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Phagocytic integrins are endowed with the ability to engulf and dispose of particles of

different natures. Evolutionarily conserved from worms to humans, they are involved in

pathogen elimination and apoptotic and tumoral cell clearance. Research in the field

of integrin-mediated phagocytosis has shed light on the molecular events controlling

integrin activation and their effector functions. However, there are still some aspects of the

regulation of the phagocytic process that need to be clarified. Here, we have revised the

molecular events controlling phagocytic integrin activation and the downstream signaling

driving particle engulfment, and we have focused particularly on αMβ2/CR3, αXβ2/CR4,

and a brief mention of αVβ5/αVβ3integrins.
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INTRODUCTION

Phagocytosis entails the engulfment and disposal of particles in sequential steps, including
particle recognition, cytoskeletal remodeling, membrane protrusion, particle engulfment, and
phagolysosomal digestion (1, 2). The role of integrins in phagocytosis is evolutionarily conserved
and can be observed in Caenorhabditis elegans INA-1/PAT-3, which is involved in clearance of
apoptotic cells (3), andDrosophila αPS3/βν, which has roles in microbial defense and apoptotic cell
removal (4, 5) (Table 1). Inmammals, the orthologues αVβ3/αVβ5 are expressed in professional and
non-professional phagocytes (endothelial, epithelial, fibroblast, and neuronal and mesenchymal
cells) with a role in phosphatidylserine-rich apoptotic/necrotic body clearance. Professional
phagocytes in mammals express complement receptors αMβ2/CR3 and αXβ2/CR4, which are
involved in host defense and tissue homeostasis (45). Other integrins with reduced phagocytic
capacity (α5β1, α2β1, α3β1, and α6β1) are involved in phagocytosis of fibrillar or denatured
extracellular matrix components (Table 1).

Integrins are characterized by requiring activation to be functional. This review has focused
on the main events determining β2 integrin activation and downstream signaling in relation to
cytoskeletal remodeling and particle engulfment, and it makes a special mention of the main
differences between other phagocytic integrins, especially those involved in apoptotic cell clearance.

INTEGRIN STRUCTURE AND ACTIVATION

Phagocytic integrins are heterodimeric (α and β subunit) receptors. Subunits are divided into
ectodomains, a transmembrane helix, and short cytoplasmic tails. The α-subunit ectodomains
contain Mg2+-binding metal-ion-dependent adhesive sites (MIDAS) and Adjacent to MIDAS
(AdMIDAS), which binds inhibitory Ca2+ or activating Mn2+ (46, 47). Ligand binding can occur
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TABLE 1 | Major mammalian phagocytic integrins and their invertebrate orthologues.

Integrin αI domain Co-receptors Phagocytic targets Expression

αMβ2 + - SR-A1/2 (6)

- Dectin1 (7)

- RAGE (8)

- iC3b-opsonized particles (9)

- iC3b-opsonized particles (9)

- C3d-opsonized particles (10)

- Denatured proteins (11, 12)

- Bacteria (LPS, LBP) (13, 14)

- Zymosan (15, 16)

- Myelin sheaths (17)

- Platelet factor 4 (PF4) (18)

- LL-37 (19)

Professional phagocytes

αXβ2 + – - iC3b-opsonized particles (9)

- Osteopontin (20)

- Fibrillar α-synuclein (αSN) (21)

Professional phagocytes

α2β1 + – - Collagen fibrils (22–24) Non-professional phagocytes

α3β1 – - CD36/SCARB3 (25) - Laminin (26) Non-professional phagocytes

α5β1 – – - Fibronectin aggregates (27)

- Fibronectin-opsonized apoptotic bodies (28)

- Vitronectin (29)

Non-professional phagocytes

α6β1 – - CD36/SCARB3 (25) - Fibrillar β-amyloid (30, 31) Professional phagocytes

αVβ3 – - TIM4 (32)

- CD36/SCARB3 (33)

- MerTK (34, 35)

- MFG-E8 opsonized (36, 37)

- Gas6 through co-receptor (38)

- ProS1 through co-receptor (39, 40)

- TSP-1 (41)

Professional and non-professional

phagocytes

αVβ5 – - Apoptotic or necrotic bodies (42, 43) Professional and non-professional

phagocytes

αPS3/βν – – - Peptidoglycan (4, 44)

- Apoptotic cells (4, 5)

Drosophila phagocytes.

