCD83, this has not yet been experimentally proven for the
above-mentioned proteins. Therefore, the future elucidation of
(putatively) further interaction partners on other cell types will
unravel the entire complex network by which CD83 modulates
and orchestrates immune responses. In summary, the notion that
mbCD83 acts in trans to modulate ongoing immune responses in
a similar way as sCD83 could explain the disturbed cellular and
humoral immunity in CD83 cKO animals (38, 47, 55).

CD83 IN HEALTH AND DISEASE

Next, we discuss the current research examining the contribution
of CD83 to the balance of the homeostatic and pathologic
immune system in vivo.

Bacteria
As mentioned above, the expression of CD83 on DCs is a critical
determinant of the host immune response against bacteria.
Mice with CD83-deficient DCs show improved resistance
upon challenge with the extracellular enteropathogenic strain
Citrobacter rodentium (55), and we further demonstrated
enhanced clearance of intracellular bacteria like Salmonella or
Listeria (56). In both settings, DCs from CD83 cKO mice
react to bacterial challenge with increased expression of the
cytokines IL-23 and IL-12. Interestingly, human DCs secrete
considerable amounts of sCD83 when exposed to different
commensal bacteria strains (72). These data suggest a crucial
role of DC-expressed and -derived CD83 for the regulation
of intestinal homeostasis and anti-bacterial immunity. While
deletion of CD83 in DCs results in enhanced Th1 and Th17
T cell responses, B cell specific depletion of CD83 has quite
different effects on the immune responses to pathogens. Upon
infection with Borrelia burgdorferi, wt B cells display an enhanced
pathogen clearance compared to CD83-deficient cells, which was
associated with increased IgE serum levels suggesting a shift
toward Th2 responses (47). Interestingly, earlier studies already
reported that enforced expression of CD83 on B cells dramatically
interferes with their ability to mount efficient antibody-responses
against model-antigens as well as against infection with the
parasite Leishmania major (45, 73). Thus, B cell-expressed
CD83 is a critical regulator of humoral immune responses to

pathogens, probably by disturbing the organization of germinal
center reactions (47). Since B cells are a major source of sCD83
(16), compromised antibody production in CD83-overexpressing
animals might also arise from a general dampening of the
immune response. Furthermore, also human polymorphonuclear
neutrophils acquire CD83 expression, but not MHCII or
CD86, during acute bacterial infection. However, the biological
relevance of this phenomenon remains to be elucidated (26).
Moreover, in a model of neonatal exposure to Lipopolysaccharide
(LPS), mice show a delayed onset and diminished severity
of myelin oligodendrocyte glycoprotein (MOG)-induced EAE,
compared with vehicle-exposed animals. Splenic CD11c+ cells
from LPS-exposed animals exhibit reduced MHCII and CD83
expression during EAE. MOG-treated APCs from LPS-exposed
mice stimulated less T lymphocyte proliferation but increased
expansion of CD4+FoxP3+ T cells compared to APCs from PBS-
exposed littermates. These findings support the concept of early
life microbial exposure that influences the immune modulating
capacity of APCs and neuroprotective regulatory T cells and that
CD83 is part of the mechanism (74).

Collectively, these data reveal an important modulatory
function of CD83 upon encountering pathogens, via sustaining
the balance between tolerating commensals versus clearing
harmful bacteria.

Viral Infections
Viruses are highly adapted to their hosts and possess
sophisticated strategies to support their own replication.
Evidence is accumulating that a plethora of distinct viruses not
only directly modulate CD83 expression levels, but also indirectly
via, e.g., hijacking DC maturation (Figure 4).