INA-1/PAT-3 ? – - Apoptotic cells (3) C. elegans phagocytes

either at the αI-domain (α-subunit) in αX, αM, and α2 or at
the α/β-chain interface in integrins without the αI domain
(Figure 1A, Table 1).

Integrins are tightly regulated by conformational changes,
a hallmark of which is cytoplasmic tail separation (48).
Integrin conformations are described according to the state
of the headpiece (open/closed; H+/H−) and leg ectodomains
(extended/bent; E+/E−) (49). Resting integrins remain in an
inactive/“bent” (E−H−) conformation with the lowest free energy
(−4.0 kcal/mol for α5β1) with respect to fully activated integrins
(50). E−H−is characterized by a closed ligand-binding site and
clasped membrane proximal regions (51). In activated integrins
(E+H+), the hybrid domain (β-subunit) swings away from the
α-chain, and the membrane proximal regions unclasp. This
correlates with the rearrangement of the MIDAS and opening of
the ligand binding site (51).

Structural and mutational studies have investigated models
of integrin activation to explore whether integrin extension or
leg separation occurs first. Mutations and deletions of the CD-
loop (β-subunit terminal domain) have been proposed to keep
integrins from extending and have shown no impact on αVβ3 and
αIIbβ3 activation (52); there is little proof that mutations in this
region affects β2 integrins (53), strongly indicating that releasing
these constraints is not enough to induce activation.

Structural studies (54) have demonstrated that αXβ2 follows
the “switch-blade” model of activation, where leg separation
occurs first, releasing constraints of the bent conformation

and opening of the ligand-binding site resulting in an
intermediate/low affinity conformation E+H− (55). The E+H−

conformation has a free energy between 1.6 and 0.5 kcal/mol,
meaning the high affinity conformation is thermodynamically
favored (50, 56). Mutations in the EGF3 repeat of the β2-subunit
have also been shown to induce a high affinity conformation
through destabilizing the thermodynamically favorable bent
conformation and facilitating leg separation (57). It is noteworthy
that an E−H+ conformation has been described for αLβ2 and
αMβ2, allowing integrins to bind ICAM in cis, whichmay regulate
neutrophil function (58); however, the specifics of how this
activation takes place remain unknown.

Integrin activity is regulated by changes in affinity and
aggregation, with the latter affecting receptor avidity.
Cytoplasmic proteins bind to α- or β-subunits causing tail
separation, stabilizing their high affinity conformation (48, 59).
This can be triggered either through signaling from other
receptors (“inside-out” signaling, Figure 1B), direct ligand-
binding, or experimentally, using Mn2+ (“outside-in” signaling,
Figure 1C), which triggers downstream signaling pathways (60).

INSIDE-OUT SIGNALING

Rap1 as a Signaling Node
Early studies in complement-dependent phagocytosis using
mutants of small GTPases pointed to Rap1 as the main regulator
of αMβ2 activity (61) and to it being required for β1-mediated
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FIGURE 1 | Phagocytic integrin αMβ2 structure and activation pathways. (A) 3D structure model generated through homology modeling using Modeller 9.23. The

following PBD entries served as templates: 1m8o, 2k9j, 2knc, and 3k6s (low-affinity/bent conformation), 1dpq, 2lkj, 2m3e, 2rn0, 2vdo, 3g9w, 3fcu, 5e6s, 6ckb, and

6avu (high affinity conformation), and the sequences for αM (NP_001139280.1) and β2 (NP_000202.3). PSI: Plexin-Semaphorin-Integrin domain. (B) Inside-out

pathway of integrin αMβ2 activation. Signals stemming from multiple receptors induce Rap1-GTP loading and RIAM-mediated recruitment of Talin1 to integrin tails,

with possible contributions by other pathways. Protein-binding motifs in the integrin tails are shown in red (NPXY) and in purple (GFFKR). FERM domains are

highlighted for Kindlin-3 and Talin1 (F0–F3). Highlighted RIAM domains are as follows; TB, Talin1 Binding domain; RA, Rap Association domain; PH, Pleckstrin