Especially herpesviruses, which are capable of establishing
latency upon lytic primary infections, have acquired immune
evasion mechanisms targeting CD83. One prototypic member
among the α-herpesviridae is Herpes simplex virus type-1 (HSV-
1). In this context, HSV-1 has been shown to inhibit cytokine-
induced maturation of iDCs, including upregulation of CD83
(75) (Figure 4A). Additionally, HSV-1 targets CD83 for its
degradation in infected mDCs leading to a strong reduction
of intracellular as well as surface-exposed CD83 protein levels
(77, 78; Figure 4C). Within the tripartite gene expression
cascade of HSV-1, the immediate early gene product infected
cell protein 0 (ICP0) was proven to be essential and sufficient
to induce the proteasome-dependent, but ubiquitin-independent,
CD83 degradation in mDCs (76). Besides the loss of CD83
protein expression on directly HSV-1-infected mDCs, it has been
reported that uninfected bystander mDCs also display a severe
reduction of CD83 (77). This bystander effect was attributed to
so-called L-particles, which are released by infected cells upon an
HSV-1 infection and are non-infectious themselves, due to the
lack of the DNA-containing capsid. However, it was suggested
that L-particles are transmitted to bystander cells most likely to
shape the cellular micro-environment in benefit of the virus (78).
Apart from that, levels of sCD83 were shown to be unaffected
during HSV-1 infection of mDCs, which excludes CD83 shedding
to account for the loss of CD83 surface expression (79). Yet,
the precise molecular mechanism of HSV-1-mediated CD83
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FIGURE 4 | Virus-induced modulations of CD83 expression. (A) Viruses that block DC maturation and thus CD83 expression. (B) Viruses that induce CD83
expression via activation of a mature DC phenotype. (C) Viruses that mediate a downregulation of CD83 expression on mature DCs. (D) Reduction of CD83 surface
expression during latent KSHV infection of THP-1 cells. (E) Induction of CD83 expression on B cells via EBV-encoded LMP-1. (F) Induction of CD83 expression via
HTLV-1-encoded Tax-1. DC: dendritic cell, EBV: Epstein-Barr Virus, HIV-1: Human immunodeficiency virus-1, HCMV: Human cytomegalovirus, HSV-1: Herpes
simplex virus type-1, HSV-2: Herpes simplex virus type-2, HTLV-1: Human T-cell leukemia virus type-I, ICP0: Infected cell protein 0, IE2: Immediate early 2, KSHV:
Kaposi’s Sarcoma-Associated Herpesvirus, VZV: Varicella-zoster virus.

degradation remains elusive. Thus, it is not known so far, whether
HSV-1-encoded ICP0 directly targets CD83 on infected as well
as bystander mDCs or whether ICP0 induces distinct signaling
pathways that lead to CD83 downmodulation. Noteworthy, also
the α-herpesviruses HSV-2 and Varicella-zoster virus (VZV)
hamper the expression of CD83 on DCs (Figures 4A,C). In
particular, HSV-2 blocks DC maturation (80), and thus CD83
surface expression, and additionally induces CD83 degradation
after infection of mDCs (81). Furthermore, VZV also selectively
inhibits CD83 expression on mDCs upon infection. In this
way, VZV efficiently spreads inside the host by hijacking these
migrating immune cells (82, 83). Notably, also the β-herpesvirus
human cytomegalovirus (HCMV) was found to block LPS-
induced maturation of DCs (84) (Figure 4A) and to target
CD83 for immunomodulation when infecting mDCs (86, 87;
Figure 4C). Regarding this, Senechal et al. demonstrated a strong
reduction of CD83 surface expression on HCMV-infected mDCs
concomitant with an induction of sCD83 levels in the respective
cell culture supernatants (85). Remarkably, the latter observation
was implicated to impair the T cell-stimulatory capacity of mDCs,
thus interfering with an effective antiviral immune response

(85). In contrast, a recent publication revealed that sCD83 levels
were unaffected upon HCMV infection of mDCs. This apparent
discrepancy is likely based on the different HCMV strains
that were used among these studies (86). However, Heilingloh
et al. provided new insights into the mechanism of CD83
reduction on HCMV-infected mDCs (86). The authors showed
that the HCMV-encoded major immediate early 2 (IE2) protein is
sufficient to induce a proteasome-dependent CD83 degradation
of both surface-displayed as well as intracellular CD83 protein.
These results are reminiscent of the ICP0-dependent CD83
downmodulation in HSV-1-infected mDCs (76, 79). Besides the
α- and β-herpesviruses described above, also the γ-herpesvirus
Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) impairs CD83
expression during latent infection of the monocytic cell line THP-
1 (87) (Figure 4D). In contrast, the Epstein-Barr Virus (EBV)-
encoded LMP-1 protein was found to promote the expression of
CD83 on B-cells, in the absence of an infectious insult, dependent
on NFκB (29) (Figure 4E).