Homology domain; PRR, Prolin Rich Region. (C) Outside-In pathway in the context of phagocytosis through αMβ2. Src Family Kinases remain inhibited by

membrane-bound tyrosine phosphatases. Kindlin-3 mediated clustering facilitates Src Family Kinase activation, contact maturation and contractility necessary for

phagocytic engulfment. PPases, Phosphatases; SFK, Src Family Kinases; MT, Microtubules. For simplicity, some proteins are shown as monomers. Question marks

denote unsolved or hypothetical signaling steps.

phagocytosis (62). Rap1 acted as a node, connecting different
signaling pathways (chemokines, fMLP, PAF, and TNFα) for
integrin activation (63). Rap1-GTP loading is induced by

specific Guanine–Nucleotide Exchange Factors (GEFs), being
Epac1 (dependent on cyclic AMP; cAMP) and CalDAG-GEFs
(dependent on Ca2+/Diacylglycerol; DAG), amongst the
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best characterized (Figure 1B). Epac1 expression was found
to increase during monocyte-macrophage differentiation,
correlating with the acquisition of immunoregulatory functions
(64), and in neutrophilic HL-60 cells, pharmacological activation
of Epac1 increased Rap1-GTP and complement-dependent
phagocytosis (65). RasGRP3/CalDAG-GEFIII exhibited similar
effects, promoting Rap1 activation and phagocytosis (66).
Mutations in CalDAG-GEF1 produced leukocyte adhesion
deficiency syndrome (LADIII) with defective neutrophil-
endothelial adhesion (67), and mouse CalDAG-GEF1−/−

macrophages showed reduced integrin activation (68). Rap1
activation can be induced by Toll-like receptors (TLRs) (69);
however, the signaling pathways remain poorly defined. In
neutrophils, secreted myeloid-related proteins (MRPs) 8 and
14 bind to TLR4 causing Rap1 activation and β2-dependent
adhesion (70). In macrophages, low concentrations of TLR3/4/9
agonists induced RasGRP3-dependent Rap1 activation (71).
Activation of αMβ2 by TLR2/TLR4 required Rac1-GTP loading,
PI3K activity, and cytohesin-1 binding to the β2 subunit (72).The
role of cytohesin-1 is controversial, as the use of cytohesin-1
siRNAs and inhibitors results in an increase in the αMβ2 affinity
conformation (73).

Talin1 and Kindlin-3
Talin1 and Kindlin-3 are the best-characterized integrin
activators. Both belong to the FERM family but interact with
distinct NPXY motifs in the cytoplasmic tails of β1, β2, and β3,
and they thus contribute differently to activation (74). Although
Talin-binding is required for efficient β5 activation during
adhesion, it is dispensable for phagocytosis (75). αVβ5 requires
an unknown mediator that recognizes a YEMAS motif proximal
to the NPXY. A candidate could be the FERM family FRMD5,
as it promotes β5-Kindlin-2 interaction and induces ROCK
activation during adhesion (76), yet there is no information of its
relevance in phagocytosis.

Talin1 contains an N-terminal globular head with a linear
FERM domain and a C-terminal rod domain organized in
13 subdomains (R1-R13), which contains a dimerization
domain, an integrin binding site, three F-actin binding
sites, and several Vinculin and RIAM binding sites (77, 78).
The FERM domain has four subdomains (F0-F1-F2-F3),
where F3 contains the primary integrin-binding site (IBS)
that interacts with the membrane-proximal NPXY motif
conserved in β-integrin tails (59, 79, 80). In resting leukocytes,
Talin1 remains auto-inhibited due to an interaction between
F2F3 and R9 subdomains, which mask the primary IBS
(81). Several Talin1 activation mechanisms have been
proposed. By binding to PIP5Kγ, Talin1 is recruited to
the plasma membrane where the F2F3 domain binds to
phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), disrupting
the head–tail interaction and exposing the IBS (82, 83).
Additionally, RIAM–Talin1 interaction was described as
necessary for Talin1 activation and recruitment to integrin tails
(Figure 1B) (84).

Hematopoietic cell-specific Kindlin-3 is mutated in LADIII,
causing β1/β2/β3 activation defects (85, 86) and preventing
neutrophils adhesion to iC3b and ICAM-1 (87). Kindlin-3 binds

to the membrane-distal NPKF sequence in the β2 subunit tail
without excluding Talin1 binding (Figure 1B) (87). Studies of
their individual contributions to activation revealed that Kindlin-
3 is not sufficient to induce the high-affinity state of αLβ2,
whereas Talin1 promotes full activation (88). Whether binding
of Talin1 and Kindlin-3 is sequential or simultaneous and
their exact contribution to integrin activation remains to be
explored. The signaling events directing Kindlin-3 to integrins
also remain elusive, as in T cells, Kindlin-3 localization at
immune synapses depends on Rap1 and Mst-1/RapL signaling
(89), whereas no such interaction has been described for
phagocytic cells.

RIAM–Talin1 Interaction
RIAM (Rap1-Interacting Adaptor Molecule or APBB1IP) was
identified as a Rap1 effector that promoted a β2 and β1 high
affinity state, increasing T-cell adhesion and spreading (90).
RIAM binds to Rap1-GTP through a central Ras-association
domain (RA), to PI(4,5)P2 through a Pleckstrin-Homology (PH)
domain and to VASP, Profilin, and PLCγ1 via proline-rich
regions (90–94). RIAM also interacts with Talin1 through its
N-terminus and Talin1 has several RIAM-binding sites located
at F3, R2, R3, R8, and R11 subdomains (77). Binding of RIAM to
Talin1 releases Talin1 from its autoinhibition (Figure 1B) (95).

The Rap1-RIAM-Talin1-Integrin pathway also operates in
complement-dependent phagocytosis. Studies in Talin1-silenced
THP-1 cells revealed that Rap1 and Talin1 regulated each other’s
localization at phagocytic cups (96). Reduced RIAM expression
in human monocyte-derived macrophages (MDM), neutrophilic
HL-60 cells, and THP-1 cells diminished levels of high affinity
αMβ2 and reduced complement-dependent phagocytosis and
Talin1 recruitment to phagocytic cups (65). Complement-
dependent phagocytosis, cell adhesion to ICAM, and ROS
production were also impaired in mouse RIAM−/− macrophages
and neutrophils (97). Additionally, RIAM deficiency in vivo had
a profound effect on β2 activity but a moderate effect on β1- or
β3-dependent functions (98).

Besides RIAM, Rap1 effectors RapL and RGS14 (Regulator of
G-Protein Signalling-14) have been proposed to regulate αMβ2
activation by inside-out signaling (Figure 1B). The former is
proposed to interact with αM-subunit inducing integrin tail
separation and integrin activation (99); however, RapL has only
been shown to interact with a GFFKR motif in αL cytoplasmic
tail, and there is no direct evidence that it plays a role in αMβ2
activation (100). For RGS14, the integrin activation mechanism
is unknown but seems to be dependent on Talin1-binding to
β2 (101).

Recently, a direct interaction between Rap1-GTP and Talin1
was described at Talin1 F0 and F1 subdomains (102–105).
Synergistic interaction between this region and an F1 lipid-
interacting helix facilitates relocation of Talin1 and its integrin-
activating function (Figure 1B) (105, 106). This pathway could
be relevant for fast cell responses, as disruption in mice impaired
platelet aggregation, neutrophil adhesion, extravasation, and
phagocytosis but had no effect on macrophage adhesion and
migration (104).
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OUTSIDE-IN SIGNALING

Outside-in signaling during phagocytosis initiates upon ligand
interaction, stabilizing the active conformation, separating
integrin tails, allowing for the binding of actin cytoskeletal
linkers (Talin1 and/or Kindlin-3), and reorganizing cytoskeletal
constraints, as described in the picket-fence model (2). This
generates the force needed to drive membrane extension and
particle engulfment/internalization (Figure 1C). Regulators have
been described in focal complex-like formations at the phagocytic
cup (107).