Interestingly, modulation of CD83 expression, either directly
or indirectly via affecting DC maturation, is not a unique
feature to herpesviridae, but is also mediated by, e.g., the
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human immunodeficiency virus (HIV-1) or Human T-cell
leukemia virus type-I (HTLV-I), which belong to the family
of retroviridae. Regarding this, it was proven that the HIV-1-
encoded protein Vpr induces transcriptional downmodulation of
CD83 in macrophages as well as DCs, while the latter observation
was additionally found to be present on both directly infected and
bystander cells (88, 89). Moreover, Vpr hampers DC maturation,
accompanied by an inhibited CD83 upregulation (Figure 4A)
and an inefficient activation of antigen-specific T cells for viral
clearance (89, 90). Contrasting the downmodulation of CD83
upon HIV-1 infection, the exposure of DCs to inactivated HIV-
1 virions or recombinant gp120 (HIV-1 strains Ada or IIIB)/Tat
protein results in the upregulation of CD83 expression levels due
to the induction of a mature phenotype (91, 92) (Figure 4B).
However, one group reported that gp120s from distinct HIV-
1 strains impair DC maturation and CD83 expression (93).
Apart from HIV-1, HTLV-I induces the expression of mbCD83
and sCD83 by T cells, via activation of NFκB by the viral-
encoded protein Tax1 (94) (Figure 4F), which mirrors the effect
of EBV-encoded LMP-1. Since enforced expression of CD83 in
T cells is known to confer a regulatory phenotype (35), this
mechanism might be employed by HTLV-I to subvert antiviral
immunity. Furthermore, vaccinia virus and influenza A virus
also indirectly interfere with CD83 expression on DCs via
differentially manipulating their maturation phenotype (97, 98;
Figures 4A,B). Particularly, while vaccinia virus inhibits the
upregulation of CD83 expression during DC maturation (95),
the acute influenza A virus fosters DC maturation accompanied
by induction of CD83 expression and the efficient stimulation of
cytotoxic effector T cells (96).

The multitude of distinct virus families, which have
independently evolved strategies to directly or indirectly target
CD83 expression, underscores the vital role of CD83 during the
activation of immune responses and thus the involvement in
controlling (persistent) viral infections.

Autoimmunity
Autoimmune diseases represent a family of at least 80 illnesses
that share a common pathogenesis: an immune-mediated attack
against the body’s own organs. Treatment of autoimmune
diseases was highly improved during the second half of the
20th century. However, these treatment options proved difficult
due to the progression of autoimmune disease prior to clinical
diagnosis. Thus, much of the current investigation aims to shift
the research focus toward immunomodulation. Understanding
the effects of specific immune modulating interventions can
elucidate definitive molecular or cellular checkpoints of the
complex inflammatory networks which modulate autoimmune
diseases. Given the important role of CD83 for immune responses
to non-self, it is not surprising that there are several reports of
CD83 being involved in autoimmune processes (38, 39, 55, 97–
110). A recent report summarized immune-modulating functions
of sCD83 therapy in models of multiple sclerosis, autoimmune
uveitis and systemic lupus erythematosus (3). Here, we focus and
discuss the very promising data about CD83 related therapy in
rheumatoid arthritis, inflammatory bowel diseases, and diabetes
mellitus:

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic autoimmune disease
that goes along with progressive articular damage, functional
loss, and comorbidity (111, 112). Interestingly, elevated levels
of sCD83 were detected in the synovial fluid of RA patients
(105). It seems reasonable to assume that determination of
sCD83 serum levels in patients with autoimmune disorders
may serve as early prognostic biomarker of autoimmunity to
predict and treat otherwise serious conditions. Importantly, this
expression of sCD83 in early stage RA patients was unaffected
by anti-TNF-α treatment (106). Moreover, CD83 (e.g., in B
lymphocytes) possesses different regulatory functions of disease
risk variants in RA (107, 108). Interference with autoimmune-
mediated cytokine production is a poorly developed approach
to treat autoimmune and inflammatory diseases, such as RA.
A very recent study revealed that sCD83 enhances the resolution
of autoimmune antigen-induced arthritis (AIA) by strongly
reducing the expression levels of cytokines such as IL-17A,
IFNγ, IL-6, and TNF-α within the knee joints. Noteworthy,
also the expression of RANKL, osteoclast differentiation, and
knee joint destruction was significantly inhibited by sCD83-
treatment. Moreover, osteoclastogenesis experiments revealed
an impaired osteoclast-specific phenotype in sCD83 treated
cultures. These cells revealed a reduced fusion- and resorption
capacity and showed a decreased expression of, e.g., Oc-stamp,
Mmp9, Trap, and Ctsk. Blocking experiments, using anti-TGFβ

antibodies further revealed that also TGFβ is mechanistically
involved in the sCD83 induced reduction of bone destruction and
cartilage damage as well as enhanced resolution of inflammation.
Resolution of arthritis was associated with increased numbers
of regulatory T cells within the synovium of sCD83-treated
AIA-mice in an IDO-mediated manner (109). Treatment with
sCD83 resulted in to long-term and antigen-specific modulation
of the immune response in arthritis (summarized in Figure 5).
Mechanistically sCD83 led to (i) upregulation of IDO and TGFβ,
(ii) reduction of auto-aggressive Teff cells, (iii) induction of Treg
cells and (iv) a direct impairment of osteoclastogenesis.