CLUSTERING AND TYROSINE KINASES

One of the earliest events in outside-in signaling could
be ligand-induced clustering, a process requiring Talin1
and/or Kindlin-3 (74, 108). Kindlin-3-induced clustering
is reported to activate Src family kinases (SFKs) (109, 110)
by the exclusion of tyrosine phosphatases such as CD45
(68). Size exclusion of these membrane-bound phosphatases
with large extracellular domains seems to be a common
feature of integrin-mediated close-contact immune processes,
such as Dectin-1 and FcγRIII phagocytosis and immune
synapse formation (68, 111, 112). This process does not
exclude SFKs but favors their activation due to removing the
inhibitory effect of these phosphatases (109, 110). However,
there are as of yet only indirect evidences (109, 110)
that phosphatases such as CD45 are excluded during
integrin-mediated phagocytosis.

SFKs appear to be exclusively involved in “outside-in”
signaling, as SFK-deficient cells produced reduced ROS after
integrin clustering (113), whereas ICAM-1 adhesion and
complement-dependent phagocytosis were normal in pre-
activated SFK-deficient cells (114, 115).

A requirement for SFK activation has been described for β1,
β2, and β3 integrins (109, 114, 116). Hck, Fgr, and Lyn are
the representative SFKs in myeloid cells. Hck co-localized with
αMβ2 at phagocytic cups of complement-opsonized zymosan
(117, 118), and the Hck knockout phenocopied the αM knockout
(119). However, in U937 macrophage-like cells, Hck and Fgr
siRNA, unlike Lyn, had no effect on particle internalization (120),
and genetic restitution of Fgr-deficient cells inhibited adhesion,
spreading, and Syk activation (121). In contrast, the Hck−/−

Fgr−/− Lyn−/− triple knockout showed no inhibition in CR3-
mediated phagocytosis (122), which may point to compensatory
roles of other ubiquitously expressed SFKs. Despite the research
into outside-in activation of SFKs, the exact mechanism and
individual contribution of each SFK have yet to be dissected.

SFK activity precedes activation of tyrosine kinases Syk and
FAK family member Pyk2. Syk is necessary for phagocytosis
of iC3b-opsonized beads/zymosan and localizes at phagocytic
cups (107, 123), whereas Pyk2 contributes to clearance of
complement-opsonized bacteria (124). Clustering of β2 integrins
results in Syk activation (125), which in turn triggers Pyk2
signaling (126). Pharmacological inhibition of Syk and FAK
kinases points to non-redundant functions during phagocytosis
and to a possible sequential activation (107).

PHOSPHOINOSITIDES COORDINATE
GTPASES AND CYTOSKELETAL
REARRANGEMENTS

Phagocytosis requires sequential enrichment of
phosphoinositides (PIPs) in the inner leaflet of the plasma
membrane (127). PIP enrichment recruits GEFs for small
GTPases, which are sequentially activated (128), and other
components of integrin adhesion complexes.

PI(4,5)P2 enrichment can be induced by lipid redistribution
due to particle-induced plasma membrane deformation
(129) and/or by SFK or Talin1-induced PIP5Kγ activity
(83, 130, 131). PI(4,5)P2 enrichment strengthens Talin1
anchoring (81) and recruits different factors involved in
F-actin dynamics, like the actin-depolymerizing-factor
ADF/Cofilin, whose activity is inhibited by PI(4,5)P2
(132), or the formin mDia (133, 134). Additionally, RIAM
binds PI(4,5)P2 and may recruit VASP and Profilin, which
could also contribute to actin polymerization (90, 93)
(Figure 1C).

PI(3,4)P2 recruits and induces Vinculin activation through
disrupting an auto-inhibitory interaction (135). This is
dependent on Syk activity and, to a lesser extent, on FAK/Pyk2
and is upstream from ROCK activation (107). In focal complexes,
RIAM contributes to Vinculin binding to Talin1, as RIAM-Talin1
interaction unmasks a Vinculin binding site in Talin1 (77).
Afterwards, Vinculin binding to F-actin and α-actinin favors
filament bundling and force generation (136, 137).

Increased PI(3,4,5)P3 at CR3-phagocytic cups (138) depends
on PI3K (139) and Syk (126), and both are activated downstream
of Kindlin-induced clustering (140). PI(3,4,5)P3 enrichment
recruits Vav1/3, which are GEFs for the RhoA family GTPases
(128). Complement-dependent phagocytosis requires Vav1 to
activate RhoA (61, 141) but also RhoGwith no participation from
Cdc42 and Rac1 (142). However, expression of constitutively
active Rac1 rescues the defective engulfment of Vav1-3 knockouts
(143). This discrepancy could be explained by the overlapping
roles of RhoG and Rac1 (144, 145) (Figure 1C).

In the final steps leading to engulfment, RhoA-GTP initiates
the ROCK-MLCK-myosin signaling pathway and actomyosin
contractility (146). RhoA is enriched at phagocytic cups, and
its localization is modulated by motifs in β2-integrin tails
(141). Premature activation of RhoA is inhibited by Rap-
GTP through ARAP3, a dual GAP for Rho and Arf GTPases,
which is recruited by PI(3,4,5)P3 and PI(3,5)P2 (147). Finally,
mDia contributes to phagosome closure (107, 133) and particle
engulfment by connecting the actin cytoskeleton to microtubules
(148) (Figure 1C).

SIGNALING DURING PHAGOCYTOSIS OF
APOPTOTIC CELLS

During apoptotic cell phagocytosis by mammalian αVβ5/αVβ3, a
p130Cas-CrkII-Dock180-Elmo module induces Rac1 activation,
which is responsible for cytoskeletal remodeling and phagosome
formation (149, 150). Other known signals include the
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activation of SFKs, as signals from the Mer-TK receptor recruit
phosphorylated FAK to mammalian β5 in a Src-dependent
manner (151), and Syk and Pyk2 activation has been shown to
occur for αVβ3 (152, 153). There is also evidence that Rac-1
activation is dependent on RhoG and its GEF Trio (154, 155),
whereas RhoA inhibits engulfment (156), and the role of Cdc42
remains unclear (157–159).

An orthologous pathway using the CED-2-CED-5-CED10
module has been described for C. elegans INA-1, which activates
the Rac ortholog and requires activation of SRC-1(Src-ortholog)
(3). Similarly in Drosophila, severed axon clearance requires
Src42A and Shark—the Src and Syk orthologs, respectively
(160, 161)—pointing to an evolutionarily conserved pathway
operating in apoptotic cell removal.

DISCUSSION AND FUTURE
PERSPECTIVES

There are still critical gaps in the knowledge of phagocytic
integrin signaling, specifically concerning proximal events
and their hierarchy. There are several proposed alternative
Talin1-recruitment mechanisms, but their contributions and
significance are yet to be established. Rap1-Talin1 interaction
is evolutionarily conserved and might constitute a mechanism
for short-term adhesions (105), whereas Rap1-RIAM-Talin1
contacts would have a faster recruitment of effector proteins. In
this line, it is yet to be established if RIAM is required for outside-
in signaling, formation, and recycling of the focal adhesion-like
complexes distributed in phagocytic cups (107).

Different F-actin nucleators/elongators are described to
participate in CR3-mediated phagocytosis; however, their
localization, recruitment, and relative contributions are
unknown. The regulation of small GTPases, which control
actin dynamics, remains obscure; there is scarce evidence of

GEF and GAP spatiotemporal localization in phagocytic cups,
and it is well established that GTPases negatively regulate each
other, which also raises questions on signal termination and
negative-feedback loops.

Many structural and signaling proteins required for
phagocytic integrin function have potential post-translational
modification-dependent functions, and, although there are
several candidates, little work has been undertaken to establish
Ser/Thr kinase and phosphatase recruitment and localization
within the phagocytic cup.

Fine-grain elucidation of the molecular mechanisms
involved in integrin-mediated phagocytosis will yield
invaluable information on possible control points for
phagocyte functions (antigenic capture, pathogen, tumor
or apoptotic body elimination, etc.). Indeed, complement-
opsonized immune complexes and particles may be presented
directly by subcapsular sinus macrophages to naïve B cells
or conveyed to dendritic cells for B-cell presentation. This
process requires cooperation between antigen-presenting cell
αMβ2/αXβ2 and B-cell CR1, CR2, and/or Fc receptors (162–
165). Manipulation of this pathway may inform new vaccine
strategies (166).
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