Taken together, treatment with sCD83 represents a promising
approach for the resolution of autoimmune disorders, like
RA, via downregulating cytokine production, and inducing
regulatory T cells.

Inflammatory Bowel Diseases (IBD)
Pathologies of Crohn’s disease (CD), ulcerative colitis (UC) as
well as non-infectious inflammations of the bowel originate
from a dysfunctional immunological response against harmless
microbial antigens in the gastrointestinal (GI) tract, which
leads to a breakdown of immunological tolerance. Extensive
research revealed that CD83 expression on different colonic
leukocyte subpopulations, such as B cells, DCs, naive CD4+
and CD8+ T cells as well as Tregs plays an essential role in
the context of intestinal immune homeostasis (23, 55, 100).
In IBD patients, an accidental activation of DCs by microbial
antigens leads to the induction of Th1 and Th17 cell immune
responses. These responses are characterized by exaggerated
release of pro-inflammatory cytokines with further activation of
tissue macrophages and granulocytes, promoting inflammation
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FIGURE 5 | sCD83 has strong modulatory capacities in the murine AIA model for RA. sCD83 within the synovial cavities has four major striking effects on the
pathogenesis of arthritis: (1) sCD83 induces both, the enzymatic and signaling activity of IDO in DCs as well as synovial fibroblasts. IDO leads to local tryptophan
degradation and increased kynurenine levels, thereby (2) hampering the proliferation and differentiation of effector T helper cells and the subsequent reduction of
proinflammatory cytokine levels. Furthermore, the increasing kynurenine to tryptophan ratio provides an anti-inflammatory environment and (3) promotes the
differentiation of Tregs. This effect is further enhanced by TGFβ, a key cytokine of the non-canonical signaling pathway of IDO. The induction of TGFβ and Tregs, and
the reduced levels of proinflammatory cytokines within the knee joints, (4) hamper osteoclast formation and activity. Moreover, sCD83 has a direct inhibitory effect on
the osteoclastogenesis.

in the GI tract (113). Different in vitro and in vivo experiments
using DC-specific CD83 knockout animals demonstrated that
mucosal DC activation and thus immune homeostasis is, in
part, regulated by homotypic cell-cell interactions via surface-
expressed CD83. On intracellular level, CD83 modifies the
immune response through the mitogen-activated protein kinase
pathway by inhibiting p38a phosphorylation and thereby DC
activation (55). In addition, analyses of Foxp3-specific cKO mice
in a transfer colitis model affirmed that expression of CD83
not only on DCs but also on Tregs plays an important role
in intestinal immune regulation and homeostasis in IBD. In
these experiments, the transfer of total CD4+ T cells from
these cKO animals into Rag−/− mice led to exaggerated colitis
symptoms characterized by reduced survival, massive weight
loss, and strong manifestation of clinical relevant parameters.
Functional analyses further showed that this perturbed resolution
of inflammation was caused by a diminished capacity of
CD4+ T cells from cKO mice to terminally differentiate into
effector Tregs upon activation (38). In a murine colitis model
induced by dinitrobenzene sulfonic acid (DNBS), an outstanding
high number of CD83+ leukocytes infiltrated the inflamed
GI tract and even more interestingly, colonic cell populations
were demonstrated to release sCD83 upon disease occurrence.

Further investigations of the sCD83 molecule revealed its
potential therapeutic capacity in the context of IBD. Strikingly,
the application of sCD83 resulted in a remarkably reduced
mortality in DNBS-treated mice. Weight kinetics supported
the protective effect of sCD83 in DNBS-treated animals losing
less weight and showing better recovery. Histological analyses
of the colon suggested that the effect of sCD83 relies on
decreased inflammatory leukocyte infiltration into the colonic
tissue as well as ameliorated destruction of the colonic structure,
and reduced loss of goblet cells (100). Additional experiments
demonstrated that administration of sCD83 resulted in less
expression of inflammatory cytokines such as TNF-α, IL-1β, and
IL-6 in the colon.

Consistent with the findings in the EAE and RA models (3,
98, 109), IDO substantially contributed to the protective sCD83
effects in experimental colitis (100).

Diabetes Mellitus
Recently, Juhas et al. showed that decreased sCD83 plasma
concentrations significantly correlated with disease progression
in long-standing complication-free juvenile diabetic patients
(110). Loss of sCD83 levels in the plasma of these patients
coincided with increased HbA1c levels, a factor associated with
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disease progression. Interestingly, and similar to the observation
in RA patients, sCD83 expression seems to be independent from
TNF-α levels. Based on these findings, the authors proposed that
sCD83 therapy might also have great potential in the context of
long-term diabetes.

In summary, the beneficial effects of sCD83 described above,
strongly suggest that this molecule could be widely applicable
for the treatment of acute systemic inflammatory complications
as well as chronic autoimmune inflammatory diseases. In
addition, sCD83 has also been successfully used in preclinical
transplantation models by us and others (114–117). However,
clinical trials are essential and the next step in order to confirm
the therapeutic efficacy of sCD83 in humans.

Pregnancy
Maintaining the balance between immune tolerance and defense
is also of significant relevance during pregnancy. As CD83 is a
potent mediator in the control of immunity, it is not surprising
that some studies reveal an association between CD83 expression
as well as sCD83 upregulation and pregnancy. The control of
the fetal-specific tolerance of the maternal immune system is
quite complex and has not yet been completely understood.
While more decidual DCs can be detected in women with
recurrent miscarriage at 8 weeks’ gestation than in matched
normal controls, there is no significant difference in the decidual
CD83+ DC density (118). The authors also emphasize that it
was unclear whether the CD83+ DC population in the decidua
possess a stimulatory or inhibitory potential of a maternal
anti-fetal immune response. So far, it is known that during
pregnancy changes occur in DC, T, and B cell activities. It
is proposed that immune tolerance is favored in the second
trimester being gradually reversed in the third trimester (119).
Various tolerogenic cell types in the maternal-fetal interface
were suggested, such as, e.g., tolerogenic DCs, Tregs, and IL-
10-producing B10 cells (119–121). As mentioned above, CD83
signaling can induce the differentiation of all of these tolerogenic
cell types. Apart from this, IDO activity, also likely induced by
CD83, has been shown to be essential for fetal tolerance (119,
122). In this respect, a striking recent murine study revealed
that B and T lymphocytes, but not DCs, upregulate CD83
expression at day 14 of pregnancy (71). Moreover, the sexual
hormone progesterone induces CD83 expression in murine T and
B cells, but also in DCs in vitro. The authors further observed
increased levels of the immunomodulatory sCD83 in advanced
pregnancy and identified B lymphocytes as the major sCD83-
producing cell type. In a very recent study, the same group also
showed a correlation of poor pregnancy outcome and reduced
serum levels of sCD83 using a CBA/JxDBA/2J mouse model of
pro-inflammatory-mediated pregnancy disturbances. Regarding

progesterone induced CD83, the group demonstrated that splenic
B cells treated with progesterone decreased the expression of the
metallopeptidase inhibitor 1 (TIMP1), mCD83 expression and
sCD83 release, while TIMP1 treatment increased sCD83 levels
in vitro (123).

Thus, deciphering the function of CD83 in fetal-
specific tolerance and the mechanisms of sCD83 release by
metalloproteinases and their inhibitory molecules will require
further investigations.

CONCLUDING REMARKS

During the last decades it has become clear that the CD83
molecule plays a very important role in the orchestration of
proper immune responses and the subsequent induction of
resolution of inflammation. In particular, the membrane bound
form of CD83 is absolutely essential for the development of
CD4+ T cells and inhibits autoimmunity via the induction of
regulatory mechanisms which dampen ongoing or overshooting
immune responses. On the other hand, the soluble CD83 protein
has a great therapeutic potential to prevent/cure autoimmune
disorders and to inhibit transplant rejection, via the induction
of regulatory mechanisms, including Tregs and tolerogenic DCs.
Thus, future preclinical and hopefully subsequent clinical studies
will unravel the entire immune regulatory repertoire of CD83 in
even greater detail and further develop the therapeutic potential
of the sCD83 molecule.
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